
doi:10.6342/NTU201801305

國立臺灣大學電機資訊學院電機工程學研究所

博士論文
Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Doctoral Dissertation

現代電腦中的有限體乘法及其應用

Multiplication in Binary Fields on Modern Computers and
its Applications

陳明興

Ming-Shing Chen

指導教授：鄭振牟博士

Advisor: Chen-Mou Cheng, Ph.D.

中華民國 107 年 6 月
June, 2018

doi:10.6342/NTU201801305

ii

doi:10.6342/NTU201801305

iv

doi:10.6342/NTU201801305

摘要

本論文旨在研究使用現代電腦的向量指令集及無進位乘法來建構特

徵值為二的有限體乘法，以及各種不同有限體乘法的應用。我們討論

了有限體的不同表示法，以及在這些表示法之下，基於現代電腦考量

下的有限體乘法的實現方法。

我們呈現了四種應用，分別對應到不同的有限體乘法實現方式。

最先呈現的應用是設計給磁碟陣列 (RAID) 使用的錯誤更正碼

(erasure correcting code)，此種錯誤更正碼現在標準磁碟陣列的錯誤更

正碼的推廣，並且能有效的提昇標準編碼在四個冗餘 (checksum) 時的

磁碟數量，從最大支援二十八磁碟推展到可支援九十六個磁碟。在這

裡我們展示了使用向量指令實現有限體乘法的標準作法。

第二個應用是實作一種可以抵抗量子電腦攻擊的多變量公鑰密碼系

統 (MPKCs)–Rainbow，在這應用中我們主要討論在安全軟體的要求下

時，有限體乘法的實現方式，以及實現多變量密碼時的矩陣乘法，多

元二次多項式組的求值，和求解線性方程組時的程式寫法。

第三是討論加法性快速傅立葉變換 (additive FFT) 的程式實現，我

們介紹使用 additive FFT 來求多項式的值的方法，以及如何實作一

個高效率的 additive FFT 的方式。在這裡我們使用了乘有限體的子體

(subfield) 中的元素的加速方法。

最後一個應用是實作係數只能為一或零的多項式 (Boolean Polyno-

mial) 的乘法器，在這裡我們結合了 additive FFT 及 Frobenius FFT

的技巧，提出了一個可以帶比較少的點至多項式就能計算乘法的的方

法，並且展示了在 additive FFT 上帶那樣的點，就等於刪節了一些計

v

doi:10.6342/NTU201801305

算的 FFT(truncated additive FFT)，還有這些演算法的實現方式。這

裡使用的有限體乘法是單純的使用硬體的無進位乘法來實現。這個應

用同時也是我們再做更大的有限體乘法的關鍵元件。

關鍵字： 乘法, 有限體, 磁碟陣列, 多變量公鑰密碼, 快速傅立葉變換,

Boolean 多項式

vi

doi:10.6342/NTU201801305

Abstract

We study the multiplication in the extension fields of characteristic

2 with the vector instruction set and carryless multiplication on modern

computers and their applications. We describe the representations of

fields in polynomial forms and vector spaces and the implementations

for these representations.

We present four applications corresponding to 4 different implemen-

tations of field multiplication.

The first application is an erasure correcting code– RAIDq, an ex-

tension of currently standard code in RAID-6, for the RAID. It supports

a RAID system of 96 disks for the case of 4 checksums while it can only

be 28 disks for current code. We show the standard implementations for

multiplication in binary fields in the application.

In the second application, we implement the Rainbow, a derivate of

MPKCs which is believed a candidate of post-quantum cryptography.

We discuss the implementation of multiplication under the requirement

of secure software. We also present matrix-vector multiplication, evalu-

ating quadratic systems, and solving linear equations under the crypto

consideration.

In the third application, we introduce the additive FFT for evaluating

polynomials at a particular set and implement an efficient additive FFT

as well. We utilize the acceleration for multiplying subfield elements in

the implementation.

vii

doi:10.6342/NTU201801305

The last application presents a multiplier for Boolean polynomials.

We give a specific set for evaluating polynomials with the additive FFT,

allowing to derive other values of polynomials by Frobenius map. We

show the multiplication of Boolean polynomials by evaluating polyno-

mials at the particular set. The evaluation can be performed with a

truncated additive FFT. We implement the field multiplication with the

instruction of carrayless multiplication here. The last application can

also be a critical component for multiplication in the fields of larger size.

Keywords: Multiplication, Finite Field, RAID, MPKC, FFT, Boolean

Polynomial

viii

doi:10.6342/NTU201801305

Contents

口試委員會審定書 iii

摘要 v

Abstract vii

1 Introduction 1

1.1 Motivation . 1

1.2 The Applications . 2

1.2.1 Codes for RAID . 2

1.2.2 MPKCs . 3

1.2.3 The Additive FFT and its Implementations 4

1.2.4 Multiplying Boolean Polynomials 5

1.3 Outline of the Thesis . 6

2 Preliminaries 7

2.1 Notations . 7

2.2 The Construction of Binary Fields . 8

2.2.1 The Polynomial Constructions 8

2.2.2 Finite Field as Linear Space 13

2.3 Selected Instructions . 17

2.3.1 Bit Operations: Multiplications in F2 and F4 18

2.3.2 Instruction for Multiplying Boolean Polynomials 18

2.3.3 Exploiting Data-level Parallelism 19

ix

doi:10.6342/NTU201801305

2.3.4 SIMD Table Lookup Instruction 20

2.4 Fast Linear Algebra with Vector Instructions 21

2.4.1 Matrix Transpose . 21

2.4.2 Linear Transformation over F2 22

3 Multiplication in Binary Fields 27

3.1 Multiplication in F2m for m ≤ 16 . 27

3.1.1 Field Multiplication as Linear Transformation 28

3.1.2 Multiplication in F256 . 29

3.1.3 Multiplication in F2562 . 31

3.2 Multiplication in Tower Fields . 34

3.2.1 Multiplication in F̃16 and F̃256 35

3.2.2 Decomposing Field Multiplication over F̃256 35

3.2.3 Subfield Multiplication in Tower Fields 36

3.2.4 Implementations . 36

3.3 Constant-time Multiplication in Binary Fields 38

3.3.1 Multiplication with Logarithm Tables 38

3.3.2 Generating Multiplication Tables On-the-fly 39

3.4 Multiplication in F2m for m = 64 and 128 41

4 Codes for RAID 45

4.1 Introduction . 45

4.1.1 The Problem of Plank’s Code 46

4.1.2 Our Solution: the RAIDq Code 47

4.1.3 Chapter Overview . 48

4.2 Extending RAID-6 for More Checksums 48

4.2.1 Terminology . 48

4.2.2 Plank’s code . 49

4.2.3 About MDS property of Plank’s code 50

4.2.4 Plank’s Code for RAID: the Successful Cases 51

x

doi:10.6342/NTU201801305

4.2.5 Plank’s Code for RAID: the 4th Checksums 51

4.2.6 RAIDq with 4 Checksums . 52

4.3 Implementation . 53

4.3.1 Encoding and decoding Plank’s codes 53

4.3.2 Implementing the Encoder . 54

4.3.3 Erasure Decoder . 56

4.4 Experiments and Discuss . 57

4.4.1 The Experiment . 57

4.4.2 Results . 58

4.4.3 Discuss . 59

4.5 Summary . 60

5 Implementing MPKCs 63

5.1 Introduction . 63

5.1.1 The Requirements on Post-Quantum Security 63

5.1.2 Challenge in Cryptographic Software 64

5.1.3 Chapter Objectives . 64

5.1.4 Chapter Overview . 64

5.2 Backgrounds on MPKC Signatures 65

5.2.1 MPKCs and its Security . 65

5.2.2 Recap of MPKC Signatures 66

5.2.3 The Rainbow Signature . 67

5.3 Implementing Components for Rainbow 70

5.3.1 Matrix-vector Multiplication 71

5.3.2 Evaluating Quadratic Systems 71

5.3.3 Solving Linear Equations . 74

5.4 Benchmarks . 74

5.4.1 The Benchmarks . 76

5.5 Summary . 77

xi

doi:10.6342/NTU201801305

6 Additive FFT 79

6.1 Introduction . 79

6.1.1 FFTs over Binary Fields . 80

6.1.2 The Development of Additive FFTs 81

6.1.3 Overview of this chapter . 82

6.2 Subspace Polynomials . 82

6.3 The Additive FFT . 84

6.3.1 The novelpoly Basis w.r.t. Subspace Polynomials 84

6.3.2 Evaluating Polynomials in the novelpoly Basis 85

6.3.3 Converting Polynomial Bases 88

6.3.4 The addFFT Algorithm . 91

6.4 Implementing the Additive FFT . 91

6.4.1 Performing the Butterflies . 92

6.4.2 Performing the Basis Conversion 93

7 Multiplication of Boolean Polynomials 97

7.1 Introduction . 97

7.1.1 Previous Multiplications for Boolean Polynomials 98

7.1.2 The Practical Complexity Model 99

7.1.3 Our Contributions . 100

7.1.4 Chapter Overview . 100

7.2 Preliminaries . 101

7.2.1 The FFT Based Multiplication of Polynomials 101

7.2.2 The Frobenius cross-section 101

7.3 The Multiplication with Frobenius Cross-section and Additive FFT . 102

7.3.1 The Partition of Evaluating Points 103

7.3.2 Truncated Additive FFT . 106

7.3.3 Encoding: the First ℓm Layers of the Truncated Butterfly . 107

7.3.4 Multiplying Boolean polynomials 109

7.4 The Implementation and Benchmarks 110

xii

doi:10.6342/NTU201801305

7.4.1 The Implementation . 110

7.4.2 Benchmarks . 111

7.5 Summary . 113

Bibliography 115

xiii

doi:10.6342/NTU201801305

xiv

doi:10.6342/NTU201801305

List of Figures

3.1 Data rearrangement for multiplication in F̃2128 by elements in F̃232 . . . 38

3.2 Generating multiplication tables for w = (w0, w1, . . . w15). 40

5.1 An example of parallel evaluation of polynomials. 72

6.1 The butterfly unit. 86

6.2 An example of computations in Butterfly. 87

6.3 An example of basis conversion. 90

7.1 An example of truncated Butterfly. 106

7.2 An example for the first temporary result of 2-layers butterflies 108

7.3 Benchmarks of multiplications in F2[x] on Intel Xeon E3-1245 v3 @

3.40GHz . 112

xv

doi:10.6342/NTU201801305

xvi

doi:10.6342/NTU201801305

List of Tables

2.1 Field Isomorphism: Cantor basis to F̃65536. 17

3.1 Logarithm table for F̃16. 38

4.1 Good candidates for RAIDq 8 in F̃2562 53

4.2 Throughputs (GB/s) of the coders for RAID with 64 data blocks. . . 58

5.1 Parameters of Rainbow. 70

5.2 Benchmarks on evaluations of quadratic polynomials 74

5.3 Benchmarks of linear solvers with Gaussian elimination 75

5.4 Parameters of signature schemes . 75

5.5 Benchmarks of Signature Schemes on Intel Haswell Archiecture. . . . 76

6.1 Variable Substitution of si(x) . 88

7.1 Benchmarks of multiplications in F2[x] on Intel Xeon E3-1245 v3 @

3.40GHz (10−3 sec.) . 113

xvii

doi:10.6342/NTU201801305

xviii

doi:10.6342/NTU201801305

List of Algorithms

1 SIMD matrix-vector multiplication over F2 24

2 Generating multiplication tables for F̃16. 40

3 Multiplication in F264 . 42

4 Multiplication in F2128 . 43

5 The worse-case Gaussian elimination 75

6 The Butterfly for polynomials in the novelpoly basis. 85

7 Variable Substitution . 89

8 Basis conversion: monomial to novelpoly basis. 90

9 The Additive FFT Algorithm . 91

10 The Encodem algorithm . 109

11 The multiplication of Boolean polynomials 110

xix

doi:10.6342/NTU201801305

xx

doi:10.6342/NTU201801305

Chapter 1

Introduction

1.1 Motivation

This thesis presents the implementations of the arithmetic of finite field, especially

the multiplication, on modern computers and shows various applications employing

the techniques. The implementation of arithmetics in finite fields is an essential

topic in the areas of code and cryptography. We can always find different imple-

mentations for the same field concerning different circumstances or computation

platforms. Even in the same software, it is common to use different representa-

tions for the same field in different components for optimizing the performance.

The development of software follows the same philosophy on developing high-speed

cryptography in [Sch11] – designing and implementing software with careful choices

of high-level parameters, low-level optimization of software on a given microarchi-

tecture, and considerations of their subtle interactions.

In the first part of the thesis, we review and discuss the implementations of the

finite fields of characteristic 2, i.e., the binary fields. We will first review the con-

structions of binary fields mainly on the polynomial constructions and the construc-

tion of vector space [Can89]. We then introduce the useful instructions on modern

CPUs, especially on SIMD instruction sets, for implementing the multiplications

in binary fields. After the preliminaries, we present the practical implementations

of field multiplications based on the different size of fields or circumstances of the

1

doi:10.6342/NTU201801305

multiplications.

In the second part of this thesis, we show four different applications for a par-

ticular technique of multiplications. The applications are listed as follows:

1. Encoding and Decoding of the erasure correcting codes in the RAID sys-

tem: it corresponds to multiplications in small field with SIMD instruction

set [CCC+09,Anv11,CYC13,PGM13,GRU14].

2. Developing multivariate public key cryptosystems: it requires technique on

multiplication in the cryptographic softwares [CLP+18].

3. Evaluating univariate polynomials at multi-points with additive FFTs: it cor-

responds to multiplication by subfield elements [CCK+17].

4. Multiplying Boolean polynomials: it corresponds to multiplication in (slightly)

large field with carryless multiplications [GK14,LK16,CLP+18,LCK+18].

Since we focus on the implementations of these applications in this thesis, we

present the materials based on engineering’s perspective instead of the discussion

of computational complexities based on bit-operations in the theoretical works. In

other words, we work on real platforms equipped with powerful instruction sets,

e.g., for multiplying short boolean polynomials or working in SIMD manner. We

will describe the details resulting in high-performance software on real CPUs. These

computation platforms and instruction sets contribute to different strategies on im-

plementing the multiplications or the design of software, although they usually do

not change the level of complexity.

1.2 The Applications

1.2.1 Codes for RAID

The current mainstream RAID(Redundant Array of Independent Disks, a technol-

ogy for massive data storage) will not be capable for recovering lost data from the

2

doi:10.6342/NTU201801305

same amount of redundant data when the size of disk array becomes larger due to its

erasure correcting code(ECC). For example, with the current ECC, we can recover

any kind of lost data for 3 data disks when we set up 3 checksum disks in a disk

array of 255 total disks. When we set up with 4 checksum disks, however, we will

not recover some lost data for 4 data disks from the 4 checksum disks even if we run

a disk array of only 28 total disks.

Therefore, based on the current ECC, we present an erasure correcting code,

named RAIDq, to partly fix the issue. The RAIDq can recover any kind of lost data

for 4 data disks from 4 checksums for a disk array of 96 total disks. It is designed

with backward compatibility to the current RAID in both algorithm and redundant

data and thus restricts its ability for data recovery. More importantly, the RAIDq is

emphasized with its high performance which is arguably one of the strong reason for

current RAID technology. The performance of the RAIDq depends on minimizing

the arithmetic operations for generating checksums and exploiting high-performance

instructions on modern CPUs.

Implementation with SIMD instructions is the most basic technique for high-

performance software, especially for the arithmetic on binary fields. Through the

application, we show the SIMD arithmetic technique facilitates the implementation

of the erasure correcting code for RAIDs.

This chapter of code is based on the joint work with Bo-Yin Yang and Chen-Mou

Cheng published in [CYC13].

1.2.2 MPKCs

Multivariate Public Key Cryptosystems(MPKCs), which are often touted as future-

proof cryptosystems against Quantum Computers [DY08]. It is usually advertised

with its high-performance implementations [CCC+09]. In this chapter, we review

the Rainbow/TTS [DS05,DYC+08], a derivative of MPKC signatures, and its im-

plementations. With the powerful instruction sets on modern CPUs, we show the

techniques of high-performance implementation on central components of MPKCs

3

doi:10.6342/NTU201801305

including evaluating multivariate quadratic polynomials and solving linear equations

with Gauss eliminations.

In practice, a security system can be broken because of its implementation in-

stead of the cryptography. A famous example is that some AES implementations

were attacked due to the leakage on side channel information [BM06]. The side

channel resilience is an essential requirement for cryptographic software. In other

words, the secret data should be independent of memory access, and the program

should maintain time constancy when processing secret data in a cryptographic soft-

ware. Hence, the implementations of arithmetic for general multiplications may not

be suitable in the cryptographic world.

Through the application of MPKCs, we show the implementations of arith-

metic in fields under the cryptographic requirements. We implement the constant-

time field multiplications with SIMD instructions for high-performance software and

demonstrate the different strategies of constant-time implementations for various

components in the MPKCs.

This chapter is base on the joint work with Wen-Ding Li, Bo-Yuan Peng, Bo-Yin

Yang and Chen-Mou Cheng published in [CLP+18].

1.2.3 The Additive FFT and its Implementations

A fast Fourier transformation(FFT) is an algorithm that evaluates a polynomial

at a set of particular points, which is a handy tool in many areas of computer

science. The additive FFT evaluates polynomials at an additive subgroup instead

of multiplicative subgroups in usual FFTs. It was developed by Cantor [Can89],

Gao and Mateer [GM10], Lin, Chung, and Han [LCH14],and Lin, Al-Naffouri, and

Han [LANH16]. We discuss its variant for binary fields, specifically, with respect

to Cantor basis. In the variant of additive FFTs, the main algorithm is generally

divided into two main subroutines which are a basis conversion (for polynomials)

and one butterfly network.

For the high-performance implementation of the additive FFT, we use the tech-

4

doi:10.6342/NTU201801305

niques on multiplying subfield elements to accelerate the field multiplications in the

butterfly network. Although the basis conversion runs in higher complexity level, the

butterfly network consumes the most computational power in practice and can be

optimized by the subfield multiplications. Besides the field multiplications, we also

describe the fast calculation of constants in the butterflies and the better memory

access model for implementing the algorithm.

The materials about the implementations are based on joint work with Chen-

Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang. The preprint version

can be found in [CCK+17].

1.2.4 Multiplying Boolean Polynomials

The last application in chapter 7 presents a method for multiplying boolean polyno-

mials with the best-known performance. For this fundamental problem in computer

science, it has been many types of researches, e.g., [BGTZ08, HvdHL16, CCK+17,

vdHLL17] focusing on fast implementations, based on various FFTs, on modern

CPUs. For practitioners, it was surprising that van der Hoeven et al. could still

get a new multiplier in 2017 with a two times improvement over their previous imple-

mentation [HvdHL16]. The new multiplier multiplies polynomials with a new Frobe-

nius FFT [vdHL17] instead of the usual Kronecker substitution [GG13, Chap. 8].

In this chapter, we show how to cooperate the technique of Frobenius FFT with the

additive FFT and result in a new algorithm for multiplying Boolean polynomials.

We also present the implementation of the new multiplier and compare the per-

formance with other previous softwares. In our implementation, we perform the field

multiplications with the PCLMULQDQ instruction, which is a hardware instruction

for multiplying 64-bits Boolean polynomials, since we target on the multiplications

in 64-bits or 128-bits fields The other techniques include the truncated additive FFT

and perform the truncated FFT with linear transformations. We note at last that

the application itself can be the critical component for implementing the multipli-

cation in further large fields.

5

doi:10.6342/NTU201801305

This chapter is based on the joint work with Wen-Ding Li, Po-Chun Kuo, Chen-

Mou Cheng, and Bo-Yin Yang published in [LCK+18].

1.3 Outline of the Thesis

The thesis comprises topics for the multiplications in binary fields and four chapters

for their applications.

After this introduction, Chapter 2 introduces the notations, defines the con-

structions of fields used in the thesis, and reviews the useful instructions on modern

computers. Chapter 3 then presents various implementations of field multiplication

for different sizes of fields and requirements.

The rest of the thesis is composed of 4 relatively independent topics. Chapter 4

describes a code for extending the disks in RAID. It corresponds to the general

multiplications for small fields. Chapter 5 describes the implementations of MPKCs.

It corresponds to the constant-time multiplications. In chapter 6, we introduce the

algorithm of additive FFT and describe its implementations. The chapter is the

background knowledge for multiplying Boolean polynomials. Chapter 7 describes

the algorithm for multiplying Boolean polynomials. The multiplier presented in the

chapter can be the critical component of the multiplication in larger binary fields.

6

doi:10.6342/NTU201801305

Chapter 2

Preliminaries

2.1 Notations

We follow the notations in [GG13] and summarize the usual conventions in this

thesis as follows:

• Set, Ring, or Field. A set is notated as the capital letter, e.g., R or F . Some

particular sets are N for natural numbers, Z for integers, and F for finite fields.

• Vectors. (vi)0≤i≤7 = (v0, . . . , v7), or a bold small letter v.

• Polynomials. We use a small italic symbol, e.g., f, g, and h to represent

a polynomial, and the symbol f(x) indicates a polynomial with the inde-

terminate x. The subscripts of a polynomial indicate the coefficients, e.g.,

f(x) = f0 + f1x+ f2x
2 + · · · . We also present a polynomial f(x) in the vector

form (f0, f1, . . .).

• Matrices. Matrices are presented in capital letters, e.g., A, B, etc.

• Numbers in binary expansion or boolean vectors is presented in typewriter

fonts, e.g., 0xff. It usually represents the data formatted on computers.

• An algorithm or a procedure on computers is presented in typewriter fonts,

e.g., Encode.

7

doi:10.6342/NTU201801305

2.2 The Construction of Binary Fields

In this section, we discuss the constructions and arithmetic of fields of algebraic

extensions of F2, or binary fields. The finite field(or Galois field, GF) of two elements,

denoted as F2, is the set {0, 1} with multiplication and addition. The multiplication

of F2 is logic AND and addition is logic XOR.

How the field element is represented affects the procedure of performing the

arithmetics. In this thesis, we will discuss how to perform the arithmetics under

particular representations of binary fields for different applications. We will apply

interchangeable representations of fields and switch representations for better effi-

ciency of field multiplication. All fields of the same size are isomorphic, and the cost

of changing representations is to perform the isomorphism(a linear transformation).

We refer the readers to [GG13, Chapter 25] [LN86, chapter 1,2] for the funda-

mental concept of algebra.

2.2.1 The Polynomial Constructions

In this section, we discuss the representations of binary fields in the polynomial form

as well as the method for performing arithmetics for the representation.

Polynomials in F2[x]

A polynomial over F2(or a boolean polynomial) is an expression of this form

f(x) = f0 + · · ·+ fdx
d =

d∑
i=0

fix
i ,where fi ∈ F2 for 0 ≤ i ≤ d .

Here the indeterminate x is just a placeholder. F2[x] denotes the ring of univariate

polynomials over F2 with the indeterminate x. We also represent a polynomial f(x)

as a vector f = (f0, f1, . . .) with entries from F2 and a finite number of coefficients

fi’s are nonzero. Since a natural basis for F2[x] is (1, x, x2, . . .), we can associate the

basis elements to the boolean vectors with one nonzero entry, i.e., 1 = (1, 0, . . .), x =

(0, 1, . . .), x2 = (0, 0, 1, . . .), ... etc.

8

doi:10.6342/NTU201801305

Clearly, we can use the integer i to denote a boolean vector (i0, i1, . . . , id) if i is

a nonnegative integer whose binary expansion is i = idid−1 · · · i0 or

i =
d∑

j=0

ij · 2j where ij ∈ {0, 1} . (2.1)

We can then define the boolean polynomial corresponding to the binary expansion

of i

ω(i) =
d∑

j=0

ij · xj . (2.2)

Conversely, we have ω−1(xj) = 2j with respect to the basis (xj)j=0,1,... of F2[x].

Hence, we can store the polynomials of degree d in F2[x] as Boolean vectors of

length (d+ 1)-bits.

We also adopt a convention that a hex number denotes explicitly the value of

a boolean vector. For example, the polynomial x8 + x4 + x3 + x + 1 ∈ F2[x] is

represented as the Boolean vector 0x11b = 1, 0001, 1011b = 28 + 24 + 23 + 2 + 1,

i.e., ω(0x11b) = x8 + x4 + x3 + x+ 1.

The addition and multiplication of polynomials are defined by (a0, a1, . . .) +

(b0, b1, . . .) = (a0 + b0, a1 + b1, . . .) and (a0, a1, . . .) · (b0, b1, . . .) = (c0, c1, . . .), with

cn =
∑n

i=0 aibn−i. The polynomials in F2[x] are the basic form of algebraic objects in

this thesis since there are hardware instructions for multiplying Boolean polynomials

of some fixed lengths.

Binary Fields of Boolean Polynomials

An element in the binary field F2m can be represented as a polynomial in F2[x]<m

where the subscript denotes the restriction of its degree. The basic construction of

F2m is the ideal of F2[x] modulo(mod) an irreducible polynomial of degree m. Just as

a Boolean polynomial can be represented as a Boolean vector, so too the field F2m :=

F2[x]<m can be represented as the vector space Fm
2 . The “vectors” {1, x, . . . , xm−1}

form a basis for F2[x]<m. Hence, with respect to the basis (1, x, . . . , xm−1) of F2m ,

let i be a nonnegative integer with binary expansion i =
∑d

j=0 ij · 2j as in Eq. 2.1.

