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摘要

解多變量系統的問題在許多領域，包含代數攻擊和多變量密碼學，都具有重要

的地位。然而，現存的演算法如 F4/F5和 XL 雖然對於具有某些特性的系統效果

特別顯著，但在面對一般的系統時，通常都無法有效率地解決問題，甚至會帶來

嚴重的記憶體匱乏的問題。

基於上述的理由，我們便開始尋求另一個適合一般系統的解決方案，也就是窮

舉搜尋 (exhaustive search) 的方式。在這篇論文中，我們提出並深入研究了一個

窮舉搜尋的演算法 GGCE (generalized Gray code enumeration)，用以解佈於二元

體的多項式系統。這個演算法不僅相當易於平行化，對於解低次數的系統也有非

常好的表現。對於這個演算法理論上的效能和記憶體需求等重要議題，在之後也

會有深入的分析。

以實際面而言，我們將 GGCE 實作於顯示卡及 CPU 上。經過適當的最佳化

之後，我們發現 GGCE 不僅在理論上相當有效率，實際的表現甚至遠勝過現有的

演算法。換句話說，在面對一般系統時，窮舉搜尋可能是最好的解法。

簡而言之，我們提出了一個不同於以往的策略來解多變量系統。GGCE 證明

了窮舉搜尋本身的強大能力，對於需要解多變量系統的眾多領域，勢必也會產生

相當的影響。

關鍵字: 顯示卡、代數攻擊、多變量密碼學、窮舉搜尋、平行化。



Abstract

Solving multivariate polynomial systems over finite fields is a problem of fundamen-

tal importance in algebraic cryptanalysis and multivariate cryptography. Existing

Gröbner-basis solvers such as F4/F5 and XL (eXtended Linearization) have been

well studied and proved to be powerful against modern cryptosystems such as HFE.

However, these solvers are useful only for systems with algebraic defects or ex-

cessively overdetermined systems. For generic systems, their run time can be quite

substantial, not to mention the immense memory pressure. Moreover, study of ex-

haustive search algorithms seems to be a missing link in this field. These have

aroused our curiosity and resulted in this work.

In this thesis, we propose and investigate an exhaustive-search algorithm and

several variants of it intended to solve generic polynomial systems over F2, the field

consisting of two elements. The algorithm is easy to parallelize and works especially

well for low-degree systems, the reasons for which shall be clear after we analyze the

complexity-theoretical performance, memory consumption, and impact of several

adjustable parameters later in this thesis.

On the practical side, we have implemented our algorithm, along with several

efficiency-enhancing optimizations, for quadratic, cubic, and quartic systems on pre-

vailing GPUs and CPUs using the CUDA framework and SSE2 intrinsics, respec-

tively. Even though the implementation may leave certain room for improvement

(for they are not implemented in assembly code), they have outperformed all ex-

isting implementations of Gröbner-basis solvers to which we have access, a clear

demonstration of the practicability of our algorithm.

Today, we can solve 48 quadratic equations in 48 binary variables with just an

NVIDIA GeForce GTX 295 graphics card in 21 minutes. It would be 36 minutes for

cubic equations and 126 minutes for quartics. In contrast, the implementation of F4

in MAGMA-2.15-5, often cited as the best Gröbner-basis solver available today, would



run out of memory on a system with 25 F2-variables in as many cubic equations.

While it succeeds in solving 20 cubic equations in 20 F2-variables, it takes about 2.5

hours to finish. Either system can be solved by the proposed enumerative solver in

less than a second.

Keywords: algebraic cryptanalysis, multivariate cryptography, multivariate poly-

nomials, solving systems of equations, exhaustive search, parallelization, CUDA,

Graphic Processing Units (GPUs).
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Chapter 1

Introduction

1.1 Motivation

Solving a system of m nonlinear equations in n variables over Fq is an important

problem in cryptography and many other fields [2]. Because the problem is NP-

complete, it has been used to design asymmetric cryptographic primitives that col-

lectively are known as multivariate cryptography. During the past few decades,

this relatively young branch of cryptography has flourished, resulting in public-key

cryptosystems such as HFE, SFLASH, and QUARTZ [15, 23, 24], as well as stream

ciphers such as QUAD [7].

Another important direct application of system solving is algebraic cryptanalysis,

a class of attacks against ciphers by converting the problem of breaking a cipher into

an equivalent problem of solving a polynomial system. The importance of algebraic

cryptanalysis resides in it generality: it has been used to attack a reduced-round

DES [3] and block ciphers such as Keeloq [14]. It has also lead to a faster collision

attack on 58 rounds of SHA-1 [27].

The problem, not surprisingly, has been long studied, and the most renowned

solvers might be F4/F5 [18, 19]. These solvers, being the most advanced among

Gröbner-basis solvers, broke the first HFE challenge [20]. Another notable solver

is the XL algorithm [16] and its variants, which are simpler than F4/F5 but are

expected to work well asymptotically due to the manipulation of sparse matrices
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instead [1].

For “generic” quadratic systems, experts believe that Gröbner-basis methods will

go up to degree D0 and then require the solution of a system of linear equations with

T �
(

n
D0−1

)
variables, which will take at least poly(n) · T 2 bit-operations [5,28]. For

example, if we assume we can operate a Wiedemann solver on a T × T submatrix

of an extended Macaulay matrix of the original system, then the polynomial is

3n(n − 1)/2. When m = n = 200, D0 is 25, making the value of T exceeds 2102,

while a basic version of our algorithm takes only m2n+1 bit operations. Even taking

into consideration guessing before solving [9,29], we can still easily conclude that it

would be impossible for Gröbner-basis methods to outperform exhaustive search in

the practically interesting range of m = n ≤ 200.

Knowing that existing solvers, though well studied, are not suitable for generic

systems, naturally we would like to know the capabilities of exhaustive search solvers,

a desolate area in the field. Is it possible to find more efficient exhaustive search

algorithms? What is the best time complexity, though expected to be at least

exponential, they can achieve? Can an exhaustive search solver be comparative to,

or even outperform the best among the existing solvers? All these are questions to

which we eager to know the answers.

As exhaustive search algorithms are usually highly parallelizable, the trend in

parallel computing also motivates our work. Considering that CPU’s clock rate

is limited by critical issues like heat dissipation, the latest pursuits after faster

computers have been taking a different route in semiconductor industry. In recent

years, a series of multi-core processors like dual-cores and quad-cores have been

released and soon become the mainstream. Moreover, thanks to the well-known

series of Streaming SIMD Extensions (SSE), CPUs are capable of processing even

more data simultaneously.

In addition to CPUs, GPUs are an extreme of hardware dedicated for parallel

computing. With several hundreds of “cores,” GPUs can achieve extremely high

thread-level parallelism (TLP), resulting in potent computational power that often
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outperforms that of CPUs by a factor of ten or more. Emergence of programming

frameworks, such as NVIDIA’s CUDA, that allow people to harness such compu-

tation power has gained GPUs more and more popularity as an implementation

platform in past few years.

In this thesis, we will show how we build a fast exhaustive search algorithm

intended for solving generic nonlinear multivariate systems from a theoretical per-

spective. We will also show how we design and implement a parallel program capable

of exploiting the computation power of modern GPUs and CPUs from an implemen-

tation perspective.

1.2 Problem Statement

The problem we deal with can be formally defined as follows.

Problem Solve f (0)(x) = f (1)(x) = · · · = f (m−1)(x) = 0, where each f (i) is a

polynomial of degree d in x = (x0, . . . , xn−1). All coefficients and variables are

in F2.

When d = 2, this problem is usually abbreviated asMQ (multivariate quadratic),

which is proved to be NP-complete.

1.3 Contributions

Our contribution is twofold. On the theoretical side, we present an exhaustive

search algorithm which is both asymptotically and practically faster than existing

techniques. If we ignore the (usually negligible) cost for initialization, finding all

zeroes of a single degree-d polynomial in n variables requires O(d ·2n) bit operations.
We can extend it and find the common zeroes of arbitrary number of degree-d

polynomials in O((d2 + 2d+ 2) · 2n) bit operations.
Our algorithm also possesses many other advantages. For one, it can be eas-

ily parallelized with negligible cost, which means it is quite suitable for hardware
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platforms dedicated for parallel computing such as GPUs. Also, the time complex-

ity grows linearly as the degree d increases. All these are strong advantages over

Gröbner-basis methods.

On the practical side, we have implemented our algorithms on x86 CPUs and

on NVIDIA GPUs. While our CPU implementation is fairly optimized using SIMD

instructions, our GPU implementation running on one single NVIDIA GeForce GTX

295 graphics card runs up to nine times faster than the CPU implementation using all

the cores of an Intel quad-code Core i7, one of the fastest CPUs currently available.

Today, we can solve 48+ quadratic equations in 48 binary variables using just an

NVIDIA GeForce GTX 295 graphics card in 21 minutes, a device currently available

for about 500 USD. It would be 36 minutes for cubic equations and two hours for

quartics. The 64-bit Dragon signature challenge [22] can thus be broken with 10

such cards in 3 months, using a budget of 5000 USD. Even taking into account

Moore’s law, this is still quite an achievement.

In contrast, the implementation of F4 in MAGMA-2.15-5, often cited as the best

Gröbner-basis solver available today, requires more than 64 GB of memory to solve

25 cubic equations in as many F2-variables. When it does not run out of memory,

it requires 2.5 hours to solve 20 cubic equations in 20 variables on one Opteron

core running at 2.2 GHz, half an hour for 45 quadratic equations with 30 variables,

or 7 minutes for 60 quadratic equations with 30 variables. Each of the above are

solved in less than a second using negligible memory via our implementation of the

exhaustive search algorithm on the same CPU.
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Chapter 2

Gray Code Enumeration and

Partial Evaluation

2.1 Notational Conventions

Our goal is to solve a polynomial system f = (f (0), . . . , f (m−1)) of the form described

in section 1.2. We will use C
(j)
β1,β2,...,βk

to denote the coefficient of the monomial

xβ1xβ2 · · · xβk
of f (j) (we use C(j) for the constant term), where 0 ≤ β1 < β2 < · · · <

βk < n since any xα
β where α ≥ 1 can be reduced to xi in F2. When the superscript

is omitted, it stands for a vector of coefficients, i.e., C∗ = (C
(0)
∗ , . . . ,C

(m−1)
∗ ).

2.2 Gray Code

A k-bit Gray code is a special ordering of the binary numbers ranging from 0 to

2k − 1 such that the Hamming distance between any two successive numbers is

exactly 1. Such a code is not unique, and the one we use is known as the binary-

reflected Gray code (BRGC). Table 2.1 shows a list of 5-bit codewords along with

their corresponding indices, where the bi columns will be explained in the following

definition.

Definition 1. Let i be an nonnegative integer written in binary expansion (usually

an index of Gray code), then bk(i) is defined as the index of the k-th least significant
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nonzero bit in i. If the Hamming weight of i is less than k, bk(i) is defined as -1.

We use gi to denote the equivalent vector form of the codeword corresponding

to the index i. Note that g0 = 0 is always true for BRGC. Thus, gi can be defined

recursively by the following equation for every i > 0:

gi+1 = gi + eb1(i+1), (2.1)

where ej is a binary vector consisting of all zeros except in the j-th position.

Another way to define the codewords is to convert directly from an index to

its corresponding codeword. Let c = gi, then each bit of c can be derived from i

according to the following equation:

ck = ik xor ik+1, (2.2)

where the subscripts stand for bit indices.