9

doi:10.6342/NTU201801305

The field element corresponding to the binary expansion i is

ωF2m
(i) =

m−1∑
j=0

ij · xj . (2.3)

Explicit Constructions of particular fields Probably due to its one-byte storage,

the field of 256 elements(F256) plays an important role on computers, especially in

the area of cryptography and code. In Chapter 4, we use the construction of F256

as

F256 = F28 := F2[x]/(x
8 + x4 + x3 + x2 + 1) . (2.4)

The construction consists with the field used in the erasure correcting code of stan-

dard RAID-6 [Anv11]. Note that it differs from the one in Advanced Encryption

Standard(AES) [Nat01], which constructs its field with respect to a different irre-

ducible polynomial

F2[x]/(x
8 + x4 + x3 + x+ 1) .

We will use the term 0x11bF256 when referring to the field of 256 elements in AES.

In Chapter 7, we use the fields of 64 and 128-bits. The field of 64-bits is con-

structed as

F264 := F2[x]/
(
x64 + x4 + x3 + x+ 1

)
. (2.5)

For the field of 128-bits, we choose the same construction as in AES-GCM:

F2128 := F2[x]/
(
x128 + x7 + x2 + x+ 1

)
. (2.6)

The Multiplication of Field Elements We perform the multiplication in F2m in two

steps. The first step multiplies two corresponding polynomials in F2[x]. The second

step reduces the degree of the resulted polynomial in the first step by a modulo of

the irreducible polynomial of degree m.

We show an example of multiplications in F4 := F2[x]/(x
2 + x + 1). Given

a, b ∈ F4 and their polynomial forms a(x) = a0 + a1x and b(x) = b0 + b1x. To

10

doi:10.6342/NTU201801305

compute c = a · b, the first step calculates

(a0+a1x) ·(b0+b1x) = a0 ·b0+(a0 ·b1+a1 ·b0)x+(a1 ·b1)x2 = c0+c1x+c2x
2 . (2.7)

Here we have c0 = a0 · b0, c1 = a0 · b1 + a1 · b0 , and c2 = a1 · b1. In the second step,

since

x2 ≡ x+ 1 mod x2 + x+ 1 , (2.8)

the term c2 · x2 reduces to c2x+ c2. We have the result

c = (c0 + c2) + (c1 + c2)x = (a0 · b0 + a1 · b1) + (a0 · b1 + a1 · b0 + a1 · b1)x . (2.9)

It costs 4 AND and 3 XOR in total.

To perform the multiplication on computers, the straightforward method is to

perform all the bit-operations. One can first isolate all coefficients of the two in-

put polynomials and perform all the arithmetics in F2. We can also perform the

multiplication relying on the hardware instructions on modern computers. We will

discuss the method in Sec. 3.1 and 3.4.

Although we do not discuss the calculation in this thesis, a multiplicative inverse

may be obtained via the Euclidean algorithm or Fermat’s little theorem.

Polynomials over F2m

Besides representing the field elements as boolean polynomials, we can also use the

polynomials over F2m(i.e., F2m [x]) to represent elements in the extension field of F2.

More precisely, given a field F2m and an irreducible polynomial f(x) ∈ F2m [x] with

deg f(x) = n, we can construction the extension field F2m·n := F2m [x]/f(x). F2m·n is

isomorphic to Fn
2m as F2m

∼= Fm
2 .

In Chapter 4, we use polynomials in F256[X]≤1 to represent elements in F2562 and

construct the field as

F̃2562 := F256[X]/(X2 + ωF256(0x8) ·X + 1) . (2.10)

11

doi:10.6342/NTU201801305

Note that the symbol F̃2562 associates to the specific construction in this thesis. In

the construction, an element of F̃2562 can also be represented as a vector of two

components in F2
256. Since the constant term of polynomials in F256[X] is the same

as F256, an element in F256 can be represented as a constant polynomial with the

same value for the constant coefficient. Hence, we say the representation of F̃2562 is

compatible with F256.

In [AJ86], Adleman and Lenstra presented an algorithm for constructing the

following tower of fields:

F4 := F2[x0]/(x
2
0 + x0 + 1),

F̃16 := F4[x1]/(x
2
1 + x1 + x0),

F̃256 := F̃16[x2]/(x
2
2 + x2 + x1x0),

F̃65536 := F̃256[x3]/(x
2
3 + x3 + x2x1x0),

...

(2.11)

In these constructions, an element in F̃65536 is represented as a first degree polynomial

over F̃256, an element in F̃256 is represented as a first degree polynomial over F̃16, and

so on. We can eventually decompose an element a of binary fields to a multivariate

polynomial over F2, i.e., a ∈ F2[x0, x1, x2, . . .].

To construct the vector form of elements in the tower fields, given m is a power

of 2, i.e., m = 2lm , we can associate a binary expansion of k =
∑lm−1

j=0 kj · 2j with

the monomial

monomial(k) = xk0
0 xk1

1 · · · x
klm−1

lm−1 for 0 ≤ k < m . (2.12)

The basis for F̃2m is

(monomial(k))0≤k<m =
(
ωF2[x0,x1,...,xlm−1](2

k)
)
0≤k<m

. (2.13)

12

doi:10.6342/NTU201801305

For example, we have the basis for the vector space F̃256:

(1, x0, x1, x0x1, x2, x0x2, x1x2, x0x1x2) = (monomial(k))k=0,1,...,7 .

As the second example, we illustrate the polynomial form of ωF2[x0,x1,...](0xf) ∈ F̃16

ωF2[x0,x1,...](0xf) = 1 + x0 + x1 + x0x1 = (1 + x0) + (1 + x0)x1 .

Note that (1 + x0) is an element in F4. Hence, the tower fields are also compatible

with their sub-fields.

The multiplication Under the representation of polynomials over F2m , the field

multiplication is similar to polynomial multiplication with reduction. However, the

coefficient multiplication is in F2m instead of F2.

The multiplication in tower fields is more complicated. Since the field is con-

structed as F̃2m := F̃2m/2 [y]/y2+ · · · , the field multiplication comprises a polynomial

multiplication and a reduction for the term of degree 2. However, we have to per-

form the coefficient multiplication in F̃2m/2 in the same way of multiplication in F̃2m .

We have to apply the rules recursively down to polynomials of F2 coefficients.

2.2.2 Finite Field as Linear Space

While describing the fields as vector spaces, in [Can89], Cantor assumed the fields

are chosen so that

F2 = F22
0 ⊂ F22

2 ⊂ F22
3 ⊂ · · ·

and let F̃ =
∪

k F22k
be the union of all these fields. Cantor described a construc-

tion of finite field for F2m , where m is a power of 2, from the kernel of a linear

transformation

S :

 F̃ → F̃

x 7→ x2 − x .
(2.14)

13

doi:10.6342/NTU201801305

S can be written in the polynomial form as

s1(x) = x2 − x =
∏
a∈F2

(x− a) . (2.15)

Define the subspace polynomials s0(x) = x, s1(x) = x2 − x, and inductively

si+1(x) = s1(si(x)) , i = 1, 2, . . . (2.16)

Thus, if x ∈ F̃, then Six := si(x). Clearly, deg si(x) = 2i.

Cantor define the vector space Wi over F2 as the kernel space of Si, i.e.,

W0 = {0}, Wi = {x ∈ F̃|Six = 0} = {x ∈ F̃|si(x) = 0} . (2.17)

Then Wi is a subspace of F̃ over F2. Under this definition, dimF2 Wi = i and

Wm = F2m if m is a power of 2.

For the basis of Wm, Cantor defined that

Definition 1. Let a sequence u0, u1, u2, . . . of elements from the algebraic closure of

F2 satisfy

u2
j + uj = (u0u1 · · ·uj−1) + [a sum of monomials of lower degrees],

where “a sum of monomials of a lower degree” means

∑
i

ciu
i0
0 u

i1
1 · · · u

ij−1

j−1 ,

where ci ∈ F2 and (i0, i1, . . . , ij−1) is the binary expansion of i =
∑j−1

k=0 ik · 2k. Then,

we can define the basis

yi = ui0
0 u

i1
1 · · ·u

ij
j

so that y2r = ur for r = 0, 1, 2,

Cantor then proved

14

doi:10.6342/NTU201801305

Theorem 1. The sequence (y0, y1, y2, . . .) is a basis for F̃. (y0, . . . , ym−1) = (yi)0≤i<m

is a basis for Wm and ym ∈ Wm+1 \Wm.

The Basis Compatible with Polynomial Construction

We provide an explicit choice of elements (u0, u1, . . .). If we choose

Suk = (u0u1 · · ·uk−1) for k = 1, 2, 3, . . . , (2.18)

we have

u2
0 + u0 = 1

u2
1 + u1 = u0

u2
2 + u2 = u0u1

u2
3 + u3 = u0u1u2

...

and the construction of fields {W1,W2,W4,W8, . . .} are exactly the same as Eq. 2.11.

In this case, we can associate the symbol

ui = xi

and the basis element

yi = monomial(i) .

Hence, we can use the same value for the same element in the two representations of

the tower fields(Eq. 2.13) and the particular type of Cantor’s construction(i.e., Def. 1

and Eq. 2.18). We also have the same arithmetic rules for the both representations.

15

doi:10.6342/NTU201801305

The Cantor basis

In practice, Cantor mentioned a different representation for elements of Wm for

implementation purpose. Gao and Mateer [GM10] termed the representation as

“Cantor basis”. The Cantor basis (vi)0≤i<m satisfies

v0 = 1, v2i + vi = vi−1 for i > 0 . (2.19)

Given an element a = ω(vi)0≤i<m
(i) ∈ Wm in the Cantor basis, we can apply the

linear operation S to a efficiently

S · a = ω(vi)0≤i<m
(i/2) = ω(vi)0≤i<m

(i≫ 1) ∈ Wm−1 . (2.20)

With respect to the basis (vi)0≤i<m, its sequence of subspaces are

W0 := {0}, Wi := span{v0, v1, . . . , vi−1} for i > 0 ,

which consist with Eq. 2.17. Recall that Wm is a field with the basis (vi)0≤i<m if

m a power of 2. We note that W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wm. Hence, we can

arbitrarily transform the elements in a smaller space to a larger space by padding

zero to the extra dimensions without any cost. We thus treat elements in smaller

fields as elements in larger fields arbitrarily.

Field Isomorphism

Table 2.1 lists the field isomorphism for the basis elements from the Cantor basis

to F̃65536. For finding the binary expansion of an element in F̃65536 that is the same

element in the Cantor basis, the change of field representations is a matrix-vector

multiplication over F2, and the matrix is precisely the Tab. 2.1.

To generate the matrix of isomorphism, we first set the same representative for

1 = 0x1 in both representations. Then we solve the equation s1(x) = x2 + x = 1

in F̃65536 to find the role playing v1 in F̃65536. It results in x = ωF̃65536
(0x2) which

16

doi:10.6342/NTU201801305

is the v1 represented in F̃65536. To find v3 in the representation of F̃65536, we solve

x2 + x = v2 = ωF̃65536
(0x4) and result in v3 = ωF̃65536

(0xa). Following the same

process, we can fill out all the contents of the matrix.

Table 2.1: Field Isomorphism: Cantor basis to F̃65536.
Cantor basis F̃65536

W1 v0 0x1 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0x1
W2 v1 0x2 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0x2

W4
v2 0x4 (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0x4
v3 0x8 (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0xa

W8

v4 0x10 (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0x14
v5 0x20 (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0x20
v6 0x40 (0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0x4c
v7 0x80 (0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) 0xae

W16

v8 0x100 (0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0) 0x152
v9 0x200 (0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 0x22e
v10 0x400 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0) 0x480
v11 0x800 (0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0 0xa4c
v12 0x1000 (0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0) 0x14fa
v13 0x2000 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 0x2002
v14 0x4000 (0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0) 0x4c32
v15 0x8000 (0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1) 0xae98

2.3 Selected Instructions

In this section, we discuss the useful instructions for multiplication in binary fields.

To perform the arithmetic in finite fields, the rule of thumb is always to choose an

equivalent native instruction supported on the platform. However, there are only

a few fields where multiplications correspond to native hardware instructions in

mainstream CPUs, so the efficient software implementation of arithmetic is a topic

of great interest in computer engineering.

An instruction describes the real operation that a computer manipulates the

data. The machines see a program as a sequence of instructions. A typical computer

does: (1) pick up the value at the location a, (2) pick up the value at the location b,

(3) do some operation specified by the instruction to the two values, (4) and write

back the result to the location c. Here the location refers to memory or a register.

17

doi:10.6342/NTU201801305

The registers are the fastest storage and are usually limits on its size. The width

of registers is termed a machine word which is generally the unit that a computer

manipulates data. It is used to temporarily store the data and provide the data to

arithmetic or logic units performing the real operations. We assume that a program

loads inputs from memory into registers, executes the computations in the registers,

and finally stores the outputs back to memory.

To make a high-performance software on a particular purpose, we generally aim

for 2 directions: (1) minimize the number of instructions used and (2) reduce the

number of access to memoryy. It relies on keeping desired values in registers as

much as possible. The modern computers usually support additional instructions or

registers through instruction set extensions. A powerful instruction helps to reduce

the number of instructions applied. Our first strategy on optimizations is choosing

the best specific instructions that result in the best performance.

2.3.1 Bit Operations: Multiplications in F2 and F4

F2 is probably the only field with full hardware support, which multiplication and

addition correspond to AND and XOR respectively. However, CPUs usually manipu-

late data in 32-bit or larger machine words today, instead of one “bit” for F2. The

main issue for implementing software over F2 relies on how to utilize the full width

of the machine word. It usually involves discovering the parallelism in the particular

works.

In the case of F4, we believe that the best way to multiply is still to use bit

operations. For this, the 2-bits element in F4 is often stored in separate registers, or

“bit-sliced.” A multiplication in F4 costs 4 AND and 3 XOR by Eq. 2.9.

2.3.2 Instruction for Multiplying Boolean Polynomials

For multiplying polynomials in F2[x], fortunately, there are native instructions for

this purpose on various platforms. In the x86 platform, the instruction is PCLMULQDQ [GK14]

which was available since 2010 from the Westmere micro-architecture. On the

18

doi:10.6342/NTU201801305

ARMv8 platform, the equivalent instruction for polynomial multiplication is named

PMULL or PMULL2. In this thesis, we demonstrate our techniques with the instruc-

tions in the x86 platform.

The PCLMULQDQ instruction performs the carryless multiplication of 2 64-bits

polynomials, i.e., PCLMULQDQ : F2[x]<64 × F2[x]<64 → F2[x]<127. Since the instruc-

tion operates on polynomials of fixed length, the main work on implementation is

to adjust the sequence of instructions that result in the least running time for the

various length of polynomials.

2.3.3 Exploiting Data-level Parallelism

Whenever the same computations need to be carried out on multiple independent

inputs, these computations can in principle be carried out in parallel. This kind of

parallelism is called data-level parallelism.

The SIMD Instruction Set

Single Instruction Multiple Data(SIMD) is a standard way to realize data-parallelism

on modern computers. We some use the term vector instructions for the SIMD

instructions alternatively. The idea of SIMD is to keep multiple values of the same

type in one register, and then perform the arithmetic operations on all of these

values in parallel with vector instructions.

Today, the vector instructions are usually supported through an instruction set

extension and are commonly available on various platforms. These instruction sets

typically differ from the number of registers provided, the width of registers, and the

collection of instructions supported. For example, there are mainly SSE, AVX, and

AVX-512 [Int15], providing 128-, 256-, and 512-bits registers respectively, available

on the x86 platform. There is the NEON instruction set available on the ARM

platform as well.

In this thesis, we develop the techniques for the arithmetic of field based on

the SSE instruction set. The more advanced instruction set, e.g., AVX in x86, can

19

doi:10.6342/NTU201801305

usually be seen as an extension of SSE with more registers and larger machine word.

The SSE instruction set provides 16×128-bit xmm registers, which can be accessed

as vectors of 32-bit floats, 64-bit (double-precision) floats, 64-, 32-, 16-, or 8-bit

signed or unsigned integers. It also contains a set of SIMD instructions including

arithmetic, logic, and data movement instructions.

2.3.4 SIMD Table Lookup Instruction

Among the common SIMD instructions, one of the most useful vector instructions

in this thesis is the SIMD table lookup instruction. In addition to the table lookup,

we also use the instruction to move byte data.

The SIMD table lookup instruction is common on modern CPUs. On the x86

platform, the table lookup instruction is PSHUFB, which is available since the SSSE3

instruction set. In one instruction, PSHUFB can perform 16 table lookups simultane-

ously. In the AVX-2 instruction set, its 256-bits version VPSHUFB simply performs

the PSHUFB twice in one instruction. On ARM platforms with the NEON instruc-

tion set, the table lookup instruction are named VTBL or VTBX. We adopt the basic

PSHUFB to develop further implementations in this thesis.

The PSHUFB instruction takes two 16-byte sources which one is a table with 16

one-byte entries (T [0], . . . , T [15]) and the other are 16 indices (i0, . . . , i15). In its

destination register, A CPU will fill in T [ij mod 16] for ij ≥ 0 or 0 for ij < 0 in the

j-th byte, i.e.,

PSHUFB((T [0], T [1], . . . , T [15]), (i0, i1, . . . , i15))

→ (T [i0 mod 16], T [i1 mod 16], . . . , T [i15 mod 16]) .

Here is an example of usage: a table (x0, x1, x2, ..., x15) is loaded as the first

20

doi:10.6342/NTU201801305

operand, and the indices as the second operand, e.g.,

PSHUFB((x0, x1, x2, ..., x15), (1, 0, 3, 17,−1,−17, 9, ...))

→ (x1, x0, x3, x1, 0, 0, x9, ...).

2.4 Fast Linear Algebra with Vector Instructions

In this section, we implement standard subroutines of linear algebra over F2 with

the SSE instruction set on the x86 platform.

2.4.1 Matrix Transpose

The first technique is an efficient method for matrix transpose. In [War12], Warren

describes a divide-and-conquer method for transposing 8× 8 bit-matrix. For imple-

mentation with vector instruction set, Van der Hoeven et al. [vdHLL17] and Chen

et al. [CCK+17] showed similar techniques for the bit- and byte-matrix in AVX-2

instruction set. We depict the methods in this section.

Generally speaking, to transpose a matrix M =

A B

C D

, we first rearrange the

contents of M to

A C

B D

 and then perform the process of transpose to all 4 sub-

matrices A,B,C, and D. The process ends if the sub-matrices A, . . . , D cannot be

divided anymore. Based on the minimized size of the sub-matrix, we perform the

data shuffling even in bit-levels. Warren had shown how to accomplish the shuffle

of bit-level data with basic bit-operations in [War12].

The abstract idea for transposing bit- or byte-level matrices is the same. How-

ever, we implement the two types of matrix transpose with different instructions.

For bit-level transpose, we follow Warren’s implementation of bit-operations but pro-

gram it with vector instructions for performing multiple transposes in parallel. For

byte-level transpose, the data movement in byte-, word-, or other broader structures

is well supported with SSE instruction set, and we thus implement the transpose of

21

doi:10.6342/NTU201801305

byte-matrix with instructions of data swizzling.

We show examples of the byte-matrix transpose in the rest of this section. The

interpretation of data plays a vital role for transpose in a SIMD instruction set.

For example of transposing a 4 × 4 byte-matrix M =

A B

C D

, let A =

a0 a1

a2 a3

is a 2 × 2 sub-matrix, where ai is one byte for i = 0, . . . , 3, and similar symbols

for sub-matrices B =

b0 b1

b2 b3

, C, and D. If the matrix M is formatted in one

16-bytes vector register, we can accomplish the 4×4 transpose of M in one PSHUFB

instruction if the data A,B,C, and D located in the same 16-byte register.

(a0, a1, a2, a3), (b0, b1, b2, b3), (c0, c1, c2, c3), (d0, d1, d2, d3)

PSHUFB−−−−→ (a0, a2, a1, a3), (c0, c2, c1, c3), (b0, b2, b1, b3), (d0, d2, d1, d3)

.

Here a row box represents the data in the same register.

While the contents of matrices locate across registers, we can perform many

transposes in parallel by swapping data between registers. We show an example of

a 4× 4 transpose among 4 registers. Note that there are 2 swaps performed in each

step.

(a0, a1, b0, b1), . . . (a0, a1, c0, c1), . . . (a0, a2, c0, c2), . . .

(a2, a3, b2, b3), . . .
2 swaps−−−−→ (a2, a3, c2, c3), . . .

2 swaps−−−−→ (a1, a3, c1, c3), . . .

(c0, c1, d0, d1), . . . (b0, b1, d0, d1), . . . (b0, b2, d0, d2), . . .

(c2, c3, d2, d3), . . . (b2, b3, d2, d3), . . . (b1, b3, d1, d3), . . .

.

2.4.2 Linear Transformation over F2

In this section, we demonstrate how to perform a particular linear transformation,

i.e., the multiplication of a pre-defined matrix by a vector over F2. Algorithmi-

cally, we perform the linear transform with the famous method of the four Rus-

sians(M4R) [AH74] [ABH10]. Comparing the usual M4R [ABH10] which is based

22

doi:10.6342/NTU201801305

on memory access with the value of data, we use the SIMD table lookup instruction

in our implementations. Hence, we perform a batch of multiplications in parallel

with vector instructions.

4× 4 matrix-vector multiplication

The PSHUFB instruction performs precisely the multiplication of a pre-defined 4×4

matrix by a batch of arbitrary vectors. Given a matrix A ∈ F4×4
2 , we can prepare

a table whose contents are (A · 0x0, A · 0x1, . . . , A · 0xf), i.e., all possible prod-

ucts. Then, in one PSHUFB instruction, we can perform 16 multiplications of A by

b0, b1, . . . , b15, where bi ∈ F4
2 for all i.

PSHUFB((A · 0x0, A · 0x1, . . . , A · 0xf), (b0, b1, . . . , b15))

→ (A · b0, A · b1, . . . , A · b15) .

8× 8 matrix-vector multiplication

Although the PSHUFB queries table with only 16 byte-entries, we can still multiply

an 8×8 matrix with 2 PSHUFB’s due to the linearity. Suppose we multiply a matrix

A ∈ F8×8
2 by vectors b0, b1, . . . , b15 where bi ∈ F8

2 for all i. If we divide the bi’s into

low- and high- nibbles, i.e., bi = bi,low 4-bits+bi,high 4-bits, we can accomplish A ·bi with

two multiplications

A · bi = A · bi,low 4-bits + A · bi,high 4-bits .

Since the bi,low 4-bits or bi,high 4-bits both contains 16 possible values, we can perform

the multiplications by 4-bits multipliers with the PSHUFB instruction. Note that

bi,low 4-bits is 4-bits data, but A · bi,low 4-bits is 8-bits data. Now we have to prepare 2

tables for values of

TABLOW(A) = (A · 0x0, A · 0x1, . . . , A · 0xf) ∈ F8×16
2

23

doi:10.6342/NTU201801305

and

TABHIGH(A) = (A · 0x00, A · 0x10, . . . , A · 0xf0) ∈ F8×16
2 ,

where all entries of the tables are in F8
2 (one byte). The products of A · bi’s can be

calculated with Alg. 1.

Algorithm 1: SIMD matrix-vector multiplication over F2

1 mat_mul_8x8(TABLOW(A),TABHIGH(A), (b0, . . . , b15)) :
input : A multiplication table for A : TABLOW(A)

A multiplication table for A : TABHIGH(A)
(b0, . . . , b15) ∈ F8×16

2 .
output: (A · b0, . . . , A · b15) ∈ F8×16

2 .

2 Blow ∈ F4×16
2 ← (b0, . . . , b15) AND (0xf, . . . ,0xf) .

3 Bhigh ∈ F4×16
2 ← ((b0, . . . , b15)≫ 4) AND (0xf, . . . ,0xf) .

4 Clow ∈ F8×16
2 ← PSHUFB(TABLOW(A), Blow).

5 Chigh ∈ F8×16
2 ← PSHUFB(TABHIGH(A), Bhigh).

6 return Clow + Chigh.

m×m matrix-vector multiplication

We can continue to extend the size of the matrix as the generalization of the 8× 8

matrix-vector product. Suppose we multiply a pre-defined m×m matrix A ∈ Fm×m
2

by a vector b ∈ Fm
2 for m is a power of 2. We assume a basis (vi)0≤i<m for Fm

2 , i.e.,

v0 = (1, 0, . . .), v1 = (0, 1, 0, . . .), v2 = (0, 0, 1, . . .), . . . , vm−1 = (0, . . . , 1). With M4R

of 4-bits indices, we first prepare m/4 tables for all possible products of A and all

vectors in span(v0, . . . , v3), . . . , and span(vm−4, . . . , vm−1). By splitting b to 4-bit

chunks, i.e.,

b =

(m/4)−1∑
i=0

bi where bi ∈ span(v4·i, v4·i+1, v4·i+2, v4·i+3) for 0 ≤ i <
m

4
,

we can then compute

A · b =
(m/4)−1∑

i=0

A · bi,

where each A · bi is calculated by the query of one particular table, and one query

comprises m/8 PSHUFB instructions due to the one-byte results of PSHUFB.

24

doi:10.6342/NTU201801305

However, we have to rearrange the format of the input data to work with SIMD

instructions efficiently. For example of m = 32, suppose that we multiply a pre-

defined matrix A ∈ F32×32
2 by continuing 32-bits inputs {a ∈ F32

2 , b ∈ F32
2 , . . .} where

a = a0||a1||a2||a3 is the concatenation of four 8-bits data. To apply the PSHUFB to

desired data, we have to collect all first bytes to the first register, all second bytes

to the second register, and so on.

(a0, a1, a2, a3), . . . (a0, b0, c0, d0), . . .

(b0, b1 , b2 , b3), . . .
4×4 Transpose−−−−−−−−→ (a1, b1, c1, d1), . . .