Table 2.1: 5-bit Gray Code with Index and Enumeration Actions

index code b1 b2 b3 b4 actions(quadratic) actions(quartic)

00000 00000 -1 -1 -1 -1

00001 00001 0 -1 -1 -1 δ += δ0 δ += δ0
00010 00011 1 -1 -1 -1 δ += δ1 δ += δ1
00011 00010 0 1 -1 -1 δ += (δ0 += C0,1) δ += (δ0 += δ0,1)
00100 00110 2 -1 -1 -1 δ += δ2 δ += δ2
00101 00111 0 2 -1 -1 δ += (δ0 += C0,2) δ += (δ0 += δ0,2)
00110 00101 1 2 -1 -1 δ += (δ1 += C1,2) δ += (δ1 += δ1,2)
00111 00100 0 1 2 -1 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += δ0,1,2))
01000 01100 3 -1 -1 -1 δ += δ3 δ += δ3
01001 01101 0 3 -1 -1 δ += (δ0 += C0,3) δ += (δ0 += δ0,3)
01010 01111 1 3 -1 -1 δ += (δ1 += C1,3) δ += (δ1 += δ1,3)
01011 01110 0 1 3 -1 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += δ0,1,3))
01100 01010 2 3 -1 -1 δ += (δ2 += C2,3) δ += (δ2 += δ2,3)
01101 01011 0 2 3 -1 δ += (δ0 += C0,2) δ += (δ0 += (δ0,2 += δ0,2,3))
01110 01001 1 2 3 -1 δ += (δ1 += C1,2) δ += (δ1 += (δ1,2 += δ1,2,3))
01111 01000 0 1 2 3 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,2 += C0,1,2,3)))

10000 11000 4 -1 -1 -1 δ += δ4 δ += δ4
10001 11001 0 4 -1 -1 δ += (δ0 += C0,4) δ += (δ0 += δ0,4)
10010 11011 1 4 -1 -1 δ += (δ1 += C1,4) δ += (δ1 += δ1,4)
10011 11010 0 1 4 -1 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += δ0,1,4))
10100 11110 2 4 -1 -1 δ += (δ2 += C2,4) δ += (δ2 += δ2,4)
10101 11111 0 2 4 -1 δ += (δ0 += C0,2) δ += (δ0 += (δ0,2 += δ0,2,4))
10110 11101 1 2 4 -1 δ += (δ1 += C1,2) δ += (δ1 += (δ1,2 += δ1,2,4))
10111 11100 0 1 2 4 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,2 += C0,1,2,4)))

11000 10100 3 4 -1 -1 δ += (δ3 += C3,4) δ += (δ3 += δ3,4)
11001 10101 0 3 4 -1 δ += (δ0 += C0,3) δ += (δ0 += (δ0,3 += δ0,3,4))
11010 10111 1 3 4 -1 δ += (δ1 += C1,3) δ += (δ1 += (δ1,3 += δ1,3,4))
11011 10110 0 1 3 4 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,3 += C0,1,3,4)))

11100 10010 2 3 4 -1 δ += (δ2 += C2,3) δ += (δ2 += (δ2,3 += δ2,3,4))
11101 10011 0 2 3 4 δ += (δ0 += C0,2) δ += (δ0 += (δ0,2 += (δ0,2,3 += C0,2,3,4)))

11110 10001 1 2 3 4 δ += (δ1 += C1,2) δ += (δ1 += (δ1,2 += (δ1,2,3 += C1,2,3,4)))

11111 10000 0 1 2 3 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,2 += C0,1,2,3)))

xii



2.3 Näıve Evaluation

Let vi be the equivalent vector form of an integer i. The most näıve way to search

exhaustively is to evaluate f(vi) for i = 0, . . . , 2n − 1. Determining whether vi is

a valid solution can be easily done by checking whether f(vi) = 0 or not. The

pseudocode of this scheme is presented in Fig. 2.1.

An advantage of this scheme is that it takes little extra memory than storing

the coefficients. Since the coefficients can be stored in read-only memory, we may

define the required amount of storage in bits (per equation) to perform this scheme

by:

M
(ro)
Eval(n, d) =

d∑
i=0

(
n

i

)
(2.3)

where the superscript (ro) is short for “read-only.”

In contrast, each evaluation of f(vi) can be expensive in time complexity. If the

multivariate Horner’s rule is used to evaluate the function value at each vector, the

number of bit operations required (per equation) would be:

BEval Horner(n, d) = 2
d∑

i=1

(
n

i

)
. (2.4)

An alternative, theoretically optimal way would be summing up all Cβ1,...,βk
’s

with (vi)β1 = · · · = (vi)βk
= 1. Apparently, the bit operations (per equation)

required for this scheme depend on the Hamming weight of vi, which we denote as

h:

BEval Sum(h, d) =
d∑

i=0

(
h

i

)
. (2.5)

If vi follows a uniform distribution in F
n
2 , then the expected bit operations (per

equation) required would be:

BEval Sum Avg(n, d) =
d∑

i=0

(
n

i

)
2−i. (2.6)
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Thus, total bit operations (per equation) required in näıve evaluation would be:

BEval(n, d) =
d∑

i=0

(
n

i

)
2n−i. (2.7)

In summary, when d is a fixed constant, each evaluation of f(vi) should take

O(mnd) on average. The whole enumeration would thus require O(mnd2n) bit op-

erations.

Figure 2.1: Pseudocode of Näıve Evaluation

NäıveEval(f , n, d)
1: Sol ← ∅

2: for i from 0 to 2n − 1 do
3: δ ← f(vi)
4: if δ = 0 then
5: Sol ← Sol ∪ {vi}
6: end if
7: end for

8: return Sol

2.4 Basic Gray Code Enumeration

The following definition and proposition are important to the our discussion.

Definition 2. Let v,w be vectors over F2 (or equivalently integers written in binary

expansion) and f be a vector of multivariate polynomials over F2. Let S = {j |
f contains xj}, then v and w are said to be i-close (or simply close) w.r.t. f if i is

the only element in S such that vi �= wi. This definition can be extended to refer to

a sequence of vectors where any two successive vectors are close.

For instance, 101 and 110 are 1-close w.r.t. x1x2 + 1.

Proposition 1. Let f be a vector of multivariate polynomials over F2. Let v and

w be i-close w.r.t. f . Then f(v)− f(w) = ∂f
∂xi

(v) = ∂f
∂xi

(w).

Proof. f can be converted into the form f = ∂f
∂xi

xi + h. Since v and w are i-close

w.r.t. f , we have:
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f(v)− f(w)

= ∂f
∂xi

(v)vi − ∂f
∂xi

(w)wi + h(v)− h(w)

= ∂f
∂xi

(v)vi − ∂f
∂xi

(v)vi + h(v)− h(v)

= ∂f
∂xi

(v)

= ∂f
∂xi

(w)

Now we can make use of this proposition to construct a better exhaustive search

algorithm, which we shall refer to as the basic Gray code enumeration (BGCE)

algorithm. As the name implies, the candidate vectors are tested in the order of

Gray code instead of a counter. That is, instead of evaluating f(vi), we compute

f(gi) for i = 0, . . . , 2n − 1. Since any two successive codewords (gi−1,gi) are b1(i)-

close w.r.t. f by Eq. 2.1, the difference between (f(gi), f(gi−1)) is actually
∂f
∂xb1

(gi)

by Proposition 1. This implies that we can evaluate the next f(gi) by updating the

last one with their difference. In this way, the bit operations (per equation) required

to perform this schemes would be:

BBGCE(n, d) = 2nBEval Sum Avg(n− 1, d− 1) =
d−1∑
i=0

(
n− 1

i

)
2n−i. (2.8)

In other words, when d is a fixed constant, the cost of each attempt can be

reduced to O(mnd−1), and the whole enumeration would require O(mnd−12n) bit

operations.

The pseudocode of this scheme is shown in Fig. 2.2(a). Note that β1 < 0 if

and only if i = 0, which means this is the first time of computing f(gi) (there is

no f(gi−1) for computing a difference). In this case, the image we need is actually

f(g0) = f(0) = C. Thus, δ is initialized to C in line 2, and line 6 will not be

executed in the first attempt.
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Figure 2.2: Pseudocode of Gray Code Enumeration

BGCE(f , n, d)
1: Sol ← ∅

2: δ ← C
3: for i from 0 to 2n − 1 do
4: β1 ← b1(i)
5: if β1 ≥ 0 then
6: δ ← δ + ∂f

∂xβ1
(gi)

7: end if
8: if δ = 0 then
9: Sol ← Sol ∪ { gi }
10: end if
11: end for

12: return Sol
(a) Basic Gray Code Enumeration

GGCE(f , n, d)
1: Sol ← ∅

2: for each coefficient Cβ1,...,βk
of f

3: δβ1,...,βk
← ∂kf

∂xβ1
···∂xβk

(g2β1+···+2βk )

4: end if
5: for i from 0 to 2n − 1 do
6: α ← min(HammingWeight(i), d)
7: β1, . . . , βα ← b1,...,α(i)
8: for j from α down to 1 do
9: δβ1,...,βj−1 ← δβ1,...,βj−1 + δβ1,...,βj

10: end for
11: if δ = 0 then
12: Sol ← Sol ∪ { gi }
13: end if
14: end for

15: return Sol
(b) Generalized Gray Code Enumeration

2.5 Generalized Gray Code Enumeration

Algorithm and Correctness. In the last section, we have shown that evaluations

of a system for a sequence of vectors can be accelerated if the vectors in the sequence

are “close” in certain way. In this section, we will show that the same technique can

be used recursively, resulting in the generalized Gray code enumeration (GGCE)

algorithm with a complexity much lower than BGCE.

The pseudocode of GGCE is shown in Fig. 2.2(b). At the beginning of the code

(line 2 to line 4), a set of variables δβ1,...,βk
’s are initialized. As we shall explain later,

at the end of an attempt accessing δβ1,...,βk
, its value would always be ∂kf

∂xβ1
···∂xβk

(gi).

Thus, same as in BGCE as shown in Fig. 2.2(a), δ is meant to store f(gi). Each of

these variables will be referred to as a “differential” henceforth.

Each attempt (line 6 to line 13) of GGCE can be divided into three steps.

1. (Line 6–7) Indexing: Find indices of α least significant nonzero bits in i.

2. (Line 8–10) Accumulating: Use a sequence of differentials determined by the

indices and perform an in-place prefix-sum operation.

3. (Line 11–13) Testing: Examine the image δ, which is identical to line 8–10 in

Fig. 2.2(a).
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The accumulating is where we use the technique in the last section recursively

to compute f(gi). Actions taken in this step (with α ≥ 3) can be illustrated by the

following expression:

δ+ = (δβ1+ = (δβ1,β2+ = (δβ1,β2,β3+ = · · · ))).

The action δ+ = δβ1 is consistent with line 6 of Fig. 2.2(a), since the value of δβ1

should be ∂f
∂xβ1

(gi). However, δβ1 is not näıvely evaluated. Instead, it is updated

by adding δβ1,β2 to it. In the same way, we update δ, δβ1 , δβ1,β2 ,. . . , etc, until some

termination condition is satisfied. We will come back to this condition later in this

section.

Definition 3. Given a sequence I of indices running from 0 to 2n − 1, the sub-

sequence Ij1,j2,...,jk (0 ≤ j1 < j2 < · · · < jk < n) consists of {i ∈ I | b1(i) =

j1, . . . , bk(i) = jk}.

Lemma 1. For all i ∈ Ij1,j2,...,jk , bjk+1(i) ≥ 0 if and only if i is not the first index

in the sequence.

Proof. Apparently, the first element in Ij1,j2,...,jk is 2
j1+ · · ·+2jk , for it is the smallest

index satisfying the condition of the sequence. Since this is the only element with

Hamming weight k, we may conclude that other elements must have Hamming

weight greater than k.

Lemma 2. Ij1,j2,...,jk (k ≤ d) consists of the indices of all attempts in which δj1,...,jk

is accessed.

Proof. According to line 6 to line 10 of the pseudocode, δj1,...,jk is accessed if and

only if b1(i) = j1, . . . , bk(i) = jk.

Lemma 3. Let f be a multivariate polynomial system over F2. For any (i, i′) suc-

cessive in Ij1,j2,...,jk , gi and gi′ are bk+1(i
′)-close w.r.t. ∂kf

∂xj1
···∂xjk

.

Proof. It can be inferred from Definition 3 that i′ = i+2jk+1. According to Eq. 2.2,

the bits with indices greater than jk of gi and gi′ should differ in exactly the bit with
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index bk+1(i
′), and those with indices less than jk of gi and gi′ should be identical.