(c0, c1 , c2 , c3), . . . (a2, b2, c2, d2), . . .

(d0, d1, d2, d3), . . . (a3, b3, c3, d3), . . .

.

Then we can apply the Algo. 1 to the transposed inputs with proper tables for the

transposed results of the products. In other words, before and after the Algo. 1 is

applied, we have to perform an (m/8)× (m/8) byte-matrix transpose, which is also

performed in the SIMD way with the method in Sec. 2.4.1.

25

doi:10.6342/NTU201801305

26

doi:10.6342/NTU201801305

Chapter 3

Multiplication in Binary Fields

We discuss four implementations of multiplications in binary fields in this chapter.

In section 3.1, we describe the multiplication in fields of polynomial representations

with SIMD instructions. In section 3.2, we discuss the multiplication by subfield ele-

ments in tower fields. In section 3.3, we discuss the implementations of multiplication

under cryptographic requirements. Last, Section 3.4 describes the multiplication in

bigger fields with the PCLMULQDQ instruction.

3.1 Multiplication in F2m for m ≤ 16

Many researchers have discussed fast implementations with SIMD tabular lookup

instructions on modern CPUs for the polynomial representation of binary fields,

e.g., [CCC+09,Anv11,CYC13,PGM13,GRU14]. They reported many results in the

area of coding and cryptography for various platforms including x86 and ARM. In

contrast to standard implementations, these SIMD optimizations provide about an

order of magnitude improvement. We discuss these methods in this section.

In Section 3.1.1, we show multiplying a particular element in finite fields is equal

to performing a linear transformation. In Secction 3.1.2, we discuss the multiplica-

tion of F256 as well as some fast multiplication by specific elements. In Section 3.1.3,

we discuss the techniques for multiplying elements in F2562 .

27

doi:10.6342/NTU201801305

3.1.1 Field Multiplication as Linear Transformation

In this section, we show that multiplying a particular element in a finite field is equal

to a linear transformation. The rule can be generalized easily from the following

example.

For example of multiplication in F4 := F2[x]/(x
2 + x + 1), we multiply a field

element a ∈ F4 by an element b ∈ F4. Let the polynomial forms of a(x) = a0 +

a1x, b(x) = b0 + b1x ∈ F2[x]<2 and the vector forms a = [a0, b0]
T , b = [b0, b1]

T ∈ F2
2.

The first step of the multiplication(Eq. 2.7) is equal to a matrix-vector multiplication

a(x) · b(x)→

b0 0

b1 b0

0 b1

 ·
a0
a1

 =

c0

c1

c2

 .

The reduce step of the multiplication(Eq. 2.8) is equivalent to a linear transformation

1 0 1

0 1 1

 ·

c0

c1

c2

 ,

in which the matrix is depended on the construction of F4. We can combine the two

step into a linear transformation

1 0 1

0 1 1

 ·

b0 0

b1 b0

0 b1

 ·
a0
a1

 =

b0 b1

b1 b0 + b1

 ·
a0
a1

 ,

which is equal to the operations in Eq. 2.9. Hence, the multiplication of a by b is

equal to a matrix-vector multiplication, and the matrix depends on the particular

form of b.

Since we can perform a linear transformation with the SIMD PSHUFB instruction

in Sec. 2.4.2, we can perform multiple field multiplications in parallel with the same

28

doi:10.6342/NTU201801305

technique. However, in the previous example, we have to prepare tables for all

possible value of b since one particular value of b corresponds to one specific form of

the matrix.

In the case of multiplication in F16, suppose that we multiply a bunch of (a0, a1, . . . , a15) ∈

F16
16 by an element b ∈ F16. We can prepare 16 (multiplication) tables for the prod-

ucts of all possible values of b. Then, by load the correct table with the value of b,

we can perform the multiplications with one PSHUFB, i.e.,

(table of b ∈ F4
2), (a0, a1, . . . , a16)

PSHUFB−−−−→ (a0 · b, a1 · b, . . . , a15 · b) .

3.1.2 Multiplication in F256

The multiplication of elements in F256 has been highly optimized in software today.

For software design, it has been reported in the literature [CCC+09,CYC13,PGM13,

GRU14] that SIMD table lookup instructions, e.g., PSHUFB (Packed-Shuffle-Byte)

in x86, can accelerate multiplication in small finite fields. These proposed methods

are basically the same for F256.

The scalar multiplication over F256 is similar to F16 except that the number of

prepared tables becomes 256 and one multiplication costs 2 PSHUFB. Once the

correct tables are loaded into registers, the operations are the same as Alg. 1.

For further optimization of multiplications in F256, we detail the operations of

multiplications in the viewpoint of polynomials. An element in F256 is represented

as a polynomial of degree-7 over F2. The multiplication in F256 is performed as

multiplication of 2 involved F2[x] polynomials and then mod the chosen polynomial

ω(0x11d) to reduce the degree of the resulting polynomial. Suppose that we mul-

tiply a vector (a(0), a(1), . . . , a(15)) ∈ F16
256 by a scalar b ∈ F256. We can cut each a(i)

into two nibbles corresponding to higher- and lower-degree parts of their polynomial

29

doi:10.6342/NTU201801305

form as follows:

a(i) · b =
(
a
(i)
7 x7 + · · ·+ a

(i)
0

)
· b(x)

=
(
a
(i)
7 x3 + · · ·+ a

(i)
4

)
·
(
x4b(x)

)
+

(
a
(i)
3 x3 + · · ·+ a

(i)
0

)
· b(x) .

(3.1)

Therefore, we can obtain the desired result by loading two pre-computed multipli-

cation tables for the values of x4b(x) and b(x), and followed by two PSHUFB’s and

one XOR for results.

Last but not least, we have to ensure the size of all tables in the multiplication

fits into the fastest(L1) cache of moder CPUs. There are 256 possible values for

b(x), and each value of b(x) requires two tables of 16 byte-entries for multiplying

x4b(x) and b(x) respectively. Hence, the total size of all tables is 2 · 256 · 16 = 8192

bytes = 8 KB, which is smaller than a typical L1 cache(16 - 64 KB) on modern

CPUs.

Multiplying Specific Elements in F256

We can further optimize for some scalars for fewer instructions than general F256

multiplication. We start with Anvin’s technique [Anv11] for the obvious one, namely,

the multiplication of a ∈ F256 by b = x = ω(0x2) ∈ F2[x].

a · b = (a7x
7 + · · ·+ a0) · (x) (mod ω(0x11d))

= (a6x
7 + · · ·+ a0x) + a7x

8 (mod ω(0x11d))

→ (a6x
7 + · · ·+ a0x) + a7 · ω(0x1d)

(3.2)

The standard way to compute this in C language is

((a<<1)&0xff)^((a&0x80)?0x1d:0).

The ((a<<1)&0xff) can be accomplished by bit-shift or addition in byte-level.

For ((a&0x80)?0x1d:0), one can treat a7 as a predicate for conditional add a

constant 0x1d. Since the PSHUFB in x86 platform treats a7 in a complementary

30

doi:10.6342/NTU201801305

way ((a&0x80)?0:...), we implemented it in x86 as

((a&0x80)?0:0x1d)^0x1d.

We noted that, in certain situations, one can yield the complementary

((a&0x80)?0:0xe2),

which is one XOR fewer than the previous implementation.

Similarly, we can implement the efficient multiplication by small powers of ω(0x2)

with one fewer PSHUFB, comparing to multiplication by a generic element, as fol-

lows:

a · ωF256(x
3)

= (a4x
7 + · · ·+ a0x

3)

+ (a7x
10 + a6x

9 + a5x
8) mod (x8 + x4 + x3 + x2 + 1)

→ (a4x
7 + · · ·+ a0x

3) + (a7x
2 + a6x+ a5) · (x4 + x3 + x2 + 1) .

(3.3)

The modular part still requires one PSHUFB, but the other PSHUFB for a0, . . . a4 can

be replaced by a logical shift (PSLLW or PSRLW). Since no preloaded table requires

for bit-shift instructions, this optimization results in higher throughput and lower

latency, as well as lower register pressure. However, we note that the lack of byte-

sized PSLLB or PSRLB makes things more awkward than expected.

3.1.3 Multiplication in F2562

We discuss the SIMD multiplication in F2562 on modern CPUs in this section.

Recall that we construct the field F2562 as an extension field of F256, i.e.,

F2562 := F256[X]/(X2 + ωF256(0x8) ·X + 1) .

Hence, an F2562 element is represented as a polynomial of degree 1 over F256 or a

31

doi:10.6342/NTU201801305

vector with 2 entries (F2
256). We select the irreducible polynomial X2+ωF256(0x8)X+

1, abbreviated as 0x10801, for the fast multiplication of the coefficient ωF256(0x8)

in F256 in Section 3.1.2.

For multiplication in the extension field of F256, multiplying a by b for a, b ∈ F2562

is performed as multiplying polynomials of degree 1 over F256. In other words, let a

be a(X) ∈ F256[x]<2 and b be b(X) ∈ F256[x]<2. We implement a · b as a(X) · b(X)

over F256 with Karatsuba’s multiplication (please refer to [Ber08]).

(a1X + a0) · (b1X + b0)

= a1b1X
2 + [a1b1 + a0b0 + (a0 + a1)(b0 + b1)]X + a0b0

→ [ωF256(0x8) · a1b1 + a1b1 + a0b0 + (a0 + a1)(b0 + b1)]X

+a1b1 + a0b0 .

(3.4)

In summary, there are three general multiplications in F256 for a1 · b1, a0 · b0, and

(a0 + a1) · (b0 + b1) and one multiplication by ωF256(0x8) which can be done by

Eq. 3.3. Again, since we perform the multiplication in F2562 in a SIMD way with

PSHUFB on modern CPUs, it costs 3× 2 + 1 PSHUFB instructions in total. As for

the pre-computed multiplication tables, this construction uses the same tables with

F256, which are 256× 2 tables (16 bytes for each, 8 Kbytes in total).

The construction of F2562 is backward compatible with F256 for both the stored

values of field elements and the multiplication in F256. Since F2562 is represented as

an extension field of F256, an F256 element can naturally map to F2562 as a constant

polynomial in F256[X]. This construction also allows us to reuse the precomputed

tables and highly-optimized implementations of F256. Furthermore, a multiplication

in F2562 by an element in F256 would be preserved byte-wise in the extension fields;

in other words, it behaves as two multiplications in F256.

Comparison with the representation of polynomials over F2

Besides the compatibility of F256, a more critical reason for adopting the extension

field of F256 instead of polynomials of degree-15 over F2 is the size of multiplication

32

doi:10.6342/NTU201801305

tables. We compare the F2562 multiplication with the multiplication in F216(the field

represented as polynomials of degree-15 over F2) presented by Plank, Greenan, and

Miller [PGM13]. The multiplication is a straightforward generalization of multipli-

cation as a linear transformation in Sec. 3.1.1. In their proposal, a 16-bit element is

divided into four nibbles, and one multiplication can be computed using eight table

lookups (two for each nibble). It requires 8 tables of 16 byte-entries for one element

in F216 and the total storage for multiplication tables are 65536×8×16 bytes, which

cannot possibly fit into the L1 cache of any of today’s processors. Recall that the

F2562 multiplication, on the other hand, requires 8192 bytes of multiplication tables.

We can also compare the number of PSHUFB instructions in the multiplication

of the two representations. The F2562 multiplication costs 7 PSHUFB instructions.

However, the F216 multiplication requires 8 PSHUFB instructions. Hence, we con-

clude that the multiplication in F2562 is more practical than in F216 on modern

CPUs.

Data arrangement for F2562

The data arrangement for storing F2562 elements, which is 2 byte one element, also

affects the efficiency of multiplication. Take 128-bit register as an example. The

consecutive elements of b(X) ∈ F2562 natively format as

(b
(0)
0 , b

(0)
1 , b

(1)
0 , b

(1)
1 , . . . , b

(7)
0 , b

(7)
1), (b

(8)
0 , b

(8)
1 , b

(9)
0 , b

(9)
1 , . . . , b

(15)
0 , b

(15)
1),

For efficient SIMD multiplication in F2562 , one has to split the high and low bytes,

i.e., the b
(i)
1 and b

(i)
0 since they associate to terms of different degree in F256[X]. One

possible rearrangement of the data is

(b
(0)
0 , b

(8)
0 , b

(1)
0 , b

(9)
0 . . . , b

(7)
0 , b

(15)
0),

(b
(0)
1 , b

(8)
1 , b

(1)
1 , b

(9)
1 , . . . , b

(7)
1 , b

(15)
1) .

33

doi:10.6342/NTU201801305

If one can design the data format of F2562 at the beginning, the coefficients of

b(X) can be stored in a split way, i.e., storing 16 elements of b(X) in 2 memory slots

as

(b
(0)
0 , . . . , b

(15)
0), (b

(0)
1 , . . . , b

(15)
1) .

Therefore there is no cost for splitting data in registers, and we can still maintain

the backward compatibility for F256.

Fast multiplication with particular elements in F2562

We can deduce the fast multiplication in F2562 by some specific elements from multi-

plying polynomials of degree 1 in F256. Since the construction of F2562 is designed to

be backward compatible with F256, the coefficient multiplication in F256[X] remains

the same as F256, and multiplication between elements in F2562 and F256 is simply

to multiply a 2 terms polynomial by a constant polynomial. The fast multiplication

by specific elements of F256 is still fast.

Beside the natural acceleration of multiplication by an element in F256, multipli-

cation by elements in F2562 can also be fast as long as the coefficient multiplication

in F256[X] belongs to fast multiplication in Section 3.1.2. We can present the fast

multiplication for b(X) ∈ F256[X] ∼= F2562 by X ∈ F2562 as

b(X) · ωF2562
(X) = (b1X + b0) ·X (mod 0x10801)

= b0X + b1X
2 mod 0x10801

→ (b0 + b1)X + ωF256(0x8) · b1 .

(3.5)

The multiplication comprises one fast multiplication by ωF256(0x8) and one byte XOR

operation.

3.2 Multiplication in Tower Fields

In this section, we show how to perform the multiplication efficiently in tower fields

on modern computers.

34

doi:10.6342/NTU201801305

3.2.1 Multiplication in F̃16 and F̃256

Recall the tower of fields in Eq. (2.11).

F4 := F2[x0]/(x
2
0 + x0 + 1),

F̃16 := F4[x1]/(x
2
1 + x1 + x0),

F̃256 := F̃16[x2]/(x
2
2 + x2 + x1x0),

...

The basic idea for multiplying elements in tower fields is to decompose the mul-

tiplication into several multiplications in a smaller field recursively. The multiplica-

tion in F̃22w is performed as polynomial multiplications in F̃2w [x] which is a linear

transformation over F̃2w . The multiplication of the coefficients F̃2w again is a linear

transformation over F̃2w/2 , and the multiplication in F̃ is a linear transformation over

F2 in the end.

Since the multiplication in F̃16 or F̃256 is also a linear transformation over F2,

for multiplying elements in F̃16 or F̃256, we can use the same method of multipli-

cation with PSHUFB in F256 in Sec. 3.1.2. However, we have different contents of

multiplication tables concerning different field representations.

3.2.2 Decomposing Field Multiplication over F̃256

Since modern computers can cache the multiplication tables of fields of 256 elements

mentioned in Sec. 3.1.2, we choose the multiplication in F̃256 as the building blocks

for multiplication in extension fields of F̃256 and decompose the multiplication in the

extension fields into multiple multiplications in F̃256. For example of multiplication

in F̃216 , we regard elements in F̃216 as polynomials in F̃256[x]<2 and perform the field

multiplication as multiplying polynomials over F̃256. We can reduce the number of

field multiplication in F̃256 with the Karatsuba’s multiplication. Similar to F̃216 , we

can perform the multiplication in F̃232 as polynomial multiplication over F̃216 and

further decompose into field multiplications in F̃256. In the end, all field multiplica-

35

doi:10.6342/NTU201801305

tion in extension fields of F̃256 is performed with some particular field multiplications

in F̃256 and some data movement to multiply the right components of the extension

field.

3.2.3 Subfield Multiplication in Tower Fields

From the viewpoint of multiplying polynomials by a scalar, we regard the multi-

plication by a subfield element as a vector-scalar multiplication over the subfield.

Hence, a subfield multiplication not only costs fewer operations than general mul-

tiplication, but also contains natural data-level parallelism. The cost of subfield

multiplication depends on the size of the subfield and the length of the “vector”.

For example, to multiply a ∈ F̃22w by b ∈ F̃2w , the a is represented as a polynomial

a := a0 + a1x ∈ F̃2w [x] with a0, a1 ∈ F̃2w . Hence the product of a · b ∈ F̃22w is calcu-

lated as vector-scalar product over F̃2w , i.e., (a0 + a1x) · b. It is easy to generalize to

the following proposition.

Proposition 1. Given a ∈ F̃2l1 = Vl1 , b ∈ F̃2l2 = Vl2 , and l2|l1, a · b ∈ Vl1 can be

performed with l1/l2 field multiplications in F̃2l2 .

The Multiplication in the subfield F̃2l2 has to be further decomposed into field

multiplications over F̃256 for fitting the multiplication tables to L1 cache. We show

some implementations of multiplication in F̃ in the following of this section.

3.2.4 Implementations

F̃2128 Multiplication by elements in F̃256

The operation for multiplying an element of tower fields by an subfield element is

implemented as a scalar multiplication of a vector over various subfields by a scalar

with Prop. 1. In the case of multiplication between a ∈ F̃2128 and b ∈ F̃256. We first

translate a = (a0, . . . , a15) ∈ F̃16
256. The multiplication become

a · b = (a0, . . . , a15) · b for a0, . . . , a15, b ∈ F̃256,

36

doi:10.6342/NTU201801305

which can be performed with Alg. 1.

F̃2128 Multiplication by elements in F̃216 or F̃232

We focus on the data movement for F̃2128 multiplication by elements in F̃216 or F̃232

in this section. Since we use multiplication in F̃256 as the essential building blocks,

we consider the byte-data move for better efficiency with SIMD multiplication.

Suppose we are multiplying a ∈ F̃8
216
∼= F̃2128 by c ∈ F̃216 , the byte sequence of

these elements are

a = ((a0, a1), (a2, a3), . . . , (a14, a15)) ∈ F̃8
216
∼= (a0, . . . , a15) ∈ F̃16

256
∼= F̃2128

and c = (c0, c1) ∈ F̃2
256
∼= F̃216 . To multiply a by c over F̃256, we may first split a to

its odd and even bytes as

a = aeven + aodd = (a0, 0, a2, 0, . . . , a14, 0) + (0, a1, 0, a3, . . . , 0, a15) .

Let a′
odd = (a1, 0, a3, 0, . . . , a15, 0). Then we can perform the a · c as three vector-

scalar multiplications aeven · c0, a′
odd · c1, and (a′

odd + aeven) · (c0 + c1) over F̃256

with Karatsuba’s method. However, the 0’s in aeven and aodd reduce the efficiency

of the SIMD multiplication in this implementation.

While multiplying two elements [a, b ∈ F̃2128] by a subfield element c ∈ F̃216 , we

can combine the even and odd bytes of a and b for better efficiency of the SIMD

multiplication over F̃256. Hence, we can use a 2×2 transposition, which converts a =

(a0, . . . , a15) and b = (b0, . . . , b15) to (a0, b0, a2, b2, . . . , b14) and (a1, b1, a3, . . . , b15), to

split the even and odd bytes. The 2×2 transposition involves only 2 registers which

can be efficiently performed on modern CPUs.

For multiplication by an element in F̃232 , we need to 4 × 4 transpose our data.

The following Fig. 3.1 depicts the process of data rearrangement. The transpose

can be implemented with the technique in Sec. 2.4.1.

37

doi:10.6342/NTU201801305

Figure 3.1: Data rearrangement for multiplication in F̃2128 by elements in F̃232 .

(a0, a1, a2, a3, a4, . . . , a15) (a0, b0, c0, d0, a4, b4, c4, . . . , d12)

(b0 , b1 , b2 , b3 , b4, . . . , b15)
4×4 transpose−−−−−−−−→ (a1, b1, c1, d1, a5, b5, c5, . . . , d13)

(c0 , c1 , c2 , c3, c4, . . . , c15) (a2, b2, c2, d2, a6, b6, c6, . . . , d14)

(d0, d1, d2, d3, d4, . . . , d15) (a3, b3, c3, d3, a7, b7, c7, . . . , d15)

3.3 Constant-time Multiplication in Binary Fields

In the cryptographic circumstance, loading a table with the address depended on a

secret value is harmful since an attacker can reveal the secret value by probing the

difference of access-time of the cache line. Hence, how a table is loaded into registers

is a critical issue while performing field multiplication with Alg. 1.

In this section, we provide two methods for constant-time multiplication, mean-

ing the running-time is independent of the values of two multipliers. Sec. 3.3.1 de-

scribes the multiplication with log/exp tables. Sec. 3.3.2 describes how to generate

multiplication tables for preventing loading the tables with the address depending

on the values of multipliers.

3.3.1 Multiplication with Logarithm Tables

We use the logarithm and exponential tables for our first constant-time multiplica-

tion with the PSHUFB instruction. In the method, we can load the log/exp tables

of a fixed address and lookup some entries of the table by the secret values with the

PSHUFB instruction. Hence, we avoid loading a multiplication table with a secret

value of the multiplier.

Table 3.1: Logarithm table for F̃16.
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
−42 0 5 10 1 4 2 8

0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
6 13 9 7 11 12 3 14

38

doi:10.6342/NTU201801305

Table 3.1 gives the logarithm table for the field F̃16. The table contains 16 entries,

one byte for each, and stores in a fixed address in memory. To compute a · b for

a, b ∈ F̃16, we perform

a · b = exp0x4((log0x4 a+ log0x4 b) mod 15) .

To increase the efficiency with the method, we can store the field elements in loga-

rithm form to avoid some table lookups.

Although the element 0 is not in the multiplicative group, we can set log 0 = −42,

and the PSHUFB ensures the correct products of 0 for querying negative values. The

value −42 is affordable for 2 consecutive multiplications before it changes its sign

or underflows the byte range.

For the multiplication in F̃256, we perform the polynomial multiplication over

F̃16 and use the log/exp tables for F̃16. Recall that

F̃256 := F̃16[x2]/(x
2
2 + x2 + x1x0).

As a polynomial multiplication over F̃16, a time-constant F̃256 multiplication costs

about 3 F̃16 multiplications with the Karatsuba method. Here we can use the mul-

tiplication table for reducing the degree-2 term since multiplying elements by the

known x1x0 leak no side-channel information with PSHUFB.

3.3.2 Generating Multiplication Tables On-the-fly

In this section, we describe how to generate the multiplication tables for particular

variables efficiently. Instead of loading tables with secret values, we can produce the

desired multiplication tables for the Alg. 1. We can store the table with the indexes

of the variables containing secret values, and thus avoid the leakage of the values

from loading the table by the values. In other words, we transform the memory

access indexed by a secret value to sequential access by the index of variables to

prevent leakage of side-channel information.

39

doi:10.6342/NTU201801305

Generating multiplication tables for elements in F̃16

In this section, we present the method to generate 16 multiplication tables for w =

(w0, w1, . . . , w15) ∈ F16
16, i.e., (w0 · 0x0, . . . , w0 · 0xf), . . . , (w15 · 0x0, . . . , w15 · 0xf)

with the SIMD instruction set.

Algorithm 2: Generating multiplication tables for F̃16.
1 multab_16(w) :

input : w = (w0, w1, . . . , w15) ∈ F̃16
16.

output: 16 multiplication tables for (w0, . . . , w15).

2 Let TABw be a 16× 16 byte-matrix for the 16 tables.
3 for i← 0 to 15 do
4 TABw[i]← PSHUFB(multiplication table for i,w) .
5 end
6 return transpose_16x16(TABw) .

Algorithm 2 shows the generation of tables for elements in F̃16. In a nutshell, we

first multiply w by all 16 elements in F̃16. After the multiplications, all the products

of w and all possible elements in F̃16 are generated in 16 registers. However, we have

to collect the desired product in the correct position. By a 16×16 transpose of byte

matrix, we can generate the multiplication tables for w. We can perform the matrix

transpose with the method in Sec. 2.4.1. Figure3.2 illustrates the process.

Figure 3.2: Generating multiplication tables for w = (w0, w1, . . . w15).

w · 0x0
w · 0x1

...

w · 0xf

16×16 transpose−−−−−−−−−→

w0 · 0x0
w0 · 0x1

...
w0 · 0xf

,

w1 · 0x0
w1 · 0x1

...
w1 · 0xf

, . . .

w15 · 0x0
w15 · 0x1

...
w15 · 0xf

After computing w · 0x0, w · 0x1, . . . , w · 0xf, each row stores one product, and
the columns are the desired multiplication tables. We can thus generate the tables
of w0, w1, . . . ,w15 by collecting data in columns.

40

doi:10.6342/NTU201801305

Generating multiplication tables for elements in F̃256

We describe the method to generate multiplication tables for elements in F̃256 in this

section. Recall that a F̃256 element is a degree-1 polynomial over F̃16

F̃256 := F̃16[x2]/(x
2
2 + x2 + x1x0).

We can generate multiplication tables for F̃256 elements with the multiplication tables

of two F16 coefficients.

Let a ∈ F̃256 be the element that we want to generate the multiplication table.

Suppose the polynomial form of a over F̃16 is a(x) = a0 + a1x ∈ F̃16[x] and TABa0

and TABa1 are the tables for multiplying a0 and a1 in F̃16. Assume we multiply an

arbitrary b(x) = b0 + b1x ∈ F̃16[x] by a(x) :

a(x) · b(x) = (a0 + a1x) · b0 + (a0x+ a1x
2) · b1 .