Thus, gi and gi′ must be bk+1(i
′)-close w.r.t. any system that does not involve xjk .

Proposition 2. Let 1 ≤ j ≤ d. If δβ1,...,βj
’s can be correctly computed (equal to

∂jf
∂xβ1

···∂xβj
(gi) by the end of any attempt accessing them), so can δβ1,...,βj−1

’s.

Proof. According to the pseudocode, δβ1,...,βj−1
is updated by adding δβ1,...,βj

to it

in those attempts with index i ∈ Iβ1,...,βj−1
and bj(i) ≥ 0. According to lemma 1,

lemma 2 and lemma 3, from the second attempt accessing δβ1,...,βj−1
it is updated

by a correct difference δβ1,...,βj
= ∂jf

∂xβ1
···∂xβj

(gi), which is exactly the core concept in

BGCE. Thus, the only remaining problem is that δβ1,...,βj−1
should be correctly com-

puted in the first attempt accessing it. According to the pseudocode and lemma 1,

δβ1,...,βj−1
is not modified in the first attempt accessing it. Thus, line 3 has shown

that δβ1,...,βj−1
contains the correct value by the end of the first attempt accessing it.

Note that the differentials δβ1,...,βd
are initialized to ∂f

∂xβ1
···∂xβd

= Cβ1,...,βd
. Since

these differentials remain the same values after initialization (they would not be

modified by line 9) as they ought to be, they always contain the correct values.

Thus, by using this fact as the base case and Proposition 2 as the inductive step, it

can be concluded that δ can be correctly computed, establishing the correctness of

GGCE.

Now we may explain the termination condition that we have mentioned earlier.

Note the first iteration of line 9:

δβ1,...,βα−1 ← δβ1,...,βα−1 + δβ1,...,βα .

From a recursive perspective, this is already the deepest level of recursion, and

δβ1,...,βα is not updated using the same technique. There are two possible situations

for this. The first one is when α = d, which means δβ1,...,βα is a constant and should

not be updated. The other one is when the candidate vector gi is the first one in the
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sequence close w.r.t. ∂αf
∂xβ1

···∂xβα
. Therefore there is no previous image to compute a

difference, in which case the image is pre-evaluated in the initialization phase.

To help the reader further understand how the GGCE algorithm works, we show

an example with a small d. In the example, the list of accumulating actions in each

attempt for d = 2 and d = 4 are presented in the last two columns of Table 2.1.

Memory Issues. The differentials take almost all memory needed in GGCE.

Thus, according to line 2 to line 4 of Fig. 2.2(b), memory needed for GGCE should

be commensurate with memory needed to store all the coefficients.

One may argue that we need additional memory to store the target system (the

coefficients) to perform initialization. However, since ∂kf
∂xβ1

···∂xβk

does not involve any

of Cβ1,...,βk′ ’s where k′ ≤ k except Cβ1,...,βk
, the initialization process can be made

“in-place” by initializing d using the space of C, initializing δβ1 ’s using the spaces of

Cβ1 ’s, and so on. In this way, the initialization can be done with only the memory

space of coefficients of the target system.

To be precise, the δβ1,...,βd
’s (Cβ1,...,βd

’s) can be stored in read-only memory, while

other differentials should be stored in read-write memory. Thus, number of bits

required (per equation) to perform GGCE is defined as:

M
(ro)
GGCE(n, d) =

(
n

d

)
, M

(rw)
GGCE(n, d) =

d−1∑
i=0

(
n

i

)
. (2.9)

where the superscript (rw) is apparently short for “read-write.”

We note that in this sense, GGCE is providing a form of space-time trade-

off, a renowned technique in exhaustive-search type of cryptanalysis. However, the

efficiency of GGCE in trading memory for execution time is extraordinary. By using

roughly the same amount of read-write memory, GGCE can achieve a speed-up that

is several orders of magnitudes faster than the näıve enumeration.

Indexing. The pseudocode for indexing merely describes “what it actually does,”

not “how it works.” Thus in this paragraph, we would like to show a way to construct
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the indexing.

The main idea is to maintain a stack S containing all indices of nonzero bits in i.

For example, if i = (10101)2, then S should contain three elements 0, 2, and 4 (from

top to bottom). When a new attempt starts, i would increase by 1. When this

happens, we can update S easily using a procedure Update presented in Fig. 2.3.

Note that the cost for Update is directly proportional to number of the bits flipped

as i increases. Thus, an amortized analysis can show that the function can be done

in constant time.

Figure 2.3: Pseudocode of Update

Update(S)
1: j ← 0
2: while top(S)=j do
3: pop(S)
4: j ← j + 1
5: end while

6: push(S,j)

Computing α would be easy since the Hamming weight of i always equals to

number of elements in the stack. After that the indexing is done, as for all 1 ≤ j ≤ α,

βj must be the j − th element in the stack. Thus, the whole indexing can actually

be done in constant time.

Time Complexity. Before determining the complexity of the whole enumeration,

we should first argue that number of bit operations (per equation) for initialization

can be bounded by:

BGGCE Init(n, d) =
d−1∑
i=0

(
n

i

)
BEval Sum(i, d− i) =

d−1∑
i=0

(
n

i

) d−i∑
j=0

(
i

j

)
. (2.10)

Now consider the in-place initialization scheme we have previously mentioned.

Note that initializations for δβ1,...,βd
’s do not take any bit operation since they should

be initialized to Cβ1,...,βd
’s. Any of other differentials, say δβ1,...,βk

(where 1 ≤ k ≤
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d− 1), should be initialized to

∂kf

∂xβ1 · · · ∂xβk

(g2β1+···+2βk ) =
∂kf

∂xβ1 · · · ∂xβk

((eβ1 + eβ1−1) + · · ·+ (eβ1 + eβ1−1))

=
∂kf

∂xβ1 · · · ∂xβk

(eβ1−1 + · · ·+ eβk−1)

according to Eq. 2.2. Now, it is clear that initialization of δβ1,...,βk
can be done by

evaluating a system of degree d − k for a vector with k nonzero entries. Thus, we

may conclude that bit operations (per equation) for initialization can be expressed

by Eq. 2.10.

In one iteration of accumulating, α = min(HammingWeight(i), d) m-bit vector

additions (XORs) would be executed. Thus, total bit operations (per equation)

needed in GGCE can be expressed by:

BGGCE(n, d) = BGGCE Init(n, d) +
n∑

i=0

(
n

i

)
min(i, d). (2.11)

Since the summation can be bounded by d · 2n (which should be tight when d

is small), the time complexity of GGCE can be bounded by O(mBGGCE Init(n, d) +

md2n). When d is a constant, in which case BGGCE Init(n, d) would be polynomial

in n, the complexity of GGCE would be O(m2n).

2.6 Partial Evaluation

In the last few sections, we introduced various exhaustive-search solvers intended

for solving a single system. However, as mentioned in section 1, parallel computing

is a more efficient way of taking advantage of Moore’s law. This leads to the need of

parallelization. In other words, we need to divide our problem into pieces, so that

resulting subproblems can be solved concurrently.

An intuitive idea is partial evaluation. That is, we shall divide the target system

into multiple subsystems by substituting all possible values for s variables. In this
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way, there would be 2s subsystems, each with n− s variables, and the number and

size of subsystems can be controlled simply by changing s. Moreover, we have found

that partial evaluation can be made efficient by using GGCE as a subroutine.

Recall that we use c∗ for coefficients of subsystems and C∗ for those of the

original system. Now consider a specific coefficient, say c, of one of the subsystems.

The coefficient is an image of a polynomial system h defined over the substituted

variables. In fact, if we collect the same coefficient in all subsystems, the resulting set

actually forms the range of h, which can be computed by GGCE (without testing)

since it generates all images of a system. Thus, partial evaluation can be done by

computing with GGCE all c’s, c0’s, c1’s, . . . , etc, until all
∑d

i=0

(
n−s
i

)
coefficients of

each subsystem are known.

We use an example to show this concept more clearly. Let us consider a case

with n = 4, d = 2, and s = 2, where the variables to be substituted are x2 and x3.

Now, the original system can be written in the following expression:

C0,1x0x1+(C0,2x2+C0,3x3+C0)x0+(C1,2x2+C1,3x3+C1)x1+(C2,3x2x3+C2x2+C3x3+C).

It can be inferred from the expression that the c’s form the range of C2,3x2x3 +

C2x2 +C3x3 +C, the c1’s form the range of C1,2x2 +C1,3x3 +C1, . . . , and so on.

Note that the degree-d terms of all subsystems actually come from the original

system. In other words, cα1,...,αd
= Cα1,...,αd

for any subsystem. Thus, we do not

need to evaluate cα1,...,αd
’s by GGCE. Instead, we may simply copy from the original

system those coefficients when we need them.

Time complexity. According to our arguments and example, it is clear that

coefficients (in subsystems) of a degree-k monomial can be generated by running

GGCE on a degree-(d − k) system defined over the s substituted variables. Thus,

the bit operations required (per equation) for partial evaluation can be expressed

by:

BPartial(n, d, s) =
d−1∑
k=0

(
n− s

k

)
BGGCE(s, d− k). (2.12)
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Memory Issues. Since in partial evaluation, the generation of c′s is done by

running GGCE on a degree-d system with s variables, at most M
(ro)
GGCE(s, d) +

M
(rw)
GGCE(s, d) bits per equation is required to complete the whole process. While

this memory cost is usually affordable, memory problems brought by partial evalu-

ation are usually due to the subsystems it generates. To be exact, the subsystems

should take (
n− s

d

)
+ 2s

d−1∑
i=0

(
n− s

i

)

bits per equation, where
(
n−s
d

)
bits are for cα1,...,αd

’s. Thus, when s is sufficiently

large, the subsystems can take a huge amount of memory. However, sometimes we

do not need all the subsystems at the same time, in which case there are at least

two ways to mitigate the memory problem.

The first solution is to perform a multi-level partial evaluation, which is suitable

when only 2s
′
of all 2s subsystems need to be dealt with at the same time. A two-

level partial evaluation goes like this. First we divide the target system into 2s−s
′

“intermediary” systems. Then, we pick one of them at a time and divide it into 2s
′

“final” systems which are meant to be processed together. In this way, as long as

the intermediary systems do not take much memory, we only need the memory for

the 2s
′
final systems.

The second solution is to run all instances of GGCE (in partial evaluation) at

the same time, which might be useful when the 2s subsystems are dealt with one by

one. Note that attempts with the same index of all instances actually generate all

coefficients of the same subsystem. Thus, by running all instances synchronously,

we may generate the subsystems one by one. In fact, there is a one-to-one mapping

between the terms in the original system and the terms in all coefficient-generating

systems (h’s); specifically, there is a one-to-one mapping between the highest-degree

terms in coefficient-generating systems and the degree-d terms in the original system.

Thus, by the discussions about memory issues in GGCE, we may conclude that this

scheme uses the same amount of read-only and read-write memory with running

GGCE directly on the original system.
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Chapter 3

Variants and Analysis

3.1 Early-abort Strategy

3.1.1 In Näıve Evaluation

While the näıve evaluation has been proved to be outperformed by several solvers,

it can actually be improved by taking advantage of an early-abort strategy. All

we need to do is to treat the equations as a sequence of candidate filters, and each

candidate vector in F
n
2 would be examined by the filters one by one until it is filtered

out. Let V (0) = F
n
2 , the initial space of candidate vectors. Formally speaking, for

each f (i) we can compute f (i)(V (i)) and arrive at V (i+1) = {v ∈ V (i) | f (i)(v) = 0}.
Since on average each candidate vector is filtered out with probability 0.5, we only

need to examine two filters on average. Consequently, the average number of bit

operations required would be:

2 · BEval(n, d) =
d∑

i=0

(
n

i

)
2n−i+1. (3.1)

3.1.2 In GGCE

The way we treat equations as filters is apparently not suitable for GGCE, for it

needs to enumerate all Fn
2 . However, can GGCE be modified so that it computes

only f (i)(V (i))? One method that has come across our mind goes like this. To
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compute f (i)(V (i)), f (i) is first partially evaluated with some well-chosen s(i). Then,

for each v ∈ V (i), f (i)(v) can be evaluated by substituting n − s bits of v into the

corresponding subsystem.