So we can calculate the low-bits part(corresponding to b0) of the multiplication table

of a by

TABlow(a) = TABa0 + (TABa1 << 4) . (3.6)

Since x2 = x+ x1x0, we can calculate the high-bits part(corresponding to b1) of the

table by

TABhigh(a) = ((TABa0 + TABa1) << 4) + (TABa1 · x1x0) . (3.7)

The two tables TABlow(a) and TABhigh(a) are the two inputs in Alg. 1 for multiplying

elements by a in F̃256.

3.4 Multiplication in F2m for m = 64 and 128

In this section, we describe the implementations of multiplication in F264 and F2128

with the PCLMULQDQ instruction, i.e., the hardware instruction for multiplying

41

doi:10.6342/NTU201801305

Boolean polynomials. Since the hardware Boolean polynomial multiplication, the

implementation simplifies the programming burden on multiplying polynomials.

For multiplication in F264 , Lemire and Kaser [LK16] presented an efficient method

under the representation

F264 := F2[x]/
(
x64 + x4 + x3 + x+ 1

)
.

Algorithm 3 shows the processes for multiplying inputs in F264 . In the implementa-

Algorithm 3: Multiplication in F264

1 mul_64(a, b) :
input : a = a0 + a1x+ · · ·+ a63x

64 ∈ F264

b = b0 + b1x+ · · ·+ b63x
64 ∈ F264 .

output: c = a · b ∈ F264 .

2 d← PCLMULQDQ(a, b) ∈ F2[x].
3 Let d = e+ f ′ where deg e < 64 and degrees of terms in f ′ ≥ 64.
4 Let f = f ′/x64.
5 g ← PCLMULQDQ(f, ω(0x1b)) .
6 Let g = l + h′ where deg l < 64 and and degrees of terms in h′ ≥ 64.
7 Let h = h′/x64.
8 r ← PSHUFB(0x1b, h) .
9 return e+ l + r .

tion, one PCLMULQDQ multiplies 2 Boolean polynomials of degree 63 to a polynomial

of degree 126, and then the other PCLMULQDQ reduces the terms of degree 64 to 126

back to a remainder polynomial of degree 66. One PSHUFB finishes the reduction

for the terms of degree 64 to 66.

For multiplication in F2128 , we choose the same representation as AES-GCM:

F2128 := F2[x]/
(
x128 + x7 + x2 + x+ 1

)
.

Algorithm 4 shows the processes for multiplication in F2128 . In our implementation,

the multiplication costs 5 PCLMULQDQ(3 for multiplying 128-bit polynomials with

Karatsuba’s method and 2 for reducing the 256-bit result back to 128 bits with linear

folding). More implementations of multiplications in F2128 can be found in [GK14].

42

doi:10.6342/NTU201801305

Algorithm 4: Multiplication in F2128

1 mul_128(a, b) :
input : a = a0 + a1x+ · · ·+ a127x

127 ∈ F2128

b = b0 + b1x+ · · ·+ b127x
127 ∈ F2128 .

output: c = a · b ∈ F2128 .

2 Let a = al + ah where deg al < 64 and degrees of terms in ah ≥ 64.
3 ah ← ah/x

64.
4 Let b = bl + bh where deg bl < 64 and degrees of terms in bh ≥ 64.
5 bh ← bh/x

64.
6 c0 ← PCLMULQDQ(al, bl).
7 c2 ← PCLMULQDQ(ah, bh).
8 c1 ← PCLMULQDQ(ah + al, bh + bl) + c0 + c1.
9 Let c2 = c2l + c2h where deg c2l < 64 and degrees of terms in c2h ≥ 64.

10 c2h ← c2h/x
64.

11 c1 ← c1 + PCLMULQDQ(c2h, ω(0x87)).
12 Let c1 = cll + c1h where deg cll < 64 and degrees of terms in c1h ≥ 64.
13 c2l ← c2l + c1h/x

64.
14 return c0 + c1l · x64 + PCLMULQDQ(c2l, ω(0x87)) .

43

doi:10.6342/NTU201801305

44

doi:10.6342/NTU201801305

Chapter 4

Erasure Correcting Codes for RAID

Through the codes, we show the general technique of multiplying elements in binary

fields with the SIMD instruction set. This chapter is based on the joint work with

Bo-Yin Yang and Chen-Mou Cheng published in [CYC13].

4.1 Introduction

Code and Storage systems

A Redundant Array of Independent Disks(RAID) has been a mainstream technology

to combine multiple disks into a massive storage system and increase the reliability

of storage systems at a cost of using redundant disks for storing checksums The ca-

pability of RAID systems depends on its underlying erasure correcting code(ECC)

to correct disk or sector failures. A code is a collection of codewords, which com-

prises data elements and checksum (redundant) elements. An erasure is a missing

element in a codeword with known positions, and an erasure correcting code is a

code designed for correcting erasures.

Although the mappings between code elements and physical components in a

RAID can be complicated, we assume each element of a codeword is associated with

a physical disk in this thesis. In this basic mapping model, a codeword comprises

a stripe of data came from the same positions among all drives, and an erasure

corresponds to the failure of a particular disk. Since disks usually work in units of

45

doi:10.6342/NTU201801305

sectors, the model also results in natural data parallelism for processing multiple

independent codewords simultaneously. In this these, we only assume the basic

model since we focus more on the efficiency of coding and the possible length of a

codeword rather than its mapping to real physical devices.

The Code in Standard RAID-6 Storage Systems

In 1997, Plank [Pla97] presented a code, termed “Plank’s code,” for storage systems.

The code is currently the de facto code of RAID-6 in the implementation of Linux

kernel [Anv11]. In brief, a Plank’s code is a systematic code, in which the data

elements of the codeword are the same with real data and checksums are generated

by multiplying the data contents with a Vandermonde matrix. For example of the

RAID-6, which is capable for recovering 2 disk failures, the first checksum is simply

the XOR of all data symbols, and the second checksum accumulates the results of

data multiplying the specified element ‘0x2’ in the 0x11d F256. Anvin [Anv11]

presented an efficient implementation for generating the second checksum with the

SSSE3 instruction set, and it became the default implementation in Linux kernel.

Plank’s code was sometimes confused with the famous Reed-Solomon code, for

which a Vandermonde matrix generates the whole codeword. Compared with ap-

plying Vandermonde matrix to only the checksum parts, Plank’s code turns out to

be neither identical nor isomorphic to any Reed-Solomon code.

4.1.1 The Problem of Plank’s Code

In the language of code, the design of Plank’s code is hard to satisfy the maximum

distance separable(MDS) property when the length n of a codeword is large. For

storage systems, we usually expect an underlying MDS code, which can correct the

same number of erasures as the number of checksums. When we check the length n

of a codeword for Plank’s code under the MDS requirement, we have n = 255, 255,

and unfortunate 27 for 2,3, and 4 checksums. The consequence is that some data

might be unrecoverable for some failures of 4 disks if the total number of drives is

46

doi:10.6342/NTU201801305

more than 27.

The defect of Plank’s code was identified several times in the literature, and the

usual solution suggests to abandon Plank’s code. Lancan and Fimes [LF04] pointed

out that a systematic code with checksums generated by a Vandermonde matrix

is not necessarily an MDS code for an arbitrary codeword length. In fact, Plank

himself discovered and corrected this unfortunate error in a subsequent note [PD05].

However, they fixed the issues by simply proposing other codes.

4.1.2 Our Solution: the RAIDq Code

We propose RAIDq, a new way to extend Plank’s codes, to deal with the MDS issue

to some extent. In other words, we still use generalized Plank’s code for building

RAIDs. In RAIDq, one can build a reasonably large RAID system by carefully

choosing checksums in the field F̃2562 instead of the original F256. The F̃2562 is

represented as polynomials over original F256 in the RAID-6. While we recommend

n = 96 for the performance, in fact, the maximum n of MDS can be 168 with four

checksums in RAIDq.

Although the MDS problem, of course, can be solved simply by changing to

another MDS code, the advantage of the RAIDq is the backward compatibility to

Plank’s code for RAID-6 in both the data and performance aspects. For the com-

patibility of data, we would ideally expect to upgrade an existing RAID system by

inserting a new checksum disk for better data integrity protection without rebuild-

ing the entire system. The construction of the F̃2562 keeps the values of elements in

F256 unchanged while treating all codewords in F̃2562 and thus makes the existing

contents of disks unchanged.

To maintain the remarkable performance of the RAID-6 is another reason for

the backward compatible code. To keep the current performance, we maintain the

generation of 3 checksums unchanged in F256. Furthermore, the 4-th checksum is

designed to be an element for fast multiplication in F̃2562 .

With the construction of the working field F̃2562 , we extend the current code

47

doi:10.6342/NTU201801305

in RAID-6 for a reasonably large system with 4 checksums while maintaining its

original advantage of high performance and removing the penalty for rebuilding

original checksums

4.1.3 Chapter Overview

Section 4.2 describes the details of Plank’s code, and we introduce the RAIDq code

in section 4.2.6. Section 4.3 describes the encoding and decoding process as well

as their high-performance implementations. We refer the reader to Sec. 3.1 for the

preliminaries of the fast arithmetic in finite fields. Section 4.4 shows the benchmarks

of RAIDq with the arithmetic of fields. Section 4.5 summarizes the chapter.

4.2 Extending RAID-6 for More Checksums

4.2.1 Terminology

An (n, k) code C over an algebraic structure denotes the set of all codewords c’s.

Let Fq be a finite field with q elements. A codeword c ∈ C denotes a column vector

of dimension n over Fq, i.e.,

c = [c0, . . . , cn−1]
T ∈ Fn

q

or a column matrix Fn×1
q . The n blocks of c comprise k information blocks and

m = n − k redundant blocks. Let d = [d0, . . . , dk−1]
T ∈ Fk

q denote the k blocks of

data and p = [p0, . . . , pm−1]
T ∈ Fm

q be the m redundant blocks in the codeword c.

For practical and efficiency reasons, we only consider systematic codes, which the

data blocks d remain unchanged after encoding. The encoding process generates

the checksums p with the input of d. Hence, a codeword can be represented as

c = [d,p] = [d0, . . . , dk−1, p0, . . . , pm−1]
T ∈ Fn

q .

48

doi:10.6342/NTU201801305

The minimal distance d denotes the minimum Hamming distance between any

two codewords in the code C and the code may also be denoted as (n, k, d) code.

It can even describe the capability of erasure correction. A code is denoted as

Maximum Distance Separable(MDS) code if d > n − k, which providing tolerance

of any n− k erasures.

In this chapter, we use two specific representations of binary fields in Eq. (2.4)

F256 = F28 := F2[x]/(x
8 + x4 + x3 + x2 + 1) (2.4 revisited)

and (2.10)

F̃2562 := F256[X]/(X2 + ωF256(0x8) ·X + 1) . (2.10 revisited)

Since the fields are consistent in this chapter, we usually omit the ‘ω’ symbols

while denoting field elements with hex numbers for abbreviation. For example, the

symbol ‘0x2” represents the field element ‘x’ in F256 or F̃2562 . The symbol ‘0x100”

represents the field element ‘X’ in F̃2562 . The symbol ‘0x10801” represents the

irreducible polynomial (X2 + ωF256(0x8) ·X + 1) in F256[X].

Another important convention in this chapter is the symbol ‘a.’ For the con-

sistent of symbols in the literature, the ‘a’ represents the specific element ‘0x2’ in

F256.

4.2.2 Plank’s code

The erasure correcting code of RAID-6 in Linux kernel [Anv11] has been heavily

influenced by Plank [Pla97]:

Definition 2. A Plank’s code is a linear (n, k) systematic code over Fq whose gener-

ator matrix G ∈ Fn×k
q is of the (systematic) form

G =

Ik
V

 .

49

doi:10.6342/NTU201801305

Here V ∈ Fm×k
q is a Vandermonde matrix

Van(α0, . . . , αm−1; k) :=

α0
0 α1

0 · · · αk−1
0

...

α0
m−1 α1

m−1 · · · αk−1
m−1

 ,

where αi’s are distinct nonzero elements in Fq, and Ik ∈ Fk×k
q the identity matrix.

This will be termed the Plank’s code generated by checksum generator [α0, . . . , αm−1].

Usually we set α0 := 1. When αi := αi for some fixed α, we call it the Plank’s code

generated by α (of length n = k +m over Fq).

Encoding of data blocks d ∈ Fk
q to a codeword c ∈ Fn

q is the matrix multiplication

c = G·d. The upper part of c is the same with d from Ik in G (systematic). Decoding

is related to recovery d from a codeword c with some missing elements (erasures)

or from a corrupted c (containing errors).

With αi := αi for a generator α ∈ Fq, Plank’s code would allow very efficient

encoding, erasure decoding, and even error correction. For m = 1 or 2 and q = 256,

they are exactly the codes used in RAID-5 and 6, as implemented and discussed by

Anvin [Anv11]. In the case of RAID-6, Plank’s code is MDS for n up to 255, i.e., a

(255, 253, 3) code.

4.2.3 About MDS property of Plank’s code

Lancan and Fimes [LF04] mentioned that a code with generator matrix G = [Ik|A]T

, where A is a (n− k)× k-matrix, is MDS if and only if all square submatrices of A

are nonsingular. A minimum distance of a code is equivalent to minimum nonzero

elements among all possible codewords because the difference of codewords is still

a codeword in a linear code. If we find a singular submatrix of size m′ ×m′ in the

matrix A, we can create a column with all zero elements in the selected submatrix

by the linear combination of selected columns of G. The corresponding codeword

of the linear combined columns of G contains at most m′ elements in upper Ik part

and m −m′ elements in A part, and m′ + (m −m′) = m < m + 1, which is not a

50

doi:10.6342/NTU201801305

MDS code.

For checking the maximum n of MDS Plank’s code with m checksums, we enu-

merate all submatrices of Van(α0, . . . , αm−1; k) and increase k until we find a singular

submatrix. The maximum n = k+m without a singular submatrix is the maximum

size of MDS Plank’s code.

4.2.4 Plank’s Code for RAID: the Successful Cases

As proposed by Plank [Pla97] and implemented in Linux kernel by Anvin [Anv11],

Plank’s code for RAID-6 is over 0x11d F256 with one checksum generator ‘a,’ which

is also a primitive generator a := 0x02 for F256. In general, the checksum generator

is of the form of [a0, a1, . . . , am−1]. Applying to m = 2 in RAID-6, it is [1, a], resulting

in a (255, 253, 3) code. For more details, the starting [1] represents the first XOR

checksum p0 =
∑k

i=0 di, which is the checksum in RAID-5, and [a] represents the

second checksum p1 =
∑k

i=0 a
i · di, which can be efficiently calculated with Horner’s

rules.

Following the same form of checksum generators in RAID-6, one can build a

Plank’s code by [1, a, a2] resulting in a (255, 252, 4) MDS code. Note that all elements

a and a2 are elements with fast multiplication in F256 from Sec. 3.1.2. Another choice

of the generators for 3 checksums is [1, a, a
1
2], where a

1
2 = a128 = 0x85, resulting

in a same (255, 252, 4) MDS code. This choice also satisfies the definition of one

generator since (a
1
2)2 = a.

4.2.5 Plank’s Code for RAID: the 4th Checksums

Following the same construction in RAID-6, the checksum generators are [1, a, a2, a3]

or [1, a, a
1
2 , a

3
2] for Plank’s code with 4 checksums. However, both settings result in

a short (25, 21, 5) code if the MDS property (d ≥ 5) is required. This construction

might not be able to recover data blocks from redundant blocks in some patterns of

erasures when the number of data blocks is over 21.

For building a large RAID system, we have searched all Plank’s codes of [1, a, ai, aj]

51

doi:10.6342/NTU201801305

for i ̸= j, constructions, which maintains the compatibility with Plank’s code in

RAID-6, and confirm that the same (25, 21, 5) code is indeed the best we can do.

Without the compatibility with RAID-6, we have further searched the Plank’s codes

of [ai, aj, ak, al] for i ̸= j ̸= k ̸= l, and found a maximum (37, 33, 5) code over F256.

4.2.6 RAIDq with 4 Checksums

To fix the MDS issue in RAID systems of Plank’s code, we present RAIDq, a new

extending method of Plank’s code. We tried constructing the RAIDq code over the

field F̃2562 after knowing that it is impossible to build an MDS Plank’s code in F256

for over 33+4 disks. The field F̃2562 is an extension field from original F256 and thus

maintains the backward compatibility in data. Hence, we searched the checksum

generators in the elements for fast multiplication from Sec. 3.1.3 in F̃2562 .

The recommended checksums of RAIDq is [1, a, a
1
2 , X] over the F̃2562 , resulting

in a (96, 92, 5) code. In this construction, we give up using one α for generating

all checksum generators as αi. However, three out of the four checksums are actu-

ally in F256, and the construction is compatible with RAIDs of 3 checksums over

F256. Furthermore, the choice of the fourth checksum X is the element with fast

multiplications in F̃2562 from Sec. 3.1.3.

We can further investigate the general choices of checksum generators in a Plank’s

code for a larger code length of MDS. By exhaustive search, we list the good candi-

dates in Table 4.1 for codes in the form of [1, a, a
1
2 , α3] and [1, a, a2, α3] for α3 ∈ F̃2562 .

All parameters are selected for maintaining backward compatible to RAID-6 and

minimizing the computation cost by choosing the elements with fast multiplication

in Section 3.1.3 as possible. The maximum code length is 164 + 4 for a code in the

above forms. For construction with faster multiplication, the maximum code length

is 143 + 4, generated by [1, a, a
1
2 , a2X + 1].

52

doi:10.6342/NTU201801305

Table 4.1: Good candidates for RAIDq 8 in F̃2562

Checksum generators Code length n binary rep. of
4th checksum

[1, a, a1/2, X] 92 + 4 0x0100
[1, a, a1/2, X + 1] 107 + 4 0x0101
[1, a, a1/2, a2X + 1] 143 + 4 0x0401

[1, a, a1/2, a115X] 151 + 4 0x7C00
[1, a, a1/2, a141X] 151 + 4 0x1500

[1, a, a1/2, a85X + a28] 164 + 4 0xD618
[1, a, a1/2, a85X + a160] 164 + 4 0xD6E6
[1, a, a1/2, a186X + a6] 164 + 4 0x6E40
[1, a, a1/2, a186X + a129] 164 + 4 0x6E17

[1, a, a2, X] 55 + 4 0x0100
[1, a, a2, a3X] 107 + 4 0x0800
[1, a, a2, aX + 1] 113 + 4 0x0201
[1, a, a2, a111X] 143 + 4 0xCE00
[1, a, a2, a146X] 143 + 4 0x9A00
[1, a, a2, a120X + a5] 164 + 4 0x3B20
[1, a, a2, a120X + a169] 164 + 4 0x3BE5
[1, a, a2, a173X + a58] 164 + 4 0xF669
[1, a, a2, a173X + a222] 164 + 4 0xF68A

4.3 Implementation

We describe the encoding and decoding techniques for PAIDq code in this section.

4.3.1 Encoding and decoding Plank’s codes

Since Plank’s code is a systematic code, we define Encode : Fk
q 7→ Fm

q . The Encode

computes the m checksum blocks with matrix-vector multiplication

α0
0 α1

0 · · · αk−1
0

...

α0
m−1 α1

m−1 · · · αk−1
m−1

 ·

d0

d1
...

dk−1

=

p0
...

pm−1

 .

After completing Encode, a full codeword comprises data blocks and checksums

c = [d,p]T . As for data updating, only the difference of updating parts are “encoded”

for the difference of checksums between the original and updated codewords.

53

doi:10.6342/NTU201801305

We can also generate the checksums by evaluating a polynomial whose coefficients

correspond to the data at the points of checksum generators as:

pi =
m−1∑
j=0

αj
idj for i = 0, . . . ,m− 1.

When evaluating polynomials by Horner’s rule

pi = d0 + αi(d1 + αi(d2 + · · ·)), (4.1)

we calculate the checksum by accumulating the product of multiplication by some

fixed elements αi, allowing the acceleration while multiplying elements with fast

multiplication in Sec. 3.1.2.

4.3.2 Implementing the Encoder

For generating checksums in the RAIDq with Honer’s rule(Eq. (4.1)), we can im-

plement the Encode with the multiplications by some specific elements. Hence,

we can optimize the encoder of the RAIDq with fast multiplications for elements of

a,a2, and X.

Recall the GF Arithmetic

We first review the fast multiplications in F256 and F̃2562 for the self-contain of this

chapter.

• We perform the general multiplication in F256 with Eq. (3.1). It costs 2

PSHUFB instructions in SIMD instruction set with Algo. 1.

• We multiply b ∈ F256 by a := x ∈ F2[x] in F256
∼= F2[x]<8 with Eq. (3.2)

b(x) · x→ (b6x
7 + · · ·+ b0x) + b7 · ω(0x1d) .

It costs roughly one PSHUFB instruction.

54

doi:10.6342/NTU201801305

• We multiply b ∈ F256 by a2 := x2 ∈ F2[x] in F256
∼= F2[x]<8 in a similar way of

Eq. (3.3)

b(x) · x2 → (b5x
7 + · · ·+ b0x

2) + (b7x+ b6) · (x4 + x3 + x2 + 1) .

It costs roughly one PSHUFB instruction.

• We perform the general multiplication between a(X) ∈ F256[X] and b(X) ∈

F256[X] in F̃2562
∼= F256[X]<2 with Eq. (3.4)

(a1X + a0) · (b1X + b0) mod 0x10801

→ [ωF256(0x8) · a1b1 + a1b1 + a0b0 + (a0 + a1)(b0 + b1)]X + a1b1 + a0b0 .

It costs roughly 7 PSHUFB instructions.

• We multiply b ∈ F̃2562 by X ∈ F256[X] in F̃2562
∼= F256[X]<2 with Eq. (3.5)

b(X) · ωF2562
(X) = (b1X + b0) ·X mod 0x10801

→ (b0 + b1)X + ω(0x8) · b1 .

It costs roughly one PSHUFB instruction and some data movements.

Comments about SIMD

Since we multiply the data by checksum generators in the SIMD instruction set, we

evaluate multiple polynomials of Eq. (4.1) in parallel. In other words, we encode

various codewords simultaneously, and the order of parallelism depends on the width

of used SIMD instruction sets.

Further, we adopt the data structure of F̃2562 in section 3.1.3 that separate the

high and low bytes of elements in F̃2562 for avoiding the rearrangement the data in

55

doi:10.6342/NTU201801305

advance.

Generating the [a
1
2] Checksum

Besides the elements with fast multiplication, we have to overcome the generation

of the 3rd checksum [a
1
2] since a

1
2 = 0x85 is not an element with fast multiplication

in F256 in Sec. 3.1.2. Instead of multiplying by 0x85 with the general multiplication

in F256, we suggest a different process for generating the [a
1
2] checksum by dividing

the calculation into two buffers of RAID-6 checksum computations:

p3 =
∑

i=0,1,··· a
i
2 · di

=
∑

i=0,2,4,··· a
i
2 · di + a

1
2 (
∑

i=1,3,5,··· a
(i−1)

2 · di)

=
∑

i=0,1,2,··· a
i · d2i + a

1
2 (
∑

i=0,1,2,··· a
i · d2i+1) .

(4.2)

With this method, we only perform the multiplication by a
1
2 once for generating the

checksum [a
1
2] at the expense of extra butter. After amortizing the cost of one ×a 1

2

to all data blocks, the cost of computing the [a
1
2] checksum is similar to [a].

4.3.3 Erasure Decoder

To decode erasures, we use syndrome decoding for reusing optimized encoder. To

reuse the highly optimized encoder while decoding, we replace the missing data

symbols with 0 and encode them again to get a set of new checksums. The differences

between original and new checksums are named syndromes. We can recover the

missing symbols by solving the linear system composed of the syndromes and part

of the generating matrix corresponding to the positions of the missing symbols.

For example, suppose we want to decode two erasures di, dj at known positions i

and j. We first encode d′ = [d0, . . . , d
′
i = 0, . . . , d′j = 0, . . . , dk−1]

T for new checksums

p′ = [p′0, . . . , p
′
m−1]

T = Encode(d′) .

We denoted the syndrome r = [r0, . . . , rm−1]
T ∈ Fm

q as the difference of checksums

56

doi:10.6342/NTU201801305

p′ − p = [p′0 − p0, . . . , p
′
m−1 − pm−1]

T . The erasure [di, dj]
T can be solved by the

following linear relations:

αi
0 αj

0

...

αi
m−1 αj

m−1

 ·
di
dj

 =

r0
...

rm−1

 =

p′0 − p0

...

p′m−1 − pm−1

 .

For small RAID systems, it is possible to enumerate all erasure modes, and hence

we can prepare all possible inverse matrices to avoid computing them on the fly in

decoding.

Due to the optimized Encode, the syndrome decoder can even perform better

than other decoding methods which costs the same amount of multiplications as the

encoder. Without the syndrome decoder, as described in [Riz97, ASI08], a simple

way for decoding erasures is to strike out the corresponding rows of missing elements

from the generating matrix and then multiply the remaining code symbols to the

inverse of the remaining square matrix. Besides the inverse of the matrix is computed

in run-time, one has to multiply the remaining data elements and checksums by up-

predictable scalars in Fq which is usually done with general multiplication. We

can observe the optimized multiplication in the Encode outperform the general

multiplication from the experiments in the following section.

4.4 Experiments and Discuss

We benchmark coders for the RAID in this section. Through the experiments, we

show the remarkable performance of the RAIDq.