Since the costs for partial evaluation and näıve evaluation are known, the number

of bit operations required for computing f (i)(V (i)) can be expressed by:

BPartial(n, d, s
(i)) + 2(n−i) · BEval Sum Avg(n− s(i), d),

where 2(n−i) stands for the expected number of |V (i)|. According to this expression,

the cost of computing f (i)(V (i)) is fully dependent of s(i). Therefore, minimizing the

total number of bit operations required can be simply done by finding the best s(i)

for each i independently. Unfortunately, after trying mathematical techniques such

as the first derivative test, we found it hard to express the best s(i) in a closed general

form. Thus, we use an empirical approach instead, in which we search for the best

s(i) in the interval [0, n] for each i. The same procedure can be repeated several

times for different settings of (m,n, d) to gain enough generality. According to our

experiment result, the sequence [s(0), s(1), l . . . , s(m−1)] is usually in the pattern of

[n, n, n−k1, n−k1−1, . . . , k2, 0, . . . , 0], where k1, k2 are some small positive integer.

This implies that [n, n, n−1, n−2, . . . , 1, 0, . . . , 0] might be generally a good choice.

Thus, we can approximate the total number of bit operations required with:
∑m−1

i=0 [BPartial(n, d, s
(i)) + 2n−i · BEval Sum Avg(n− s(i), d)]

= BPartial(n, d, s
(0)) + 2nBEval Sum Avg(n− s(0), d) +

∑m−1
i=1 [BPartial(n, d, s

(i)) + 2n−iBEval Sum Avg(n− s(i), d)]

� d · 2n +∑m−1
i=1 [2n−i+1

∑d
j=0

(
i−1
j

) · (d− j) + 2n−i+1
∑d

j=0

(
i−1
j

)
2−j−1]

≤ d · 2n +∑∞
i=1 [2

n−i+1
∑d

j=0

(
i−1
j

) · (d− j) + 2n−i+1
∑d

j=0

(
i−1
j

)
2−j−1]

= d · 2n +∑∞
i=0 [2

n−i ∑d
j=0

(
i
j

) · (d− j) + 2n−i
∑d

j=1

(
i
j

)
2−j−1]

= d · 2n + 2n[
∑d

j=0 (d− j)
∑∞

i=0

(
i
j

)
2−i +

∑d
j=0 2

−j−1 ∑∞
i=0

(
i
j

)
2−i]

= d · 2n + 2n[
∑d

j=0 (d− j) · 2 +∑d
j=0 2

−j−1 · 2]
≤ d · 2n + 2n[

∑d
j=0 (d− j) · 2 + 2]

= (d2 + 2d+ 2)2n.
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We note that this upper bound may not be precise since the cost of initialization

in GGCEs (in partial evaluation) is ignored from the line starting with “�.” How-

ever, when 32 ≤ m = n ≤ 64 and 2 ≤ d ≤ 4, we find that this latter cost is indeed

negligible in theory. Also remember that we assume |V (i)| = 2n−i, which might not

be accurate for some cases.

In some sense, this scheme is a mix of GGCE (or partial evaluation) and näıve

evaluation. By choosing s(i), we may determine the weights of the two methods in

the computation of f (i)(V (i)). That is, when s(i) is close to n, the scheme highly

resembles GGCE. On the other hand, when s(i) is close to 0, the scheme is more

like the näıve evaluation. Actually, this viewpoint is consistent with our experiment

result: GGCE is more suitable for computation of f (i)(V (i)) when |V (i)| is close to

2n (or equivalently, when i is small), and vice versa.

The importance of this scheme resides in its flexibility. This scheme not only con-

tains the solvers described in Section 2.3, 2.5, and 3.1.1, but also allows time-memory

trade-off. Furthermore, it can be easily adapted according to the implementation

hardware platform.

Note that using different s(i) for each equation might not be suitable for general

hardware platform such as GPUs and CPUs, for they lack the capability of efficient

handling of bit vectors of a wide variety of widths. For special devices such as

FPGAs, however, the scheme might work well.

3.2 Gaussian Elimination

In the previous subsection, we have shown that running GGCE on μ < m equations

can be useful. In this section, we will show that the well-known Gaussian elimination

can make our solver even faster.

Note that in GGCE, there are some constant data, namely the Cβ1,...,βd
’s (or

δβ1,...,βd
’s). According to Fig. 2.2(b), actions involving them are always in the form

δβ1,...,βd−1
+ = Cβ1,...,βd

.
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The key point is that if Cβ1,...,βd
= 0, all such actions can be simply omitted.

Now suppose GGCE is used to solve the first μ equations f (0) to f (μ−1). The tar-

get system can be treated as a matrix, where each row corresponds to one equation,

and each column corresponds to one term containing the same monomial. Appar-

ently, the solution space is invariant under elementary row operations. Thus, we

may eliminate some C
(i)
β1,...,βd

’s for all 0 ≤ i ≤ μ−1. In fact, we can always eliminate

m − μ such coefficients. In Section 4.1, we will discuss the probability of accessing

each differential, and apparently we should eliminate the most frequently used m−μ

C
(i)
β1,...,βd

’s for all 0 ≤ i ≤ μ− 1 to achieve the greatest saving.
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Chapter 4

Implementations

4.1 On NVIDIA GPUs, with CUDA

4.1.1 Overview

Our implementations allow parallel use of multiple GPU devices. Thus, at the

beginning, the input system should be partially evaluated into intermediary systems,

whose number equals to the number of devices. Then the same number of processes

would be invoked such that each of them solves one of the intermediary systems by

launching a kernel on one device.

Each of these processes would solve the first 32 equations with GGCE (enumer-

ation phase), which would take place on the device. The solutions found by GGCE

would be checked against the remaining equations using näıve evaluation (check

phase) on CPU. We pick the number 32 to match the register width on GPUs. In

this way, each 32-bit differential can be store in a register, and accumulating can be

done by performing bitwise XOR on them.