4.4.1 The Experiment

We benchmark several encoders and decoders for the RAID in Table 4.2, including a

Reed-Solomon(RS) coder and several parameters of RAIDq. The experiment mea-

sures the throughputs of memory reads and writes for en/decoding codewords of 64

57

doi:10.6342/NTU201801305

data and m checksums. Here, the decoding throughput is measured with maximal

erasures in the data blocks and hence represents a worst-case scenario. The inputs

of a coder are 64 +m pointers, typically pointing to a 4KB memory page, and each

pointer corresponds to one particular position in the codeword. Hence, we imple-

ment the coders to process massive codewords simultaneously. In one call, the coder

reads the data blocks, encodes the data, and writes the results to the checksum

blocks.

We experiment on an Intel Xeon E3-1245 v3 processor (supporting the AVX2

instruction set) running at 3.40 GHz, and all coders are implemented with the AVX2

instruction set.

4.4.2 Results

Table 4.2: Throughputs (GB/s) of the coders for RAID with 64 data blocks.
Code m max. n Encode Decode

r/w r/w
XOR (RAID-5) 1 255 51.5/0.8
Naive op. 2 44.7/1.4
[1, a] (RAID-6) 2 255 21.6/0.7 20.3/0.6
Reed-Solomon 2 255 12.1/0.4 10.8/0.3
Naive op. 3 34.5/1.6
[1, a, a

1
2] 3 255 16.1/0.8 14.6/0.7

[1, a, a2] 3 255 12.6/0.6 11.3/0.5
Reed-Solomon 3 255 8.7/0.4 8.3/0.4
Naive op. 4 26.1/1.6
[1, a, a

1
2 , X] 4 96 10.2/0.6 9.7/0.6

[1, a, a
1
2 , a141X] 4 155 8.2/0.5 6.2/0.4

[1, a, a
1
2 , a186X + a6] 4 168 6.3/0.4 5.7/0.4

Reed-Solomon 4 255 6.4/0.4 5.9/0.4
Benchmarks on Intel Xeon E3-1245 v3 @ 3.40 GHz.

In table 4.2, the throughput measures the average total amount of memory

reads/writes in one second. Since the experiment are performed for codewords of

64 +m elements, the ratio between reads and writes is always 64/m.

The rows of “naive op.” show the performances of reading the inputs, accumulat-

58

doi:10.6342/NTU201801305

ing them with basic bit operations(XOR, OR, AND, and ANDNOT), and then writing

the results to destinations. It is not a real coder but represents the maximum capa-

bility of the CPU for processing the data.

The Reed-Solomon(RS) in the table is a systematic Reed-Solomon(RS) coder(in

the BCH view), implemented with similar techniques of the RAIDq code. The

codewords of the RS code is over F256, and each codeword is encoded to be the

polynomial that is a multiple of the generator polynomial g(x) := (x−1)(x−0x2) · · ·

of degree m. Hence, the encoder multiplies elements of data by the polynomials

xi mod g(x) corresponding to its position i. The multiplication is performed with

the general multiplication in Sec. 3.1.2. The decoder for the RS code is also the

syndrome decoder.

4.4.3 Discuss

Encoding

The RAIDq code of the recommended parameter [1, a, a1/2, X] always performs best

for encoding in table 4.2. For the cases of multiple checksums, it is roughly a

factor of 1/2 comparing to the maximum capability of “naive op.”. In the case of

3 checksums, the [1, a, a1/2] code performs better than [1, a, a2] code because the

multiplication by a is faster than a2 and the technique in Eq. (4.2) improves the

calculation of the [a1/2] checksum. For the case of 4 checksums, the RAIDq code

[1, a, a1/2, a186X+a6] of maximum supporting discs shows an equal performance with

the RS code. However, the advantage of RAIDq relies on the efficiency of coders of

recommended parameters and the backward compatibility to RAID-5 and 6. The

user can choose the coders depends on the trade-off between the throughput and

supporting discs.

For comparing with Reed-Solomon code, the encoding throughputs of the coders

for RAIDq always outperform the Reed-Solomon coder in Tab. 4.2. We analyze the

result at the algorithmic level. The main difference of the encoders are the underlying

multiplications in the finite field. In the Reed-Solomon code, we always perform

59

doi:10.6342/NTU201801305

the general field multiplication. In the coders for RAID, the multiplication in the

encoder are always optimized with the technique in Sec. 3.1.2 and 3.1.3. RAIDq

also has the edge over Reed-Solomon RAID even without the above optimizations

because RAIDq still uses an XOR checksum, which is not possible with general Reed-

Solomon codes.

Dncoding

For decoding, we can observe the decoding efficiency of [1, a, a1/2, X] RAIDq is even

better than the encoding throughput of the RS code. Although we expect the

performance gain from encoding will affect decoding due to syndrome decoding, it

is almost true except the decoding throughput of the [1, a, a
1
2 , a186X + a6] code.

We have slightly worse decoder than the Reed-Solomon code because the decoder

performs additional expensive multiplications in F216 besides the encoding.

Last, we emphasize that the encoder is the most critical component for the

performance of RAIDs, since the decoders are called only when the disk failure

occurs. Even in the case of decoding, all performance results presented here represent

worst-case scenarios. We expect that in practice, the most common disks failures

can be recovered from the much faster RAID 5 or 6 checksum computation, which

is possible because RAIDq includes them as special cases.

4.5 Summary

We present the design and implementation of RAIDq, a software-friendly, multiple-

parity extension of Plank’s code. RAIDq fixes the flaw of Plank’s code in mainstream

RAIDs at the case of 4 checksums to addresses bigger RAIDs of practical interest.

However, RAIDq does have a limit of 164 + 4 disks on the number of support-

ing drives, which is still lower than the expecting 255 drives in the original RAID

systems. Another benefit of RAIDq is that it includes existing RAID-5 and 6 as

special cases and hence has 100% backward compatible codewords. The backward

compatibility also allows RAIDq to reuse the efficient coding algorithms and imple-

60

doi:10.6342/NTU201801305

mentations of RAID-5 and 6. Last but not least, RAIDq is optimized for software

implementation, as its encoding only involves XOR and multiplication by several

fixed elements in F256 and F̃2562 . The advantage of the efficient Encode results in

the best throughputs for processing data in our experiments.

61

doi:10.6342/NTU201801305

62

doi:10.6342/NTU201801305

Chapter 5

Implementing Multivariate Public-Key

Cryptosystems

In practice, a security system can be broken due to its implementation. In this

chapter, we perform the arithmetic of fields under the cryptographic requirements

and apply the technique to the implementation of MPKCs. This chapter is base

on the joint work with Wen-Ding Li, Bo-Yuan Peng, Bo-Yin Yang and Chen-Mou

Cheng published in [CLP+18].

5.1 Introduction

5.1.1 The Requirements on Post-Quantum Security

Since Shor’s algorithm [Sho97] was invented, it is clear that traditional public key

cryptography(PKCs) based on discrete logarithm and RSA assumptions are going

to be solved in polynomial time once large quantum computers are built. PKCs

that retain sufficient security levels when quantum computers have arrived are said

to be post-quantum. Such cryptosystems are also sometimes called Postquantum

Cryptosystems or PQCs. There are four or five main classes of PQCs one of which

comprise Multivariate public-key cryptosystems (MPKCs) [CJL+16,DY08].

63

doi:10.6342/NTU201801305

5.1.2 Challenge in Cryptographic Software

The secure implementation is the priority for cryptographic software. In practice, a

security system can be broken due to its implementation instead of the cryptography,

e.g., the cache-timing attack to AES [BM06]. We would like reasonable implementa-

tions which retain as much as possible side channel resilience. This means that the

secret data should be independent of memory access. In other words, time constancy

is always an essential requirement when processing secret data.

Based on the secure implementation, MPKCs were usually advertised for speed.

In 2009, Chen et al. [CCC+09] showed that MPKCs are easily a match for RSA and

ECC at the 80-bit security level. It seems the basic security requirements has shifted

to 128-bit, which can be seen from the call of new post-quantum cryptographic

schemes from NIST [oST16]. We have to look whether MPKC signature schemes

remain viable in the age of 128-bit security.

5.1.3 Chapter Objectives

In this chapter, we will discuss the secure implementations of MPKCs and show the

MPKCs still keep its speed advantage over the mainstream RSA and ECC in the

age of 128-bits security by benchmarking our implementations in the eBACs [BL16],

a standard platform for benchmarking cryptographic systems.

5.1.4 Chapter Overview

In section 5.2, we review the backgrounds on MPKC signatures. We then focus on

the Rainbow, which is a typical MPKC signature. We give the detailed operation for

signing process and the actual parameters for various security levels. After shortly

recalling the field multiplication for cryptographic software in Sec. 3.3, we present

the implementation for central components of MPKCs including the evaluation of

quadratic polynomials and solving linear equations in section 5.3. We benchmark

the implementations in section 5.4 and conclude in section 5.5.

64

doi:10.6342/NTU201801305

5.2 Backgrounds on MPKC Signatures

5.2.1 MPKCs and its Security

MPKCs are PKCs whose public keys represent multivariate polynomials over a finite

field(GF) K = Fq:

P : w = (w1, . . . , wn) ∈ Kn 7→ z = (p1(w), . . . , pm(w)) ∈ Km .

Polynomials p1, p2, . . . have (almost always) been quadratic. In public-key cryptog-

raphy, we can let P(0) = 0.

We first introduce the security of MPKCs to set the required parameters for the

target security level(s).

ClassMQ(q, n,m) and theMQ Problem

One can break all MPKCs if one is able to solveMQ problems efficiently. Given q, n,

and m, the classMQ(q, n,m) consists of all systems of m quadratic polynomials in

Fq with n variables. To choose a random system S fromMQ(q, n,m), we write each

polynomial Pk(x) as
∑

1≤i≤j≤n aijkxixj +
∑

1≤i≤n bikxi + ck, where every aijk, bik, ck

is chosen uniformly in Fq.

Solving S(x) = b for any MQ system S is then known as the “multivariate

quadratic” problem. It is an NP-complete problem [GJ79]. However, it is not

easy to base a proof on worst-case hardness. Often the premise used is the hereto

unchallenged average-caseMQ hardness assumption [BGP06,LLY08].

In this thesis, we focus on the implementations instead of the details of hardness.

The complexity of solving a random instance out ofMQ(q, n,m) is estimated using

Gröbner basis methods, often XL with sparse matrices [CKPS00, YCBC07], the

FXL(also known as “the hybrid approach”) [YCC04] ,or F5 [Fau02,BFSY05].

65

doi:10.6342/NTU201801305

Extended Isomorphism of Polynomials (EIP)

Notice MPKCs cannot be random MQ polynomials, because the legitimate user

would be equally unable to invert P . Usually the public map of an MPKC have a

structure in the “bipolar form”: P = T ◦ Q ◦ S where T and S are affine, and

P : w ∈ Kn S7→ x Q7→ y T7→ z ∈ Km.

The requirement for the quadratic central map Q is that it is easy to “invert” Q but

not P . In other words, given y ∈ Km, it is easy to compute x such that Q(x) = y

but finding an x such that P(x) = y is hard. The structure is hidden away by S and

T . Given this, the MPKC may be attacked via what is called structural attacks.

EIP and “Structural Attacks”

Given a class C of quadratic maps Kn → Km and a quadratic map P : Kn → Km,

an associated EIP instance means to find S and T such that P = T ◦ Q ◦ S, where

Q ∈ C. Defeating a bipolar-form MPKC through solving an EIP is known as a

“structural” or Key-Recovery attack.

Note that solving an EIP problem is very ad hoc, depending very much on what

Q is like, and again we do not go into the technical details but uses known EIP results

in this paper. In other words, we assume the EIP, w.r.t. the existing schemes are

hard unless new findings on the specific forms of EIP are proposed.

5.2.2 Recap of MPKC Signatures

In this section, we introduce the main procedures of MPKC signatures. It is almost

universally accepted that it is challenging to design multivariate encryption schemes.

Most encryption systems are either already been broken or have much larger sizes

than signature schemes.

66

doi:10.6342/NTU201801305

The Key Pair of Typical MPKCs

Recall the public key of an MPKC is a set of quadratic polynomials, which is a

composition of two affine maps T and S and an easily invertible central map Q,

such that

P : w ∈ Kn S7→ MSw+ cS := x Q7→ y T7→ MTy+ cT := z ∈ Km.

The structure of Q is hidden away by S and T . Further, the structures of their Q’s

characterize various MPKCs. Therefore the secret key of an MPKC consists of the

S, T , and Q.

Main Procedures of Typical MPKC Signatures

The MPKC signature system comprises three main procedures: key generation,

signing messages and verifying signatures.

To generate a key pair, the user randomly chooses a secret key which comprises

invertible S, T , and Q. The coefficients of public key P can be deduced using

polynomial interpolation of T ◦ Q ◦ S. We refer the reader to [Wol04]for the details

of interpolation and other efficient key-generation methods.

To sign a message, the signer first computes the hash value of the message as the

digest z ∈ Km. With the secret key, the signer computes y = T−1(z), x = Q−1(y),

and w = S−1(x) ∈ Kn which is the signature of the message. The details of Q−1

varies with specific schemes.

To verify a signature w ∈ Kn with the digest z, the user evaluates the public

polynomials P(w) and checks whether the values P(w) are equal to the digest z.

5.2.3 The Rainbow Signature

In this section, we demonstrate the Rainbow signature, which is the main MPKC

signatures considered secure today, and show the parameters of Rainbow for 128-bit

security. We will discuss the implementation in section 5.3.

67

doi:10.6342/NTU201801305

Rainbow [DS05] is the stereotypical “small field” MPKC, where work on the

“small” fields (F16, F31, and F256). Although a similar signature TTS [DYC+08] had

been proposed earlier, it can be considered as Rainbow with a sparse Q in today’s

terminology. We will use “Rainbow” as a generic term for this branch of variants. The

definitive analysis of security for Rainbow and the formulation of current instances

can be found in the 2008 paper [DYC+08]. 80-bit secure parameters are chosen

in [PBB10].

Central Map in Rainbow

Rainbow(Fq, v1, o1, . . . , ou) is characterized as follows as an u-stage UOV of the

central map Q [DS05,DYC+08].

• The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.

For l = 1, . . . , u+ 1, set labels for “vinegar” variables as Vl := {1, 2, . . . , vl} so

that |Vl| = vl and V1 ⊂ V2 ⊂ · · · ⊂ Vu+1 = V . Denote sets of “oil” variables by

ol := vl+1 − vl and Ol := Vl+1 \ Vl for l = 1 · · ·u.

• The central mapQ comprises m structurized quadratic equations y = (yv1+1, . . . , yn) =

(qv1+1(x), . . . , qn(x)), where

yk = qk(x) =
vl∑
i=1

vl+1∑
j=i

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi ,

for k ∈ Ol := {vl + 1, . . . , vl+1}.

• Note that in every qk, where k ∈ Ol, there is no cross-term xixj where both

i and j are in Ol. So given all the yi with vl < i ≤ vl+1, and all the xj with

j ≤ vl, we can easily compute xvl+1, . . . , xvl+1
.

68

doi:10.6342/NTU201801305

Generating Signatures in Rainbow

To sign a message, the signer calculate the hash digest z of message and inverts P

with the secret key T , S, and Q by

z ∈ Km T−1

7−→ y Q−1

7−→ x S−1

7−→ w ∈ Kn ,

where w is the signature. The key step here is inverting the central mapQ. While in-

vertingQ with given y, the signer randomly guesses vinegar variables x̄ = (x1, . . . xv1)

and solve (xv1+1, . . . , xv1+o1) by

yv1+1 = ᾱ
(v1+1)
v1+1 xv1+1 + · · ·+ ᾱ

(v1+1)
v1+o1 xv1+o1 + β̄

(v1+1)
V1

...

yv1+o1 = ᾱ
(v1+o1)
v1+1 xv1+1 + · · ·+ ᾱ

(v1+o1)
v1+o1 xv1+o1 + β̄

(v1+o1)
V1

.

(5.1)

Here (β̄
(v1+1)
V1

, . . . , β̄
(v1+o1)
V1

) is an evaluation of secret-quadratic equations with secret

values x̄ and the matrix
ᾱ
(k)
i · · · ᾱ

(k)
i′

. . .

ᾱ
(k′)
i ᾱ

(k′)
i′

 , where i, i′ and k, k′ ∈ O1 ,

denoted by matVO(x̄), is evaluated as linear forms in x̄. The signer then solves

Eq. (5.1) with a linear solver for all xi where i ∈ Ol. There are total u linear

systems to be solved. The signer may have to repeat the process if any matVO(x̄)

is a singular matrix. Hence, the main computation cost of the signing process

depends on computing the matrices matVO(x̄) from vinegar variables x̄ and solving

the corresponding linear equations.

Parameters of Modern Rainbow

In current Rainbow, u is always 2, with parameters (v, o, o), and at b-bit secu-

rity qo ≳ 2b (rank attacks [YC05]). The number of variables and equations are

69

doi:10.6342/NTU201801305

(n,m) = (v + 2o, 2o). Against a Rainbow with m equations and n variables,

the most pertinent attacks are substituting n − m variables at random and try-

ing to solve for the remaining m variables (“Direct Attack”), and a structural at-

tack which involves solving an associated quadratic system with n variables and

n + m − 1 equations (“Rainbow Band Separation”). Therefore we require 2b ≲

min(CFXL(m,m; q), CFXL(n,m+ n− 1; q)) [DYC+08].

Ding et al. [DYC+08,CCC+08] suggest for 80-bit design security Rainbow/TTS

with parameters (F24 , 24, 20, 20) and (F28 , 18, 12, 12). We modify the parameters for

modern security requirements in Table 5.1.

Table 5.1: Parameters of Rainbow.
security parameter F16 F31 F256

128 bits (v1, o1, o2) 32,32,32 28,28,28 28,20,20
n→ m 96→ 64 84→ 56 68→ 40

192 bits (v1, o1, o2) 48,48,48 53,40,40 52,32,32
n→ m 144→ 96 133→ 80 116→ 64

256 bits (v1, o1, o2) 64,64,64 74,56,56 73,48,48
n→ m 192→ 128 186→ 112 169→ 96

5.3 Implementing Components for Rainbow

We discuss the implementations of central components for Rainbow in this section.

Before the main contents of this section, we shortly recall the two multiplications

for cryptographic software in Sec. 3.3. The first technique performs the multipli-

cation with Log/Exp tables for constant-time multiplication in F16 and F256. The

other method multiplies field elements with multiplication tables. Instead of loading

the multiplication tables with secret values, however, we generate the multiplication

tables for particular variables and loading the tables with the address of the vari-

ables. Since we have to pay the cost for generating multiplication tables, the method

befits the occasion of plenty multiplications by the same variables.

70

doi:10.6342/NTU201801305

5.3.1 Matrix-vector Multiplication

The first component for implementing MPKCs is the matrix-vector multiplication

in the process of signing. We show the implementation for performing the affine

map S and T in this section.

In the secret key, we store the linear maps S and T as column-major matrices.

For performing x = T · y, the calculation

t00

t10

t20

...

t01

t11

t21

...

t02

t12

t22

...

. . .

·

y0

y1

y2
...

is performed as y0 · (t00, t10, . . .) + y1 · (t01, t11, . . .) + · · · . Here a boxed column

represents the data in the same register. The multiplications are implemented with

the Log/Exp tables to avoid side-channel leakage.

5.3.2 Evaluating Quadratic Systems

The evaluation of instances in MQ is the most critical component in MPKCs. It

corresponds to the verification of a signature or the public map directly. The time

constancy of the evaluation is depended on the circumstances. For example, the

public map of MPKCs is usually an evaluation without the requirement on time

constancy. However, for generating Eq. 5.1 in the secret map of Rainbow, the

constant-time evaluation of secret polynomials is required.

Note on Lack of Special Structures inMQ

For the evaluation of quadratic systems, there is no method to reduce the required

computations since we expect to evaluate a random system unless particular patterns

were designed into the equations (which only happens in unusual variant schemes

which do not concern us here). Hence, we focus on reducing the running-time for

71

doi:10.6342/NTU201801305

evaluating instances in MQ via choosing the correct instruction sequences over

various platforms since we expect the same amount of required computations. Most

of the time, the fastest running-time equates to the fewest instruction counts.

Evaluating Quadratic Systems as Matrix-Vector Product

Figure 5.1: An example of parallel evaluation of polynomials.

y1

y2

y3
...

=

c11

c21

c31
...

· x1 +

c12

c22

c32
...

· x2 + · · ·+

c111

c211

c311
...

· x1x1 +

c112

c212

c312
...

· x1x2 + · · ·

The registers (y1, y2, y3, . . .) accumulates the results comprising x1 · (c11, c21, c31, . . .)
, x2 · (c12, c22, c32, . . .) , . . ., x1x1 · (c111, c211, c311, . . .) , etc.

We evaluate a quadratic system as a matrix-vector multiplication in Sec. 5.3.1.

A multivariate quadratic system P with n variables and m polynomials is usually

stored as a column-major matrix with the columns being all monomials up to degree

2 and the rows being the polynomials (See Figure 5.1). Hence, the evaluation of P

can roughly be divided into two steps:

1. the generation of all monomials, i.e., the vector, and

2. computation of the resulting polynomials for known monomials, i.e., the matrix-

vector multiplication.

The computation proceeds by accumulating the product of a column vector with a

prepared monomial as shown in Fig. 5.1, which is exactly a matrix-vector production.

An alternative evaluation skips the first step and generates the quadratic terms

through multiplications by variables (twice). In a degree-reverse-lex order for the

monomials of polynomial, the quadratic terms are ordered as

(c∗11x1)x1 + (c∗12x1 + c∗22x2)x2 + (c∗13x1 + c∗23x2 + c∗33x3)x3 + · · · .

72

doi:10.6342/NTU201801305

One can accumulate all the linear terms in one parenthesis and follows with multi-

plication by the second variable.

The second step is the most computationally intensive part for evaluating P .

Since there are (n++n · n+1
2
) monomials, the second step requires m · (n+ n · n+1

2
)

multiplications to multiply the coefficients of P by the quadratic monomials and

almost the same number additions to accumulate results.

Now we consider the complexity of the first step. A straightforward generation of

all quadratic monomials requires n·(n+1)/2 multiplications. The evaluation without

generating quadratic monomials costs n · m extra multiplications for multiplying

variables again. One can choose the method of calculation of quadratic terms with

the value of n and m for a lower cost of computation.

Optimization and Constant-Time Evaluation

We first discuss the case without the constant-time requirement. For the genuinely

public map, the multiplications in F16 or F256 can be done by (1) loading the multipli-

cation tables with the value of the variables and (2) performing the multiplication

with Algo. 1 simultaneously. We can also omit some computations based on the

value of variables xi. However, we can not load the multiplication tables or skip

computations based on the secret values for crypto-safe evaluations.

For the constant-time evaluation, we use the strategy of generating multiplication

tables since we can reuse the tables while evaluating quadratic terms. In other words,

we have to use the approach of multiplying quadratic terms with multiplications of

the coefficient and two linear variables while evaluating P . We first generating

all multiplication tables for all variable x0, . . . , xn−1 with Algo. 2, Eq. (3.6), and

Eq. (3.7. Then we load the tables with the indexes of variables instead of their

values to prevent side-channel leakage.

Table 5.2 shows the benchmarks of our implementations for evaluating quadratic

systems. We can see only about a 5% difference between constant-time and general

evaluations over F16 or F256. Hence, we conclude that the extra cost for generating

73

doi:10.6342/NTU201801305

n multiplication tables is low comparing to the evaluation.

Table 5.2: Benchmarks on evaluations of quadratic polynomials
system size const. time general

k byte k cycles k cycles
F16, n = 64,m = 64 65 9.6 9.1
F256, n = 64,m = 64 130 16.2 15.6

Benchmarking in CPU cycles on Intel XEON E3-1245 v3 @ 3.40GHz with AVX2
instruction set.

5.3.3 Solving Linear Equations

We present the constant-time solver from modifying the Gaussian Elimination in this

section. Constant-time Gaussian Elimination was initially introduced in [BCS13] for

matrices over F2. Their idea can be easily extended to the case of F256.

The constant-time solver is actually a “worse-case Gaussian elimination” (Algo-

rithm 5) since changing the control flow according to the “value” of pivots is the

undesired property. To avoid the timing difference from the swapping for zero piv-

ots, we perform every possible row-swap in the Algo. 5. It is a so-called “conditional

move” at line 8 with a predicate as the current pivot(line 7). The conditional move is

implemented as multiplication by a value in {0, 1} or as an AND operation with a bit

mask. We perform the row operations, a row-vector multiplying by a scalar(line 14),

with Log/Exp tables for time constancy.

We use worse-case Gaussian elimination in the signing process of Rainbow and

report the timing for solving the system in the signing process in Tab. 5.3. Solving

linear equations (Eq. (5.1)) takes up much of the time during the signing process

of Rainbow as seen in Sec. 5.2.3. From the table, it is clear that the constant-time

Gaussian elimination is slower than plain version, but it is still an O(n3) operation.

5.4 Benchmarks

In this section, we give comparisons of benchmarks among Rainbows over binary

fields and some widely used schemes (though not post-quantum ones). Almost all

74

doi:10.6342/NTU201801305

Algorithm 5: The worse-case Gaussian elimination
1 WorseCaseGaussian(A) :

input : A : an n×m matrix for m > n over F256 .
output: A : an n×m matrix with all 1’s for diagonal entries if success.

2 for i← 0 to n− 1 do
3 Let Ai be the i-th row of A.
4 Let aii be the i-th entry of the row vector Ai.
5 // Swap pivots.
6 for j ← i+ 1 to n− 1 do
7 Compute m← NOT(OR all bits of aii).
8 Ai ← Ai +m · Aj.
9 end

10 Ai ← Inverse(aii) · Ai.
11 // Forward and backward Eliminations.
12 for j ← 0 to n− 1 do
13 if i = j then continue.
14 Aj ← Aj + aji · Ai.
15 end
16 end
17 return A.

Table 5.3: Benchmarks of linear solvers with Gaussian elimination
system plain elimination constant version
32× 32 over F16 6,610 9,539
20× 20 over F256 4,702 9,901

Benchmarking in CPU cycles on Intel XEON E3-1245 v3 @ 3.40GHz.

the schemes in the comparisons are parameterized at a 128-bit security level, besides

the RSA-2048 is in the 112-bit security level. Tab. 5.4 lists the specific parameters

for the schemes under comparisons.

Table 5.4: Parameters of signature schemes
schemes public key secret key digest signature

kbyte kbyte bit bit
Rainbow(16,32,32,32) 145.5 100.2 256 384
Rainbow(256,28,20,20) 94.3 62.9 320 544
ECDSA(NIST P256) 0.064 0.096 256 512
Ed25519 0.032 0.064 256 512
RSA-2048 a 0.256 2.048 2048 2048
RSA-3072 0.384 3.072 3072 3072
a 112-bit security.

75

doi:10.6342/NTU201801305

5.4.1 The Benchmarks

We list the results of benchmarking in Tab. 5.5. Our implementations of MPKCs1

were tested in the following environment:

• CPU: Intel XEON E3-1245 v3 (Haswell) @ 3.40GHz, turbo boost disabled.

• memory: 32 GB ECC.

• OS: ubutnu 1604, Linux version 4.4.0-78-generic.

• gcc: 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1 16.04.4).

We collect other benchmarks under the same Intel Haswell architecture.

Since the signing and verifying processes are the most commonly used functions,

they are the primary targets of our comparison with other mainstream pre-quantum

systems. For verifying signatures, the results show the Rainbow is indeed very

efficient in general. For generating signatures, we can observe the Rainbow over F256

is the most efficient among all schemes in comparisons and all instances of Rainbows

are comparable with Ed25519 [BDL+11], which is the most efficient pre-quantum

signature in our comparisons.

Table 5.5: Benchmarks of Signature Schemes on Intel Haswell Archiecture.
schemes gen-key() sign() verify()

M cycles k cycles k cycles
Rainbow(16,32,32,32) 1,359.7 68.1 22.8
Rainbow(256,28,20,20) 328.9 47.8 18.3
ECDSA(NIST P256) b 0.286 377.1 901.5
Ed25519 b 0.066 61.0 185.1
RSA-2048 a,b 233.7 5,240.2 66.4
RSA-3072 b 844.4 15,400.9 119.3
a 112-bit security.
b [BL16] benchmarked ECC and RSA on Intel Xeon E3-

1275 v3 (Haswell) at 3.5GHz.

1 The software for MPKC experiments can be downloaded from https://github.com/
fast-crypto-lab/mpkc-128bit .

76

https://github.com/fast-crypto-lab/mpkc-128bit
https://github.com/fast-crypto-lab/mpkc-128bit

doi:10.6342/NTU201801305

5.5 Summary

We have reviewed the Rainbow signature at the 128-bits security level and analyzed

the main components of Rainbow signatures including evaluating MQ equations

and solving linear equations. We present techniques for implementing these main

components in x86 platforms using SIMD instructions with side-channel resilience.

The implementations are based on the following methods for multiplying field ele-

ments securely:

1. We use SIMD table lookup and log/exp tables for preventing cache-time at-

tacks.

2. For the private evaluation of instances ofMQ over F16 and F256, we generate

instead of load the multiplication tables with the values of multipliers and

thus obtain a constant-time evaluation of quadratic systems nearly as fast as

a public evaluation.

From the benchmarks, we conclude that MPKC signatures remain competitive

speed-wise under crypto-safe requirements in current mainstream instruction sets.

77

doi:10.6342/NTU201801305

78

doi:10.6342/NTU201801305

Chapter 6

The Additive FFT and its Implementation

in Binary Fields

We review the additive FFT and describe its implementation in this chapter. These

are the preliminaries for Chapter 7. The additive FFT here was developed by

Cantor [Can89], Gao and Mateer [GM10], Lin, Chung, and Han [LCH14], and Lin,

Al-Naffouri, and Han [LANH16]. The implementations are based on the joint work

with Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang. The preprint

version can be found in [CCK+17].

6.1 Introduction

A fast Fourier transformation(FFT) is an algorithm evaluating the values of poly-

nomials at particular points efficiently. It is useful with many applications includ-

ing Reed-Solomon Code [LCH14,LANH16], message authentication codes in cryp-

tographies [BC14], and even the multiplication of Boolean polynomials [BGTZ08,

HvdHL16,CCK+17, vdHLL17,CCK+17, LCK+18], a fundamental problem in com-

puter science. In this chapter, we discuss the additive FFT and its implementations.

79

doi:10.6342/NTU201801305

6.1.1 FFTs over Binary Fields

Evaluating univariate polynomials over binary fields attracts great research interests

since the FFTs over binary fields are more complicated compared with the FFT

over real numbers. The standard “multiplicative” FFTs evaluates polynomials at

multiplicative subgroups formed by roots of unity. Unfortunately, in the binary

fields, a multiplicative subgroup formed by roots of unity consisted of elements of odd

order. The simplest divide-and-conquer strategy, breaking down the problem into

two sub-problems, need not exist in the multiplicative FFTs. Therefore constructing

the desired subgroups may induce an extra burden for multiplicative FFTs. For

example, the Schönhage [Sch77] FFT evaluates polynomials at points formed by a

“virtual” root of unity with the order 3n. The Cooley-Tuckey FFT works on the

subgroups which orders are factors of the original order of the multiplicative group.

The Additive FFT over Binary Fields

The additive FFTs evaluate polynomials in binary fields at points forming an ad-

ditive subgroup, in which the size is 2i for i ∈ N and thus can be divided into two

subgroups of size 2i−1 easily. Hence, it fits the most straightforward divide-and-

conquer strategy and leads to efficient implementation in practice.

In general, for evaluating a polynomial

f = f0 + f1x+ · · ·+ fn−1x
n−1 , n = 2l for l ∈ N and fi ∈ F̃

at points {0, 1, ωF̃(2), . . . , ωF̃(n− 1)}, the additive FFT evaluates the polynomial f

in two steps. The first step converts the polynomial basis of f from the monomial

basis (1, x, x2, x3, . . .) to a novelpoly basis which will be described in Sec. 6.3.1. We

name the second step “butterfly network” in this thesis. At the step, given the

polynomial f in the novelpoly basis, one recursively divides the evaluation of f of

length n at n points into the evaluations of two shorter polynomials of length n
2

at two sets {0, 1, . . . , ωF̃(
n
2
− 1)} and ωF̃(

n
2
) + {0, 1, . . . , ωF̃(

n
2
− 1)}. In comparison

80

doi:10.6342/NTU201801305

of complexities, the basis conversion takes O(n logn log logn) operations of field

addition. and the butterfly network takes O(n logn) operations of field addition

and multiplication.

6.1.2 The Development of Additive FFTs

We review the research of additive FFTs in this section.

In 1989, Cantor [Can89] developed the techniques to evaluate polynomials at

points that form an additive subgroup. Although the additive FFT applies to gen-

eral fields, the FFT is particularly useful in binary fields. The additive FFT was

presented over a particular representation of fields, termed “Cantor basis” later in

the literature. Cantor’s FFT works with the complexity of O(n logn) multiplications

and O(n loglog2 3 n) additions(XOR) for evaluating n = 2l elements.

In 2010, Gao and Mateer [GM10] presented an additive FFT (heretofore “GM

FFT”) over F2m , where the evaluation points are an additive subgroup of size 2l in

the underlying field. The complexity in GM FFT is O(n log2 n) XOR operations for

evaluating a polynomial at n = 2l points in general. However, it can be optimized

to O(n logn log logn) XOR and O(n logn) field multiplications when l = m and m

is a power of 2. In the optimized case, the fields are represented in the Cantor basis.

In 2014, Lin, Chung, and Han [LCH14] proposed the novelpoly basis for polyno-

mials. They shifted the problem to target on evaluating polynomials in the novelpoly

basis instead of the usual monomial basis. In the novelpoly basis, they can evalu-

ate the polynomials with the only process of the butterfly network and result in an

FFT of O(n logn) complexities for both field additions and multiplications. In the

subsequent work [LANH16], motivated by GM FFT, they presented a method for

converting a polynomial between novelpoly and monomial basis. The complexity

for the conversion is O(n logn log logn) XOR operations.

In the these, we follow the additive FFT developed from [LCH14] and [LANH16].

The additive FFT clearly separates the basis conversion and butterfly network into

two stags (instead of interleaved basis conversion and butterfly stages of GM FFT)

81

doi:10.6342/NTU201801305

and works in the best-known complexity of O(n logn log logn) XOR and O(n logn)

field multiplications for the polynomials in monomial basis.

The Implementations

In 2014, Bernstein and Chou [BC14] presented an efficient implementation of the GM

FFT for evaluating polynomials in F̃256[x]. For further optimization of GM FFT,

they omitted the basis conversion step as one variant of their additive FFT. They

applied their implementations to field multiplications in F2256 for a message authen-

tication code(MAC) in cryptography. However, their implementation employed only

bit-operations without considering the powerful instruction sets on modern CPUs.

We can not find software based on additive FFTs before the work of [CCK+17]

for the problem of multiplying Boolean polynomials. Hence, we discuss the imple-

mentation of the additive FFT on modern CPUs in this chapter.

6.1.3 Overview of this chapter

After the introduction, Section 6.2 discusses some properties of subspace polyno-

mials. Section 6.3 describes the additive FFT algorithm, mainly divided into the

butterfly network in Sec. 6.3.2 and basis conversion in Sec. 6.3.3. We show the

techniques for implementing the additive FFT in Sec. 6.4.

6.2 Subspace Polynomials

We review subspace polynomials defined in Eq. (2.15) and (2.16) in this section. The

development of additive FFTs relies heavily on subspace polynomials. The section

may contain some redundant information for the sake of self-completeness of this

chapter.

Cantor [Can89] defined the subspace polynomials over F̃ as

s1(x) = x2 − x =
∏
a∈F2

(x− a) , (2.15 revisited)

82

doi:10.6342/NTU201801305

and inductively

si+1(x) = s1(si(x)) , i = 1, 2, . . . (2.16 revisited)

The starting few polynomials of si(x) are s0(x) = x, s1(x) = x2− x, s2(x) = x4 + x,

etc. We enumerate more polynomials of si(x) in Tab. 6.1.

With respect to Cantor basis (vi) in Eq. (2.19), subspace polynomials vanish the

subspaces of F̃ as

si(x) :=
∏
a∈Wi

(x− a) . (6.1)

One can see the kernel space of si(x) is Wi and deg si(x) = |Wi| = 2i since dim(Wi) =

i.

Cantor et al. [Can89] [GM10] showed the following useful properties for si:

• si(x) is linear, i.e., si(x+ y) = si(x) + si(y).

• si(x) = x2i + x iff i is a power of 2, i.e., Wi is a field.

• si(x) = s2i−1(x) + si−1(x) = s1(si−1(x)); si+j(x) = si(sj(x)).

With s0(x) = x and si+1 = s2i + si, by induction, we know si contains only terms

with coefficients 1 and monomials x2j . Moreover, if i = 2k0 + 2k1 + · · ·+ 2kj , where

2k0 < 2k1 < · · · < 2kj , then we can write

si(x) = s2k0 (s2k1 (· · · (s2kj (x)) · · ·)) . (6.2)

Therefore every si can be a composition of polynomial functions with only two terms.

The evaluation of si(x) at points in the Cantor basis is fast. From Eq. (6.1),

∀a ∈ Wi, si(a) = 0 .

For computing si(vj) for j ≥ i, we can generalize Eq. (2.20) to

si(vj) = si−1(s1(vj)) = si−1(v
2
j + vj) = si−1(vj−1) = · · · = vj−i . (6.3)

83

doi:10.6342/NTU201801305

Hence, the effect of the linear operator si is to shift the corresponding binary ex-

pansion of elements in the Cantor basis to the right by i bits, or

si(α) = ω(ω−1(α)≫ i) . (6.4)

For example, we have si(vi) = v0 = 1.

6.3 The Additive FFT

We describe the additive FFT in this section. Roughly speaking, the additive FFT

first converts a polynomial into the novelpoly basis and then evaluates the polyno-

mial in a butterfly network. Section 6.3.1 describes the novelpoly basis for polyno-

mials. Section 6.3.2 describes the butterfly network. i.e., the FFT of polynomials

in the novelpoly basis. Section 6.3.3 gives the algorithm for converting polynomial

bases.

6.3.1 The novelpoly Basis w.r.t. Subspace Polynomials

In [LCH14], Lin et al. proposed the novelpoly basis for polynomials. For polynomials

of degree < n in the novelpoly basis, they can evaluate the polynomials in O(n logn)

field operations. Note that the novelpoly basis for polynomials must be distinguished

from the Cantor basis for the fields.

Let (1, X1(x), X2(x), . . .) be the novelpoly basis for polynomials. The element of

the novelpoly basis is defined as

Xk(x) :=
∏

(si(x))
bi where k =

∑
bi · 2i with bi ∈ {0, 1} . (6.5)

In other words, Xk(x) is the product of all si(x) where the i-th bit of k is set. Clearly,

for k is a power of 2, Xk(x) = X2i(x) = si(x). Since deg si(x) = 2i, degXk(x) = k.

84

doi:10.6342/NTU201801305

6.3.2 Evaluating Polynomials in the novelpoly Basis

For a polynomial f(x) in the novelpoly basis

f(x) = g(X) = g0 + g1X1(x) + . . .+ gn−1Xn−1(x) ∈ F̃2m [x]<n and n = 2l, (6.6)

we can evaluate f(x) at the set of points α+Wl, where α ∈ F̃2m , in O(n logn) field

operations with a butterfly network, denoted as Butterfly. From [LCH14], the

Butterfly is an FFT for polynomials in the novelpoly basis.

The Butterflies

Algorithm 6: The Butterfly for polynomials in the novelpoly basis.
1 Butterfly(g(X) = f(x) ∈ F̃2m [x]<n, α ∈ F̃2m) :

input : g(X) = g0 + g1X1(x) + ...+ gn−1Xn−1(x) ∈ F̃2m [x]<n .
an extra scalar: α ∈ F̃2m .

output: [f(0 + α), f(1 + α), . . . , f((ω(n− 1)) + α)] , which is a list of values
of f at points α +Wl.

2 if deg(g(X)) = 0 then return [g0]
3 Let i← ⌈log2 n⌉ − 1 s.t. deg(si(x)) = deg(X2i(x)) = 2i < n .
4 Let g(X) = p0(X) +X2i · p1(X) = p0(X) + si(x) · p1(X).
5 Compute h0(X)← p0(X) + si(α) · p1(X).
6 Compute h1(X)← h0(X) + si(vi) · p1(X).
7 return [Butterfly(h0(X), α),Butterfly(h1(X), vi + α)]

Algorithm 6 details the process of the Butterfly. It is a typical divide-and-

conquer process transforming the current problem into 2 small sub-problems. Line 4

expresses the polynomial f = g(X) as two half-sized polynomials p0(X) and p1(X)

with

g(X) = p0(X) +X2i(x) · p1(X) = p0(X) + si(x) · p1(X) , l = i+ 1 .

For evaluating f(x) at a set α +Wl = α +Wi+1, We can divide the points in Wi+1

into the two half-sized sets

Wl = Wi+1 = Wi ∪ (Wi+1\Wi) = Wi ∪ (vi +Wi) .

85

doi:10.6342/NTU201801305

Since si(x) vanishes Wi, all values of si(x) at α + Wi are the same si(α), and the

values of f(x) at α+Wi become the values of the polynomial

h0(X) = p0(X) + si(α) · p1(X) (6.7)

at α + Wi. Similarly, the values of f(x) at α + vi + Wi become the values of the

polynomial

h1(X) = p0(X) + (si(α) + si(vi)) · p1(X) = h0(X) + si(vi) · p1(X) (6.8)

at α + vi + Wi. Note that the polynomials h0(X) and h1(X) are half length of

original polynomial g(X).

Line 5 and 6 in the Algo. 6 perform the actual computations for generating two

new sub-polynomials h0(X) and h1(X). Figure 6.1 shows the compuatation pattern

Figure 6.1: The butterfly unit.

p0 // + //

��
>>

>>
>>

>>
h0

p1 // •
×si(α)��

@@����

// + // h1

for calculating one term of polynomials h0(X) and h1(X). The pattern is named a

butterfly. There are two multipliers si(α) and si(vi) in each butterfly from Eq. (6.7)

and (6.8). Since si(vi) = 1 in the Cantor basis, one butterfly comprises two field

additions and only one field multiplication.

Although line 7 indicates the use of recursion, we actually program iteratively

in many layers of butterflies(See Fig. 6.2). One layer of butterflies corresponds to

one recursion. It turns out that there are l layers, corresponding to the depth of

recursion and n/2 butterflies in each layer. Through the iterative programming

style, it is possible to optimize data movement in the Butterfly by processing

several layers at the same time. Inverse Butterfly simply performs the butterflies

in reverse.

86

doi:10.6342/NTU201801305

We remark at last that the length of the input polynomial is equal to the number

of evaluating points in Algo. 6. We will evaluate polynomials of high degree at a set

of smaller size in Sec. 7.3.2.

The butterflies: An Example

Figure 6.2: An example of computations in Butterfly.

The forward butterfly units for evaluating a degree-7 polynomial f(x) = g(X) =
g0 + · · ·+ g7X7 at 16 points {0, 1, . . . , ωF̃(0xf)}.

Figure 6.2 shows an example of evaluating a degree-7 polynomial f(x) = g(X) =

g0 + · · · + g7X7 ∈ F̃[x] in novelpoly basis at points W4 = {0, 1, . . . , ωF̃(0xf)}. It

actually calls the Butterfly twice depicted in upper and lower parts respectively

in the figure. The upper part is Butterfly(g(X), 0) for evaluating f(x) at points

W3 and the lower part is Butterfly(g(X), ωF̃(0x8)) for points ωF̃(0x8) +W3. In

this case, one Butterfly consists of 3 layers of butterflies, and each layer contains

4 butterflies.

We can observe that the constants in butterflies. Since the constants are val-

ues of si(x) at the corresponding points, they are usually smaller than the ac-

tual values of the evaluating points. The multipliers in first layer are calculated

87

doi:10.6342/NTU201801305

by evaluating the degree-4 s2(x) at two α ∈ {0, ωF̃(0x8) ∈ F̃16}, resulting in

the small multipliers {0, ωF̃(0x2) ∈ F4}. The second layer evaluates the degree-2

s1(x) at 4 points α ∈ {0, ωF̃(0x4), ωF̃(0x8), ωF̃(0xc)} and results in the multipliers

{0, ωF̃(0x2), ωF̃(0x5), ωF̃(0x7)}. In the last layer, the multipliers are the elements cor-

responding to the particular positions {0, ωF̃(0x2), ωF̃(0x4), ωF̃(0x6), . . . , ωF̃(0xe)}

because s0(α) = α.

6.3.3 Converting Polynomial Bases

In this section, we review the methods converting a polynomial f(x) in the monomial

basis to g(X) in the novelpoly basis.

Since the element Xk of the novelpoly basis comprises products of si(x)’s, the

straightforward conversion proceeds with continuing divisions of f(x) by si(x)’s.

One first finds the largest i such that deg(si) = 2i < deg(f) and then divide f(x)

by si(x) to find f0 and f1 such that

f(x) = f0(x) + si(x) · f1(x) .

Recursively divide f0 and f1 by si−1 of lower degrees and eventually express f(x)

as a sum of non-repetitive products of the si(x)’s, which is the desired form for

g(X). Since the coefficients of si(x) are always 1 in the Cantor basis, the division

is performed with only additions. Therefore the complexity of division by one si

depends on the number of terms of si and the conversion takes O(n(logn)2) field

additions(XOR).

Table 6.1: Variable Substitution of si(x)
s0(x) x
s1(x) x2 + x
s2(x) x4 + x = s2(x) = y
s3(x) x8 + x4 + x2 + x = s1(y) = y2 + y
s4(x) x16 + x = s4(x) = z
s5(x) x32 + x16 + x2 + x = s1(z) = z2 + z
s6(x) x64 + x16 + x4 + x = s2(z) = z4 + z = s6(x) = w
s7(x) x128 + x64 + x32 + x16 + x8 + x4 + x2 + x = s3(z) = z8 + z4 + z2 + z = s1(w) = w2 + w

Lin et al. [LANH16] presented a basis conversion of fewer field operations by

88

doi:10.6342/NTU201801305

dividing f(x) by si(x) where i is only power of 2. From Eq. (6.2)

si(x) = s2k0 (s2k1 (· · · (s2kj (x)) · · ·)) ,

any particular si(x) can be express as compositions of s2k(x)’s, which is a polynomial

of two terms. By the technique of variable substitution(see Tab. 6.1 and Algo. 7),

one can finish the basis conversion with division of f(x) by s2k(x)’s. The complexity

for the conversion is O(n logn log logn) field additions for f(x) ∈ F̃2m [x]<n.

Algorithm 7: Variable Substitution
1 VarSubs(f(x), y) :

input : f(x) = f0 + f1x+ ...+ fn−1x
n−1 ∈ R[x]

y = si(x) = x2i + x .
output: h(y) = h0(x) + h1(x)y + · · ·+ hm−1(x)y

m−1 ∈ R[x][y] .

2 if deg(f(x)) < 2i then return h(y)← f(x)

3 Let k ← Max(2j) where j ∈ Z s.t. deg((x2i + x)2
j
) ≤ deg(f(x)) .

4 Let yk ← xk2i + xk.
5 Compute f0(x) + yk · f1(x) = f(x) by dividing f(x) by xk2i + xk.
6 // Note the division is done by only XOR operations.
7 return VarSubs(f0(x), y) +yk· VarSubs(f1(x), y) .

Algorithm 8 shows the details of basis conversion. The algorithm proceeds with

1. finding the largest i = 2k such that 2i < deg f and then performing Algo. 7(variable

substitution) to express f as a power series of si. Note that si(x) = x2i + x

for i = 2k.

2. Recursively express the series in si as a series in Xj(si), where j < 2i.

3. Recursively express each coefficient of Xj(si) (which is a polynomial in x of

degree < 2i) as a series in Xk, where k < 2i.

Note that the algorithms relies on the simple form of si(x) = x2i + x for i = 2k

instead of the representation of coefficients.

89

doi:10.6342/NTU201801305

Algorithm 8: Basis conversion: monomial to novelpoly basis.
1 BasisCvt(f(x)) :

input : f(x) = f0 + f1x+ ...+ fn−1x
n−1 ∈ R[x]<n in monomial basis.

output: g(X) = g0 + g1X1 + ...+ gn−1Xn−1 ∈ R[x]<n in novelpoly basis.

2 if deg(f(x)) ≤ 1 then return g(X)← f0 +X1f1
3 Let i← Max(2k) where k ∈ N s.t. deg(si(x)) ≤ deg(f(x)) .
4 Let y ← si(x).
5 h(y) = h0(x) + · · ·+ hm−1(x)y

m−1 ← VarSubs(f(x), y) ∈ R[x][y] .
6 // s.t. f(x) = h(si(x)) and hj(x) ∈ R[x]<2i for j = 0, . . . ,m− 1 .
7 h′(Y) = q0(x) + q1(x)X2k + · · ·+ qm−1(x)X(m−1)·2k ← BasisCvt(h(y)) .
8 foreach coefficient qi(x) of h′(Y) do
9 gi(X)← BasisCvt(qi(x)) .

10 end
11 return g(X) = g0(X) + g1(X)X2k + ...+ gn−1(X)X(m−1)·2k

Basis Conversion: An Example

Figure 6.3 shows an example of converting a degree-15 polynomial to the novelpoly

basis. For a straightforward conversion, one has to divide by 3 different si(x)’s,

namely s1(x), s2(x), and s3(x), which has 4 terms. However, by applying Algo. 8,

one can see there are actually 4 layers of division and the number of XOR’s are the

same in all layers.

Figure 6.3: An example of basis conversion.

Converting f(x) = f0 + · · ·+ f15x
15 to g(X) = g0 + · · ·+ g15X15 in Algorithm 8.

We can clarify the layers in the Fig. 6.3. The first 2 layers substitute variables

90

doi:10.6342/NTU201801305

into terms of y = s2(x) = x4 + x by the Algo. 7. The first layer divides the input

by s2(x)
2 = x8 + x2 and the second layer divides the two polynomials(the quotient

and the reminder) by s2(x) = x4+x on the high degree and low degree polynomials

from the first layer. The third layer divides one input polynomial by s3(x) = y2 + y

by adding between coefficients of terms differing by a factor of s2(x), and 4 positions

apart (see 3rd column of Table 6.1). The last layer divides by s1(x) = x2 + x for

4 short polynomials (Last loop in Algo. 8). Note that we only do division by two

terms polynomials in the conversion.

6.3.4 The addFFT Algorithm

Algorithm 9 shows the addFFT algorithm for evaluating a polynomial f ∈ F̃2m [x]<n

in monomial basis at n points α +Wl, where n = 2l and α ∈ F̃2m . The algorithm

first calls the BasisCvt to convert the basis of polynomials and then uses the

Butterfly to evaluate polynomials in the novelpoly basis. Inverse additive FFT,

or iaddFFT, simply performs the Butterfly and the BasisCvt in reverse.

Algorithm 9: The Additive FFT Algorithm
1 addFFT(f(x), α) :

input : f(x) = f0 + f1x+ ...+ fn−1x
n−1 ∈ F̃2m [x]<n .

an extra scalar: α ∈ F̃2m .
output: The values of f at α +Wl, where n = 2l .

2 Compute g(X)← BasisCvt(f(x)).
3 return Butterfly(g(X), α).

6.4 Implementing the Additive FFT

We discuss the techniques of implementations about the butterfly network and the

basis conversion in this section.

91

doi:10.6342/NTU201801305

6.4.1 Performing the Butterflies

Computing the constants in the Butterflies

The central computation of the Butterfly is to generate the two polynomials

h0(X)← p0(X) + si(α) · p1(X) (6.7 revisited)

and

h1(X)← h0(X) + si(vi) · p1(X) . (6.8 revisited)

Here si(vi) = 1 for the Cantor basis. Hence, we have to identify the value of the

constant si(α) for a particular butterfly. For a small butterfly network, we can

hard-code the values or query a table in the software implementation. For a large

butterfly network, we have to calculate the values in run-time.

By observing the Fig. 6.2, we can see the value of α corresponds its index of

the particular position in the butterflies. The outputs of the butterfly network

correspond to the values of a polynomial at (0, 1, ωF̃(0x2), ωF̃(0x3), . . .) which are

precisely the indexes of the particular wires. We can also observe the constants of

the last layer in the Fig. 6.2. The constants are (0, ωF̃(0x2), ωF̃(0x4), . . .) in the

last layer, which equals to s0(α) = α.

While evaluating a polynomial f(x) ∈ F̃2m [x] in the tower field, we have to figure

out the value of the representative of α in the tower field although calculating the

value si(α) for α in the Cantor basis is efficient by Eq. (6.4)

si(α) = ω(ω−1(α)≫ i) ,

It requires the calculation of the field isomorphism for the value of si(α). More pre-

cisely, for performing the addFFT over the tower fields, we first calculate the value of

si(α) in the Cantor basis and then perform a field isomorphism for the value of si(α)

in the tower field. The field isomorphism is a linear transformation with the matrix

in Tab. 2.1, which can be performed with the method of four Russian efficiently. In

92

doi:10.6342/NTU201801305

this case, we index the wires in the Cantor basis, but output values of the polynomial

in the representation of the tower field at points (ω(vi)(0), ω(vi)(1), ω(vi)(0x2), . . .).

This is equal to reorder the outputs of the Butterfly.

We can accelerate the field isomorphism by calculating the isomorphism of the

differences for the consecutive α’s. This empirical trick works especially when the

binary value of the α is large. The difference of two large α’s are usually smaller

than their original values which reducing the operations in the linear transformation

when the vector contains many 0’s.

Multiplications by Subfield Elements in the Butterflies

To accelerate the multiplications in butterflies, we can evaluate the polynomials at

subfields, and thus the multiplication can be performed with the subfield multipli-

cations in Sec. 3.2. Given the value of si(α), the multiplication in the butterfly

are

h0(X) = p0(X) + si(α) · p1(X) .

Given p1(X) ∈ F̃2m [x], we can have the subfield multiplication if si(α) ∈ F̃2m−1 .

The situation always occurs when ω−1(α) < 2m/2. Even when the value of ω−1(α)

is “large”, the evaluation of si(α) will shorten the value by i bits in the Cantor

basis. By observing Tab. 2.1, we know the most significant bit of elements in tower

fields are the same with Cantor basis. Hence, the si shorten the values in the tower

representation by i bits as well.

6.4.2 Performing the Basis Conversion

Skipping the Computation

The rule of thumb in the implementation of the BasisCvt is always to skip the com-

putation by defining polynomials in novelpoly basis naturally. For example, Chou

and Berstein had omitted the “radix conversion” in one variant of the “auth256”,

a message authenticated code, in [BC14]. Lin et al. also got rid of the basis con-

93

doi:10.6342/NTU201801305

version for the en/decoder of the Reed-Solomon code by defining polynomials in

novelpoly basis in [LCH14]. The optimization relies on considering the subject for

FFT carefully although it is definitely the most efficient optimization.

Reducing the memory access for block data

We focus on reducing the number of memory access for optimizing the BasisCvt.

The memory access model is critical for optimizing algorithms on computers. The

typical design of an algorithm usually assumes on free access of data while it’s usually

not the fact on computers. In practice, loading data from memory to CPUs takes

time, and the access time has to be covered by the computation in CPUs. Otherwise,

the running time for waiting data might greater than the actual computation time.

The number of memory access is more critical for the process of only simple XOR

operations, reported by Albrecht et al. [ABH10] for multiplying matrices over F2.

The BasisCvt faces the same situation.

For reducing the number of memory access, we can combine several layers of

operations in Algo. 8. It is possible since the Algo. 8 always XOR coefficients of

higher degree to coefficients of lower degree. While same coefficients of lower degree

gather coefficients from higher degree among several layers, we can combine the

accumulations among layers. This optimization effectively reduces the number of

memory write. For dividing polynomials whose degree greater than s8(x) = x256+x,

the data are moved in 256-bits units, and the effect of this optimization is more

noticeable than small memory blocks.

We note that the structures between layers are even regular in the Butterfly.

Hence, we can also perform several layers of butterflies together to increase the

performance.

Techniques for bit-level data

We have different strategies for dividing si(x)’s that degree < 256.

94

doi:10.6342/NTU201801305

For dividing polynomials by

s7(x) = x128 + x64 + x32 + x16 + x8 + x4 + x2 + x ,

we perform the division with the PCLMULQDQ instruction. Given f(x) ∈ F2[x]<256,

we want to express f(x) in the expansion of s7(x). Let

f(x) = f3 · x192 + f2 · x128 + f1 · x64 + f0 for f0, f1, f2, f3 ∈ F2[x]<64 .

We have

f(x) = f3 · x64 · x128 + f2 · x128 + f1 · x64 + f0

= f3 · x64 · s7(x) +
[
f2 · x64 + f1 + f3 × (x128 − s7(x))

]
x64 + f0

Let g1 · x64 + g0 = f2 · x64 + f1 + f3 · (x128 − s7(x)) for g1, g2 ∈ F2[x]<64, then

f(x) = f3 · x64 · s7(x) + g1 · x128 + g0 · x64 + f0

=
[
f3 · x64 + g1

]
· s7(x) + g1 × (x128 − s7(x)) + g0 · x64 + f0 .

Hence , we can perform the calculation with 2 PCLMULQDQ instructions at the “×”

symbols.

The Technique of Bit-slice

For dividing by si(x)’s of degree < 64, we perform the basis conversion in the bit-

slice manner. More precisely, we first collect 128 or 256 copies of the computation

and perform the bit-level transpose for the data with the techniques in Sec. 2.4.1.

After the transpose, we can perform the division with XOR operations in 128 or 256

parallels.

95

doi:10.6342/NTU201801305

96

doi:10.6342/NTU201801305

Chapter 7

Multiplication of Boolean Polynomials

The last application targets on multiplying Boolean polynomials of high degree.

This chapter is based on the joint work with Wen-Ding Li, Po-Chun Kuo, Chen-

Mou Cheng, and Bo-Yin Yang published in [LCK+18].

7.1 Introduction

Multiplying polynomials in the ring F2[x] (Boolean polynomials) is a fundamental

problem in computer science. The operation is so essential that modern CPUs even

dedicate a hardware instruction to the carryless multiplication of polynomials.

To the best of our knowledge, all current fast algorithms for multiplying high-

degree Boolean polynomials are based on a fast Fourier transform (FFT) algorithm.

An FFT is capable of evaluating polynomials at a set of points in the underlying field

efficiently. As to multiplying Boolean polynomials with FFTs, the multiplication

proceeds by evaluating polynomials at these specific points, multiplying values of

two polynomials point-wise, and interpolating the values back to a polynomial with

an inverse FFT. Note that one has to perform the FFTs in an extension field F2m of

F2 since there are only two possible points in F2.

In 2017, van der Hoeven and Larrieu [vdHL17] showed a new technique, named

Frobenius FFT, to evaluate a polynomial in F2[x] at points in F2m with Frobenius

automorphism. The Frobenius FFT roughly runs m times faster than evaluating a

97

doi:10.6342/NTU201801305

polynomial in F2m [x] by evaluating at fewer points and deducing other values of the

polynomial with Frobenius map. In their subsequent work [vdHLL17], they applied

the Frobenius FFT to multiplying Boolean polynomials and resulted in a multiplier

with 2 time faster than their original multiplier [HvdHL16].

In this chapter, we will show the technique of the Frobenius FFT can cooperate

with the additive FFT as well. The adaption becomes to truncate some butterflies

in the additive FFT. As a result, we can achieve an implementation with the best-

known performance for multiplying Boolean polynomials.

7.1.1 Previous Multiplications for Boolean Polynomials

We introduce two methods for multiplying Boolean polynomials with FFTs here. In

general, the multiplication algorithms convert the problem from performing an FFT

in F2[x] to performing in F2m [x] because the field F2m provides more points than F2

for evaluating polynomials.

Kronecker Substitution (KS) of Coefficients of Polynomials

Most previous works for multiplying Boolean polynomials based on Kronecker Sub-

stitution or Segmentation (KS) [GG13, Chap. 8]. Let F2[x]<n denotes the Boolean

polynomials of degree < n. For computing a · b → c ∈ F2[x]<n with KS, we first

partition the polynomials into 2n/m blocks of size (m/2)-bits, i.e., write

a =
n−1∑
i=0

aix
i → â =

(2·n/m)−1∑
i=0

âix
i·(m/2) where âi ∈ F2[x]<m/2 .

We consider each âi as a field element in F2m and â ∈ F2m [y] such that a = â(xm/2).

Then we can perform a standard polynomial multiplication with FFTs over F2m [y].

Note that the method prevents “overflow” from splitting the polynomials down to

blocks of size (m/2).

For multiplicative FFT implementations with KS, Brent et al. [BGTZ08] im-

plemented mainly the Schönhage [Sch77] algorithm in the library gf2x. Harvey,

98

doi:10.6342/NTU201801305

van der Hoeven, and Lecerf [HvdHL16] presented multiplication using DFTs over

the field F260 , whose size of elements is close to a machine word and the size of the

field allows abundant multiplicative subgroups. For additive FFT implementations,

Chen et al. [CCK+17] presented a multiplication based on an additive FFT over

binary fields with Cantor bases [Can89] [GM10].

Frobenius Cross-Sections of the Set of Evaluated Points

In 2017, van der Hoeven et al. [vdHLL17] presented a new multiplier with a two times

improvement over their previous KS multiplier [HvdHL16]. Instead of partitioning

the polynomials in F2[x]<n into blocks, they directly run an FFT to evaluate a

polynomial in F2[x] at points in F2m (specifically, F260 for m = 60).

However, they only compute values at a subset Σω of size n/m, from which they

can derive the values at a larger set Ωn ⊂ F2m (where |Ωn| = n), using the Frobenius

map of F2m (i.e., squaring, since this is a binary field). For multiplying polynomials

in F2[x]<n with an FFT over the field F2m , the new method works on an FFT of size

n/m instead of 2n/m (when using Kronecker Segmentation).

In this thesis, we use the term “Frobenius cross-section” for the set Σω which

induces a partition of the larger set Ωn under the Frobenius map. We will present

a new Frobenius cross-section, and one can evaluate Boolean polynomials at the

corss-section efficiently with a truncated additive FFT.

7.1.2 The Practical Complexity Model

When implementing Boolean polynomial multiplication on modern computers, the

software usually works on a structure with multiple bits (e.g., a binary field of m-

bits, denoted as F2m). It is a natural result of high-performance implementations

since the computer works with instructions on machine words instead on a single

bit. Hence, instead of the bit complexity model, we use the algebraic complexity

model, which analyzes the complexity of algebraic operations, for evaluating the

complexity of algorithms.

99

doi:10.6342/NTU201801305

In the algebraic complexity model, from Harvey et al. [HvdHL17], the best com-

plexity for multiplying polynomials of degree < n is O(n logn) field multiplications

and O(n logn log logn) field additions by Cantor and Kaltofen [CK91]. The multi-

plication algorithm presented in this chapter works with the known best complexity

as well.

However, our implementation only supports a practical length of polynomials,

i.e., n < 264 bits. The restriction comes from the specific underlying fields, which

are F264 or F2128 , instead of an arbitrary field.

7.1.3 Our Contributions

[vdHLL17] introduces this problem: Using a particular FFT, can we find a Frobe-

nius cross-section that results in an efficient multiplier for Boolean polynomials, in

particular, what about for additive FFTs?

We answer the question by deriving a Frobenius cross-section for additive FFT

over binary fields and applying it to multiplying Boolean polynomials. More specif-

ically, after presenting the cross-section, we show it provides sufficient points for

evaluation/interpolation and how to fit the proposed cross-section into an additive

FFT as well as the implementation techniques for a practically fast polynomial mul-

tiplier.

7.1.4 Chapter Overview

After the introduction, section 7.2 reviews the method of multiplying polynomials

with FFTs and the Frobenius cross-section. Section 7.3 describes the cooperation

between the additive FFT and Frobenius cross-section. Section 7.4 shows the bench-

marks of our implementations and comparisons with previous works. Section 7.5

summaries.

100

doi:10.6342/NTU201801305

7.2 Preliminaries

In this section, we review the method for multiplying Boolean polynomials of high

degree and the concept of Frobenius cross-sections [vdHL17]. Although it is well

known that multiplication can be done with an FFT for evaluating polynomials

[CLRS09] [GG13], van der Hoven et al. [vdHL17] can perform the multiplication

by evaluating the polynomial at a set smaller than the number of coefficients. The

particular set is termed Frobenius corss-section with respect to underlying FFTs.

7.2.1 The FFT Based Multiplication of Polynomials

Given two polynomials a(x) = a0+ · · ·+an
2
−1x

n
2
−1 and b(x) = b0+ · · ·+ bn

2
−1x

n
2
−1 ∈

F2[x]<n, represented as Boolean sequences of length n
2

and n is a power of 2 (zero-

padding if necessary), we can calculate the product c(x) = a(x) · b(x) ∈ F2[x]<n by

evaluation and interpolation as follows:

1. Evaluate a(x) and b(x) at n points in F2m with FFTs.

2. Perform pointwise multiplications for the evaluated values.

3. Interpolate the values back to the result c(x) ∈ F2[x]<n.

The complexity of the polynomial multiplication is the same as the FFT used.

7.2.2 The Frobenius cross-section

In 2017, Van der Hoeven and Larrieu [vdHL17] noted that knowing the value of

a Boolean polynomial at any point in a binary field also determines the value of

the said polynomial at many other points because of the Frobenius map commuting

with the polynomial. In other words, let c(x) ∈ F2[x]<n and the Frobenius map

ϕ2 : e 7→ e2 for e ∈ F2m ,

then

c(ϕ2(e)) = ϕ2(c(e)) for e ∈ F2m and c(x) ∈ F2[x] . (7.1)

101

doi:10.6342/NTU201801305

Thus, given the values of c(x) at a set Σ, we can determine the values at the set

ϕ2(Σ). Similarly for evaluations at ϕ◦j
2 (Σ), where ϕ◦j

2 means applying ϕ2 serially j

times.

Definition 3. The order of v under ϕ2 is

Ordϕ2(v) := min{j : j > 0, ϕ◦j
2 (v) = v} .

Similarly,

Ordϕ2(Σ) := min{j : j > 0, ϕ◦j
2 (Σ) = Σ} = lcm{Ordϕ2(v) : v ∈ Σ} .

Definition 4. (The Frobenius Cross-Section) We say a set Σ is a Frobenius cross-

section if Ordϕ2(Σ) = j ∈ N and Σ partitions its superset Ω under Frobenius map,

i.e.,

Ω = Σ ⊎ ϕ2(Σ) ⊎ · · · ⊎ ϕ
◦(j−1)
2 (Σ)

where ⊎ denote a disjoint union, i.e., all of Σ, ϕ2(Σ), . . . , and ϕ
◦(j−1)
2 (Σ) are disjoint

sets.

By (7.1), the value of c(x) at any point in Ω can be derived from one of values

at Σ.

7.3 The Multiplication with Frobenius Cross-section and

Additive FFT

In this section, we present an efficient algorithm for multiplying Boolean polynomi-

als by evaluating polynomials at a particular Frobenius cross-section with additive

FFTs.

102

doi:10.6342/NTU201801305

7.3.1 The Partition of Evaluating Points

Given a polynomial a(x) ∈ F2[x] for deg(a) = n − 1 and n = 2ℓn , we present a

Frobenius cross-section Σ ⊂ F2m for m = 2ℓm in the Cantor basis for deriving n

values of a(x) from the values at Σ in this section.

Before we define the cross-section Σ, we first discuss the order of basis elements

under ϕ2 in the Cantor basis. Given ϕ2 is the square operation over F2m and the

Cantor basis (vi)i=0,...,m−1, we have

ϕ2(v0) = v0

and

ϕ2(vi) = v2i = vi + vi−1 for i > 0 .

In [LCK+18], Li et al. showed the order of the basis element vi under ϕ2

Ordϕ2(vi) = 2 · 2⌊log2 i⌋ for i > 0 . (7.2)

In other words, Ordϕ2(vi) = m if vi is in the set F2m \F2m/2 of a minimum m. Hence,

the maximum order for elements in F2m is

m = Ordϕ2(vi) for vi ∈ {vm/2, . . . , vm−1} .

We define the set Σ with the maximum order under ϕ2

Σ := vl+m/2 +Wl where l = (ℓn − ℓm) < m/2 and l ≥ 0 (7.3)

and its superset

Ω := Σ ∪ ϕ2(Σ) ∪ ϕ◦2
2 (Σ) ∪ · · · ∪ ϕ

◦(m−1)
2 (Σ) . (7.4)

Our goal is to show the following proposition.

103

doi:10.6342/NTU201801305

Proposition 2. Σ is a Frobenius cross-section of Ω and |Ω| = n.

Proof. We start by counting the order of Σ. First, by induction, we show ϕ2 maps

Wl to itself, i.e.,

ϕ2(Wl) = Wl .

Clearly, ϕ2(W0) = W0. Given ϕ2(Wi) = Wi, we have

ϕ2(Wi+1) = ϕ2(vi+Wi)∪ϕ2(Wi) = ((vi+vi−1)+Wi)∪Wi = (vi+Wi)∪Wi = Wi+1 .

Hence, the order of Σ is decided mainly by the element vl+m/2. At first glance,

we have Ordϕ2(vl+m/2) = m from Eq. 7.2. However, since Σ = vl+m/2 + Wl, we

have to deal with effect from Wl. To analyze the effect of Wl, we split the vector

representation of elements in Σ into high- and low-bits parts. While applying ϕ2 to

vl+m/2 for j times, let the vector

ϕ◦j
2 (vl+m/2) = a+ b

where a ∈ Wl is equal to least l dimensions(bits) of ϕ◦j
2 (vl+m/2) and b is the remainder

corresponding to the high-bits part. Then Wl + a = Wl since a ∈ Wl. And, by

omitting the least l dimensions of b, the order for the high-bits part of ϕ◦j
2 (vl+m/2)

is still m

Ordϕ2(ω(ω
−1(b)≫ l)) = Ordϕ2(vm/2) = m .

Hence, Ordϕ2(Σ) = m.

Last we argue about the disjoint sets. While continuously applying ϕ2 to Σ, from

the discussion of the order for Σ, the Wl absorbs the a parts of ϕ◦j
2 (vl+m/2), and only

the b parts of ϕ◦j
2 (vl+m/2) changes. Hence, ϕ◦j

2 (Σ) are disjoint sets for j < m, and Σ

is a Frobenius cross-section of Ω.

Since the size of Σ is clearly

np := |Σ| = |Wl| = 2l = n/m , (7.5)

104

doi:10.6342/NTU201801305

we know the size of Ω

|Ω| = Ordϕ2(Σ) · |Σ| = m · n
m

= n .

Now we define a linear map EΣ : F2[x]<n → Fnp

2m , evaluating a polynomial a ∈

F2[x]<n at the cross-section Σ, i.e.,

EΣ : a(x) 7→ {a(vl+m/2 + u) : u ∈ Wl} . (7.6)

Clearly, EΣ evaluates a(x) at np = n/m points which are fewer than the number of

coefficients n. However, since the points are in F2m , the size of input and output

space are the same n = m · n/m bits.

The following proposition summarizes that the evaluation EΣ contains sufficient

information for interpolation.

Proposition 3. EΣ is a bijection between F2[x]<n and Fnp

2m .

Proof. Let EΩ be the map that evaluates polynomials at the set Ω. Since EΩ eval-

uates polynomials at n points, it is clearly a bijection between F2[x]<n and Fn
2m . Σ

can derive the full Ω with the linear operator ϕ2 and vice versa. By Eq.(7.1), EΩ

can be derived from EΣ with the linear operator ϕ2.

Last, we discuss how the maximum length n of polynomials is bound by the size

of Ω and the underlying field F2m . From Prop. 2, |Ω| = Ordϕ2(Σ) · |Σ| = m · |Σ|.

Since the maximum

|Σ| = |Wm
2
−1| = 2

m
2
−1 for l < m/2

in Eq. 7.3, the maximum

|Ω| = m · 2
m
2
−1 =

m

2
· 2m/2 .

105

doi:10.6342/NTU201801305

Therefore, given a particular field F2m and the specific cross-section Σ, the maximum

supported length of polynomials is

n ≤ m

2
· 2m/2 .

7.3.2 Truncated Additive FFT

In this section, we show how to evaluate a polynomial a(x) ∈ F2[x]<n at Σ, i.e.,

performing EΣ with the additive FFT.

To perform EΣ, we simply call the addFFT(Algo. 9) with two inputs a(x) and

α = vl+m/2. However, since we presume the degree of a(x) is n − 1, the addFFT

outputs the values of a(x) at vl+m/2 +Wℓn , containing n points, instead of Σ of np

points. Since the Σ is a subset of vl+m/2 + Wℓn , the desired values of a(x) at Σ

is a subset of outputs. Hence, we can collect the desired values from the outputs

of the addFFT. For more efficiency, however, we have to truncate the undesired

computations as well in the addFFT — the so-called truncated FFT. Among the two

main components of the addFFT, the computations in BasisCvt are indispensable

since it converts the basis of the polynomial a(x). Hence, we seek the Butterfly

for the possible savings.

Figure 7.1: An example of truncated Butterfly.

g0 //

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

+ //

��
..
..
..
..
..
..
..
..

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

+ //

��
==

==
==

==

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f(0 + α)

g1 // + //

��
//
//
//
//
//
//
//
/ •

×s0(α)���

AA����

// + // f(1 + α)

g2 // •

×s1(α)
����

HH�����������

// + // •

g3 // •

×s1(α)
����

GG����������

// + // •

Half contents are truncated in a butterfly network after the first layer.

Figure 7.1 shows an example of the truncated Butterfly for evaluating a

degree-3 polynomial f(x) = g0 + g1X1 + g2X2 + g3X3 at 2 points {α, α+ 1}. There

106

doi:10.6342/NTU201801305

are two layers(recursions) of butterflies in the computation of Butterfly. We can

truncate the half contents after the first layer since only 2 values are required.

Similar to the example, to perform EΣ, we pretend to evaluate a(x) at a larger

set vl+m/2 +Wℓn with the Butterfly. However, after ℓm layers of butterflies, the

computations for the values at Σ aggregates to the first n/m parts of the following

layers, and we can thus truncate the rest.

Last, we note that vl+m/2 + Wℓn ̸= Ω although the size of the two sets is the

same.

7.3.3 Encoding: the First ℓm Layers of the Truncated Butterfly

In this section, we show how to perform the ℓm layers of the truncated Butterfly

with a linear transformation.

After performing the first ℓm layers of the Butterfly in EΣ, the temporary re-

sults will expand by m times because the inputs are 1-bit data and the multiplication

constants in butterflies are m-bits elements of F2m . However, since we truncate the

temporary results to the factor of 1/m, the space requirement remains unchanged

after the data truncation. Hence, we design a process, the Encodem
1, to prevent

the data expansion while performing the first ℓm layers of butterflies.

Before defining the Encodem, we can show some intuitions of the Encodem

through an example. Figure 7.2 illustrates the the computations of the first tempo-

rary result for 2 layers of the Butterfly. The Butterfly evaluates a polynomial

a(X) = a0 + a1X1 + · · ·+ an−1Xn−1 ∈ F2[x]<n at the set vl+m/2 +Wℓn . We can see

the first temporary value f0 is a linear combination of 4 particular bits in inputs

f0 = a0 + sl+1(vl+m/2) · anp + sl+2(vl+m/2) · a2·np + sl+1(vl+m/2) · sl+2(vl+m/2) · a3·np

= a0 + vm/2−1 · anp + vm/2−2 · a2·np + vm/2−1 · vm/2−2 · a3·np .

1and its reverse process, the Decodem.

107

doi:10.6342/NTU201801305

Figure 7.2: An example for the first temporary result of 2-layers butterflies

a0·np ∈ {0, 1} // + //

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

+ //

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f0 ∈ F2m

a1·np ∈ {0, 1} // + //

×vm/2−1
��

BB�����

a2·np ∈ {0, 1}

×vm/2−2
����

BB�������������

a3·np ∈ {0, 1}

×vm/2−2
����

BB�������������

The multiplication constants in the butterflies are sl+2(vl+m/2) = vm/2−2 and
sl+1(vl+m/2) = vm/2−1 for the first and second layers respectively.

The scalars are 1, vm/2−1, vm/2−2, and vm/2−1 · vm/2−2 for a0, anp , a2·np , and a3·np re-

spectively. As for the storage space, if m = 4, we have f0 ∈ F24 requiring 4-bits

storage which equals to the storage of its 4 contributors (a0, anp , a2·np , a3·np).

We can generalize the example to the case of ℓm layers. For the first ℓm layers,

the multiplication constants in the butterflies are the evaluation of (sl+ℓm , . . . , sl+1)

at the same point vl+m/2. By Eq. (6.3), we can list the constants in reverse order of

layers as

(sl+1(vl+m/2), . . . , sl+ℓm(vl+m/2)) = (vm/2−1, . . . , vm/2−ℓm) .

We note that the constants are independent of the size of inputs n. In other words,

for a given m, the constants are always (vm/2−ℓm , . . . , vm/2−1) with respect to con-

secutive layers of butterflies.

We can further analyze the multiplication constants for distinct inputs. The

constants for j-th input is

rj =
ℓm−1∏
k=0

(vm/2−1−k)
jk , for j = j0 + j1 · 2 + · · ·+ jℓm−1 · 2ℓm−1 . (7.7)

Hence, we define the Encodem to be the linear map for the first ℓm layers of the

108

doi:10.6342/NTU201801305

truncated Butterfly as

Encodem :

 F2[x]<n → F2m [x]<np

a(X) 7→ f(X) = f0 + · · ·+ fnp−1Xnp−1 ,
(7.8)

where

fi =
m−1∑
j=0

rj · aj·np+i =

[
r0 ∈ Fm

2 , r1 ∈ Fm
2 , . . . , rm−1 ∈ Fm

2

]
·

a0·np+i

a1·np+i

...

a(m−1)·np+i

is a linear combination of inputs (a0·np+i, . . . , a(m−1)·np+i) with the constants (r0, . . . , rm−1).

We can calculate the linear combination in a form of m×m matrix-vector product

with the algorithm in Sec. 2.4.2.

The details of the Encodem is listed in Algo. 10.

Algorithm 10: The Encodem algorithm
1 Encodem(a(X)) :

input : a(X) = a0 + a1X1 + · · ·+ an−1Xn−1 ∈ F2[x]<n .
output: f(X) = f0 + · · ·+ fnp−1Xnp−1 ∈ F2m [x]<np where np = n/m.

2 for i ∈ {0, . . . , np − 1} do
3 Collect (ai+0·np , ai+1·np , . . . , ai+(m−1)·np).
4 Compute fi ←

∑m−1
j=0 rj · aj·np+i ,where rj is defined in Eq. (7.7) .

5 end
6 return (f0, f1, . . . , fnp−1) .

7.3.4 Multiplying Boolean polynomials

In this section, we sum up the processes for multiplying Boolean polynomials. Al-

gorithm 11 lists the details for multiplying Boolean polynomials. It is basically the

general multiplication in Sec. 7.2 with a modified addFFT comprising a BasisCvt,

an Encodem, and a Butterfly.

The modified addFFT process performs EΣ for the input polynomials. To eval-

uate a polynomial a(x) ∈ F2[x]<n at np points Σ in F2m , we first perform the

109

doi:10.6342/NTU201801305

Algorithm 11: The multiplication of Boolean polynomials
1 Polymul (a(x), b(x)) :

input : a(x) = a0 + · · ·+ an/2−1x
n/2−1 ∈ F2[x]<n/2 .

b(x) = b0 + · · ·+ bn/2−1x
n/2−1 ∈ F2[x]<n/2 .

output: c(x) = a(x) · b(x) = c0 + · · ·+ cn−1x
n−1 ∈ F2[x]<n

2 Compute a(X) ∈ F2[x]<n/2 ← BasisCvt(a(x)).
3 Compute f(X) ∈ F2m [x]<np ← Encodem(a(X)).
4 Compute [â1, . . . , ânp] ∈ Fnp

2m ← Butterfly(f(X), vl+m/2).
5 Compute b(X) ∈ F2[x]<n/2 ← BasisCvt(b(x)).
6 Compute g(X) ∈ F2m [x]<np ← Encodem(b(X)).
7 Compute [b̂1, . . . , b̂np] ∈ Fnp

2m ← Butterfly(g(X), vl+m/2).
8 Compute ĉ = [ĉ1 ← â1 · b̂1, . . . , ĉnp ← ânp · b̂np].
9 Compute h(X) ∈ F2m [x]<np ← iButterfly(ĉ, vl+m/2).

10 Compute c(X) ∈ F2[x]<n ← Decodem(h(X)).
11 Compute c(x) ∈ F2[x]<n ← iBasisCvt(c(X)).
12 return c(x).

BasisCvt for converting a(x) to a(X) in novelpoly basis. Then we treat each coef-

ficient of a(X) as an element in F2m and pretend to perform a virtual Butterfly at

points vl+m/2+Vℓn . The Encodem process performs the first ℓm layers of the virtual

Butterfly and truncates temporary results to the first 1/m fraction. We start

a real Butterfly on the outputs of the Encodem. The Butterfly evaluates a

polynomial in F2m [x]<np at Σ.

7.4 The Implementation and Benchmarks

7.4.1 The Implementation

In this section, we describe the implementation of the Polymul(Algo. 11).

The Butterfly and the BasisCvt

The implementations of the Butterfly and BasisCvt are similar with Sec. 6.4

except the underlying fields. In this chapter, we choose the width of fields m to

be 64 and 128 for supporting the products of 232- and 264-bits polynomials. The

corresponding fields are represented as F264 := F2[x]/ (x
64 + x4 + x3 + x+ 1) and

110

doi:10.6342/NTU201801305

F2128 := F2[x]/ (x
128 + x7 + x2 + x+ 1) respectively, and the multiplications are im-

plemented with the PCLMULQDQ instructions in Algo. 3 and 4 in Sec. 3.4.

Since the working fields are in different representations from the Cantor basis, we

have to perform the field isomorphism for converting the constants from the Cantor

basis to the values in the desired representations of the F264 and F2128 . Following

the technique in Sec. 6.4.1, we also use the method of the difference of constants in

the Butterfly to accelerate the computation of the field isomorphism.

The implementation of the BasisCvt is the same as Sec. 6.4.2. We note that

the conversion manipulates the bit-level data. Hence, after the BasisCvt, the data

are in a bit-sliced form which accelerates the data collection in the implementation

of the Encodem.

Implementing the Encodem

The two central operations of the Encodem are to (1) collect the coefficients of

inputs (aj·np+i)j=0,...,m−1 and (2) compute fi ←
∑m−1

j=0 rj · aj·np+i.

For collecting the m-bits inputs (aj·np+i)j=0,...,m−1 efficiently on computers, we

fetch m machine words of length w-bits instead of m separated bits. The component

aj·np+i, for example, locates in the i-th bit of the j-th word. With an m×w matrix

transpose, we can collect the inputs(Line 3) for w continuous indexes of the loop.

The matrix transpose are implemented with the method in Sec. 2.4.1.

For computing coefficients fi ∈ F2m at Line 4 in Algo. 10, the SIMD matrix-

vector multiplication in Sec. 2.4.2 are applied to parallelize the processes.

7.4.2 Benchmarks

We benchmark our software2 with experiments on multiplying random Boolean poly-

nomials for various lengths. Although the software is actually a constant-time im-

plementation, i.e., the running time is independent of input data, we report the

average time of 100 executions. The experiments are performed on the Intel Haswell

2 The software is in https://github.com/fast-crypto-lab/bitpolymul2 .

111

https://github.com/fast-crypto-lab/bitpolymul2

doi:10.6342/NTU201801305

architecture, which is our targeting platform. Our hardware is Intel Xeon E3-1245

v3 @3.40GHz with turbo boost disabled and 32 GB DDR3@1600MHz memory. The

OS is ubuntu version 1604, Linux version 4.4.0-78-generic and the compiler is gcc:

5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1 16.04.4).

Figure 7.3: Benchmarks of multiplications in F2[x] on Intel Xeon E3-1245 v3 @
3.40GHz

18 19 20 21 22 23

102

103

104

Degree of Polynomials [log2(n/64)]

C
om

pu
ta

ti
on

ti
m

e
[1
0−

3
se

co
nd

] This work, FC-addFFT-F264

FC-DFT-F260 [vdHLL17]
KS-addFFT-F̃2256 [CCK+17]

KS-DFT-F260 [HvdHL16]

Figure 7.3 shows the results of our experiments and the comparisons with previ-

ous implementations. The figure shows the running time verse degree of polynomials

both in logarithm scales. The “FC” and “KS” stands for Frobenius cross-section and

Kronecker substitution respectively. More details about the results can be found in

Tab. 7.1.

The result shows that our implementations outperform all previous implementa-

tions. Among our implementations, the version of F264 is faster than F2128 for more

efficient multiplications over underlying fields. However, the version of F2128 sup-

ports polynomials of higher degree. From the figure, we can see the same tendency

among all data. It suggests that these algorithms work roughly in the same com-

plexity level while our implementation, however, works with lowest hidden constant.

We can also see the straight lines for additive FFT based algorithms, but the line

turns slightly for the multiplicative algorithms. It is caused from that polynomials

112

doi:10.6342/NTU201801305

Table 7.1: Benchmarks of multiplications in F2[x] on Intel Xeon E3-1245
v3 @ 3.40GHz (10−3 sec.)
log2 n/64 16 17 18 19 20 21 22 23
This work, F264

a 12 25 52 109 245 540 1147 2420
This work, F2128

a 13 28 58 123 273 589 1248 2641
DFT, F260 [vdHLL17] b 15 32 72 165 311 724 1280 3397

KS-F̃2256 [CCK+17] c 20 41 93 216 465 987 2054 4297
KS-F2128 [CCK+17] c 25 53 115 252 533 1147 2415 5115
KS-F260 [HvdHL16] d 29 64 148 279 668 1160 3142 7040
gf2x [BGTZ08] e 26 59 123 285 586 1371 3653 7364
a Version 1656d5e. https://github.com/fast-crypto-lab/
bitpolymul2

b SVN r10681. Available from svn://scm.gforge.inria.fr/svn/mmx
c Version c13769d. https://github.com/fast-crypto-lab/
bitpolymul

d SVN r10663. Available from svn://scm.gforge.inria.fr/svn/mmx
e Version 1.2. Available from http://gf2x.gforge.inria.fr/

The implementations in upper table base on Frobenius cross-sections and the lower
implementations are with Kronecker substitution.

with terms of 2 powers are not optimal for particular sizes of multiplicative groups.

Lastly, from the values in the table, we can see the FP implementations lead KS

implementations about the factor of two, which is consistent with the conclusion

of [vdHLL17].

7.5 Summary

We have shown the new algorithm for multiplying Boolean polynomials of high de-

gree as well as its implementation with SIMD instructions. The new algorithm is

based on evaluating polynomials at the Frobenius cross-section Σ = vl+m/2 + Wl

with the truncated additive FFT. This form of the cross-section fits the additive

FFT particularly well. A new process Encodem accelerates the Butterfly by

performing the ℓm layers of butterflies as matrix-vector multiplications and truncat-

ing the undesired results for the Butterfly.

For implementing the algorithm, we use the efficient memory access models

for the Butterfly and the BasisCvt and the SIMD implementation of the

113

https://github.com/fast-crypto-lab/bitpolymul2
https://github.com/fast-crypto-lab/bitpolymul2
svn://scm.gforge.inria.fr/svn/mmx
https://github.com/fast-crypto-lab/bitpolymul
https://github.com/fast-crypto-lab/bitpolymul
svn://scm.gforge.inria.fr/svn/mmx
http://gf2x.gforge.inria.fr/

doi:10.6342/NTU201801305

critical components(e.g., bit-matrix transpose and bit-matrix multiplication in the

Encodem). The multiplication in underlying fields is also designed to utilize the

PCLMULQDQ instruction. At last, the experiments show our software outperforms

all previous implementations to the best of our knowledge.

114

doi:10.6342/NTU201801305

Bibliography

[ABH10] Martin R. Albrecht, Gregory V. Bard, and William Hart. Algorithm

898: Efficient multiplication of dense matrices over GF(2). ACM Trans.

Math. Softw., 37(1):9:1–9:14, 2010.

[AH74] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of

Computer Algorithms. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1st edition, 1974.

[AJ86] Leonard M. Adleman and Hendrik W. Lenstra Jr. Finding irreducible

polynomials over finite fields. In Juris Hartmanis, editor, Proceedings

of the 18th Annual ACM Symposium on Theory of Computing, May

28-30, 1986, Berkeley, California, USA, pages 350–355. ACM, 1986.

[Anv11] H. Peter Anvin. The mathematics of RAID-6, 2011. http://kernel.

org/pub/linux/kernel/people/hpa/raid6.pdf.

[ASI08] A.A. Al-Shaikhi and J. Ilow. Packet loss recovery codes based on van-

dermonde matrices and shift operators. In Information Theory, 2008.

ISIT 2008. IEEE International Symposium on, pages 1058–1062, July

2008.

[BC14] Daniel J. Bernstein and Tung Chou. Faster binary-field multiplication

and faster binary-field macs. In Antoine Joux and Amr M. Youssef,

editors, Selected Areas in Cryptography - SAC 2014 - 21st Interna-

tional Conference, Montreal, QC, Canada, August 14-15, 2014, Revised

115

http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf
http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

doi:10.6342/NTU201801305

Selected Papers, volume 8781 of Lecture Notes in Computer Science,

pages 92–111. Springer, 2014.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits:

fast constant-time code-based cryptography. In Guido Bertoni

and Jean-Sébastian Coron, editors, Cryptographic Hardware and

Embedded Systems – CHES 2013, Lecture Notes in Computer

Science. Springer-Verlag Berlin Heidelberg, 2013. Document ID:

e801a97c500b3ac879d77bcecf054ce5, http://cryptojedi.org/

papers/#mcbits.

[BD08] Johannes Buchmann and Jintai Ding, editors. Post-Quantum Cryp-

tography, Second International Workshop, PQCrypto 2008, Cincinnati,

OH, USA, October 17-19, 2008, Proceedings, volume 5299 of Lecture

Notes in Computer Science. Springer, 2008.

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-

Yin Yang. High-speed high-security signatures. In Bart Preneel and

Tsuyoshi Takagi, editors, CHES, volume 6917 of Lecture Notes in Com-

puter Science, pages 124–142. Springer, 2011.

[Ber08] Daniel J Bernstein. Fast multiplication and its applications. Algorithmic

number theory, 44:325–384, 2008.

[BFSY05] M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic expan-

sion of the degree of regularity for semi-regular systems of equations. In

P. Gianni, editor, MEGA 2005 Sardinia (Italy), 2005.

[BGP06] Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A practical

stream cipher with provable security. In Serge Vaudenay, editor, EU-

ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages

109–128. Springer, 2006.

116

http://cryptojedi.org/papers/#mcbits
http://cryptojedi.org/papers/#mcbits

doi:10.6342/NTU201801305

[BGTZ08] Richard P Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zim-

mermann. Faster multiplication in gf (2)(x). Lecture Notes in Computer

Science, 5011:153–166, 2008.

[BL16] Daniel J. Bernstein and Tanja Lange. eBACS: Ecrypt benchmarking of

cryptographic systems. http://bench.cr.yp.to, July 2016. Ac-

cessed May 10, 2017.

[BM06] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks

against AES. In Louis Goubin and Mitsuru Matsui, editors, Crypto-

graphic Hardware and Embedded Systems - CHES 2006, 8th Interna-

tional Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings,

volume 4249 of Lecture Notes in Computer Science, pages 201–215.

Springer, 2006.

[Can89] David G. Cantor. On arithmetical algorithms over finite fields. J. Comb.

Theory Ser. A, 50(2):285–300, March 1989.

[CCC+08] Anna Inn-Tung Chen, Chia-Hsin Owen Chen, Ming-Shing Chen, Chen-

Mou Cheng, and Bo-Yin Yang. Practical-sized instances of multivariate

PKCs: Rainbow, TTS, and ℓIC-derivatives. In Buchmann and Ding

[BD08], pages 95–108.

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou

Cheng, Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-

Yin Yang. SSE implementation of multivariate PKCs on modern x86

CPUs. In CHES 2009, pages 33–48, Lausanne, Switzerland, September

2009.

[CCK+17] Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and

Bo-Yin Yang. Faster multiplication for long binary polynomials. CoRR,

abs/1708.09746, 2017.

117

http://bench.cr.yp.to

doi:10.6342/NTU201801305

[CJL+16] L. Chen, S. Jordan, Y.K. Liu, D. Moody, R. Peralta, R. Perlner, and

D. Smith-Tone. Report on post-quantum cryptography. https://

doi.org/10.6028/NIST.IR.8105, 2016.

[CK91] David G. Cantor and Erich Kaltofen. On fast multiplication of polyno-

mials over arbitrary algebras. Acta Informatica, 28:693–701, 1991.

[CKPS00] Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi

Shamir. Efficient algorithms for solving overdefined systems of mul-

tivariate polynomial equations. In Advances in Cryptology — EU-

ROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science,

pages 392–407. Bart Preneel, ed., Springer, 2000. Extended Version:

http://www.minrank.org/xlfull.pdf.

[CLP+18] Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Bo-Yin Yang, and

Chen-Mou Cheng. Implementing 128-bit secure MPKC signatures. IE-

ICE Transactions, 101-A(3):553–569, 2018.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd

edition, 2009.

[CYC13] Ming-Shing Chen, Bo-Yin Yang, and Chen-Mou Cheng. Raidq: A

software-friendly, multiple-parity raid. In Presented as part of the 5th

USENIX Workshop on Hot Topics in Storage and File Systems, Berke-

ley, CA, 2013. USENIX.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable poly-

nomial signature scheme. In Conference on Applied Cryptography and

Network Security — ACNS 2005, volume 3531 of Lecture Notes in Com-

puter Science, pages 164–175. Springer, 2005.

[DY08] Jintai Ding and Bo-Yin Yang. Multivariate public key cryptography.

In Post Quantum Cryptography (Daniel J. Bernstein, Johannes Buch-

118

https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8105
http://www.minrank.org/xlfull.pdf

doi:10.6342/NTU201801305

mann, Erik Dahmen, eds.), pages 193–241. Springer-Verlag Berlin, 1st

edition, 2008. ISBN 3-540-88701-6.

[DYC+08] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing

Chen, and Chen-Mou Cheng. New differential-algebraic attacks and

reparametrization of rainbow. In Applied Cryptography and Network

Security, volume 5037 of Lecture Notes in Computer Science, pages 242–

257. Springer, 2008. cf. http://eprint.iacr.org/2008/108.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner

bases without reduction to zero (F5). In International Symposium on

Symbolic and Algebraic Computation — ISSAC 2002, pages 75–83.

ACM Press, July 2002.

[GG13] Joachim von zur Gathen and Jrgen Gerhard. Modern Computer Al-

gebra. Cambridge University Press, New York, NY, USA, 3rd edition,

2013.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability

— A Guide to the Theory of NP-Completeness. W.H. Freeman and

Company, 1979. ISBN 0-7167-1044-7 or 0-7167-1045-5.

[GK14] Shay Gueron and Michael E. Kounavis. Intel(r) carry-less multiplica-

tion instruction and its usage for computing the gcm mode(rev.2.02),

April 2014. https://software.intel.com/sites/default/

files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.

pdf.

[GM10] Shuhong Gao and Todd D. Mateer. Additive fast fourier transforms over

finite fields. IEEE Trans. Information Theory, 56(12):6265–6272, 2010.

[GRU14] S.M. Gunther, M. Riemensberger, and W. Utschick. Efficient gf arith-

metic for linear network coding using hardware simd extensions. In

119

http://eprint.iacr.org/2008/108
https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf

doi:10.6342/NTU201801305

Network Coding (NetCod), 2014 International Symposium on, pages

1–6, June 2014.

[HvdHL16] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Fast polyno-

mial multiplication over F260 . In Sergei A. Abramov, Eugene V. Zima,

and Xiao-Shan Gao, editors, Proceedings of the ACM on International

Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Wa-

terloo, ON, Canada, July 19-22, 2016, pages 255–262. ACM, 2016.

[HvdHL17] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Faster poly-

nomial multiplication over finite fields. J. ACM, 63(6):52:1–52:23, 2017.

[Int15] Intel. Intel architecture instruction set extensions programming ref-

erence, August 2015. https://software.intel.com/sites/

default/files/managed/07/b7/319433-023.pdf.

[LANH16] Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. Fft

algorithm for binary extension finite fields and its application to reed–

solomon codes. IEEE Trans. Inf. Theor., 62(10):5343–5358, October

2016.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. Novel poly-

nomial basis and its application to reed-solomon erasure codes. In 55th

IEEE Annual Symposium on Foundations of Computer Science, FOCS

2014, Philadelphia, PA, USA, October 18-21, 2014, pages 316–325. IEEE

Computer Society, 2014.

[LCK+18] Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and

Bo-Yin Yang. Frobenius additive fast fourier transform. In Manuel

Kauers, Alexey Ovchinnikov, and Éric Schost, editors, Proceedings of

the 2018 ACM on International Symposium on Symbolic and Algebraic

Computation, ISSAC 2018, New York, NY, USA, July 16-19, 2018,

pages 263–270. ACM, 2018.

120

https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf

doi:10.6342/NTU201801305

[LF04] Jérome Lacan and Jérome Fimes. Systematic mds erasure codes based

on vandermonde matrices. IEEE Communications Letters, 8(9):570–

572, 2004.

[LK16] Daniel Lemire and Owen Kaser. Faster 64-bit universal hashing using

carry-less multiplications. J. Cryptographic Engineering, 6(3):171–185,

2016.

[LLY08] Feng-Hao Michael Liu, Chi-Jen Lu, and Bo-Yin Yang. Secure PRNGs

from specialized polynomial maps over any GF(q). In Buchmann and

Ding [BD08], pages 95–106.

[LN86] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and

Their Applications. Cambridge University Press, New York, NY, USA,

1986.

[Nat01] National Institute of Standards and Technology. Announcing the

advanced encryption standard (aes), 2001. federal information pro-

cessing standards publication 197. http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf, 2001.

[oST16] National Institute of Standards and Technology. Submission re-

quirements and evaluation criteria for the post-quantum cryp-

tography standardization process, 2016. http://csrc.nist.

gov/groups/ST/post-quantum-crypto/documents/

call-for-proposals-final-dec-2016.pdf.

[PBB10] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Select-

ing parameters for the rainbow signature scheme. In Nicolas Sendrier,

editor, PQCrypto, volume 6061 of Lecture Notes in Computer Science,

pages 218–240. Springer, 2010.

121

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

doi:10.6342/NTU201801305

[PD05] James S. Plank and Ying Ding. Note: Correction to the 1997 tutorial on

Reed-Solomon coding. Software: Practice and Experience, 35(2):189–

194, February 2005.

[PGM13] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois

Field arithmetic using Intel SIMD instructions. In FAST 2013, San Jose,

CA, USA, February 2013.

[Pla97] James S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance

in RAID-like systems. Software: Practice and Experience, 27(9):995–

1012, September 1997.

[Riz97] Luigi Rizzo. Effective erasure codes for reliable computer communica-

tion protocols. SIGCOMM Comput. Commun. Rev., 27(2):24–36, April

1997.

[Sch77] Arnold Schönhage. Schnelle multiplikation von polynomen über körpern

der charakteristik 2. Acta Informatica, 7(4):395–398, 1977.

[Sch11] Peter Schwabe. High-Speed Cryptography and Cryptanalysis. PhD the-

sis, Eindhoven University of Technology, 2011. http://cryptojedi.

org/users/peter/thesis/.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM Journal on Com-

puting, 26(5):1484–1509, October 1997.

[vdHL17] Joris van der Hoeven and Robin Larrieu. The frobenius FFT. In

Michael A. Burr, Chee K. Yap, and Mohab Safey El Din, editors, Pro-

ceedings of the 2017 ACM on International Symposium on Symbolic and

Algebraic Computation, ISSAC 2017, Kaiserslautern, Germany, July 25-

28, 2017, pages 437–444. ACM, 2017.

[vdHLL17] Joris van der Hoeven, Robin Larrieu, and Grégoire Lecerf. Implement-

ing fast carryless multiplication. In Johannes Blömer, Ilias S. Kotsireas,

122

http://cryptojedi.org/users/peter/thesis/
http://cryptojedi.org/users/peter/thesis/

doi:10.6342/NTU201801305

Temur Kutsia, and Dimitris E. Simos, editors, Mathematical Aspects

of Computer and Information Sciences - 7th International Conference,

MACIS 2017, Vienna, Austria, November 15-17, 2017, Proceedings,

volume 10693 of Lecture Notes in Computer Science, pages 121–136.

Springer, 2017.

[War12] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd

edition, 2012.

[Wol04] Christopher Wolf. Efficient public key generation for HFE and vari-

ations. In Ed Dawson and Wolfgang Klemm, editors, Cryptographic

Algorithms and their Uses - 2004, International Workshop, Gold Coast,

Australia, July 5-6, 2004, Proceedings, pages 78–93. Queensland Uni-

versity of Technology, 2004.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. Building secure tame-like multivari-

ate public-key cryptosystems: The new TTS. In ACISP 2005, volume

3574 of Lecture Notes in Computer Science, pages 518–531. Springer,

July 2005.

[YCBC07] Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bernstein, and Jiun-

Ming Chen. Analysis of QUAD. In Alex Biryukov, editor, FSE, volume

4593 of Lecture Notes in Computer Science, pages 290–307. Springer,

2007.

[YCC04] Bo-Yin Yang, Jiun-Ming Chen, and Nicolas Courtois. On asymptotic

security estimates in XL and Gröbner bases-related algebraic cryptanal-

ysis. In ICICS 2004, volume 3269 of Lecture Notes in Computer Science,

pages 401–413. Springer, Oct. 2004.

123