Before the enumeration phase starts, some preperation must be done first. Since

a GPU kernel usually requires enough threads to hide instruction latency, the first

32 equations of each intermediary system has to be partially evaluated into a large

number of small systems, each to be solve by one GPU thread with GGCE. Then,

the non-common parts (Cβ1,...,βk
’s where k < d) of the small systems would be sent to

xxviii



global memory, while the common parts (Cβ1,...,βd
’s) are stored in constant memory.

After that, the enumeration phase can take the coefficients as input and run the

instances of GGCE concurrently. The details and important issues in this phase will

be introduced in the following subsections. By the end of this phase, the solution

found by each thread would be stored in global memory, so they can be moved back

to CPU for further processing.

The check phase is straightforward compared to the previous phase. Since only

few (compared to 2n) solutions are expected to entering this phase, there are no

fancy techniques involved. The only notable issue in this phase is that it actually

handles some “mending” work, which will also be discussed in Section 4.1.5.

4.1.2 Register Usage

Because of the scarcity of fast memory on GPU, register usage is usually a critical

issue for CUDA programmers. The problem, unfortunately, seems inevitable since

the number of differentials grows rapidly as d increases. Actually, the problem can

be even worse since NVIDIA’s nvcc compiler tends to allocate more registers than

necessary. In fact, in our implementation for quadratic systems, everything fits in the

registers after initialization. On the contrary, this is not the case in implementations

for cubics and quartics.

In our implementation for quartics, each thread needs to maintain δi,j,k for 0 ≤
i < j < k < K, where K is the number of variables in the small systems. For

K = 10, δi,j,k’s take 120 registers if we just store all of them in registers, making

the number of active warps in each MP no more than 4, not to mention others

differentials. One may argue that this problem can be solved by restricting the

number K. However, this implies that an extremely deep partial evaluation has to

be carried out, which can be both time and memory consuming.

Our strategy for register usage follows the principle of caching—storing the most

frequently used things in registers. To be precise, each differential δ∗k is accessed

with probability 2−(k+1) in each attempt. In other words, there exists a strong
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bias in the probabilities of accessing each differential. So we can pick a suitable

number γ and store all the δ∗k with k ≤ γ in registers and other differentials, global

memory. The number of variables and actual number of registers allocated in our

GPU implementations are shown in Table 4.1.

Table 4.1: Number of Registers Allocated in GPU Implementations

d = 3 (γ = 9) d = 4 (γ = 7)

diffs other actual diffs other actual

46 11 64 64 15 80

4.1.3 Unrolling

While accumulating takes only few XORs (of differentials), indexing causes con-

siderable overhead in each attempt. However, we find that the ubiquitous trick—

unrolling—can be quite helpful to alleviate the overhead.

Let us take a look at Fig. 4.1, which exemplifies our unrolling scheme for a GGCE

solving quartics with unroll factor 8. The indices listed are all in the same unrolled

block. It is shown that some entries, such as b2(∗ · · · ∗ 011), are constant. Other

entries, although not fixed, can be determined once all bi(∗ · · · ∗ 000)’s are known.

Thus, the indexing is no longer needed in every attempt. Instead, it only needs to

be invoked in attempts with index being an integral multiple of 8. This example

also illustrates the cases for quadratics and cubics.

The reason for this is not really complex. Consider any unrolled block with

2u indices, where the first index is i. Any of other indices in this unrolled block

can be defined as i′ = i + k, where k < 2u. Thus, the indices of the least sig-

nificant HammingWeight(k) nonzero bits in i′ must be constant and can be de-

termined before runtime. If we need any more indices bj(i
′) for i′ (which means

HammingWeight(k) < d), it can always be computed by bj(i
′) = bj−h(i), where

h = HammingWeight(k) and j > h.
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Figure 4.1: An Example Unrolled Block with 8 Indices

index b4 b3 b2 b1
∗ · · · ∗ 000 β4 β3 β2 β1

∗ · · · ∗ 001 β3 β2 β1 0
∗ · · · ∗ 010 β3 β2 β1 1
∗ · · · ∗ 011 β2 β1 1 0
∗ · · · ∗ 100 β3 β2 β1 2
∗ · · · ∗ 101 β2 β1 2 0
∗ · · · ∗ 110 β2 β1 2 1
∗ · · · ∗ 111 β1 2 1 0

4.1.4 Testing with Conditional Move

In Fig. 2.2(b), the testing simply adds the candidate vector into a set if its image

is zero. However, this is infeasible in GPU implementations, for device memory

is limited. Even if we assume the memory is large enough to store all candidate

vectors, this can induce other problems such as synchronization between threads.

Actually, the testing in our GPU implementation is delicately designed to fit the

hardware platform.

In the process of implementation, we discovered an undocumented feature of

CUDA for G2xx series GPUs: nvcc reliably generates conditional (predicated) move

instructions, which are dispatched with exceptional adeptness. According to our

experiment results, we believed that conditional moves can be dispatched by SFUs

(Special Function Units), so the they can be executed simultaneously with other

instructions (such as XORs) handled by SPs (Streaming Processors).

In order to exploit the feature, the testing in GPU implementations is somewhat

different with the pseudocode. Each thread maintains two registers, count and sol,

to keep track of the solution count and the last solution found during runtime. Note

that count does not actually record solution count accurately. Instead, it contains

only three states: 0, 1, and 2+ (greater or equal to 2 solutions). While the two

registers can be easily initialized, they should be correctly maintained after each

unrolled block, which can be achieved by maintaining the same but local data for

each unrolled block.

For each unrolled block, we use a tiny queue Q with capacity of merely two
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elements to maintain the local data. Whenever a solution is found, the corresponding

test vector (actually a part of it) is enqueued. In this way, we can tell whether the

solution count is 0, 1, or 2+ by checking whether there are 0, 1, or 2 elements in Q

at the end of each unrolled block. Moreover, the last solution (if any) must lies in

the back of Q.

In order to show the power of this technique, some actual CUDA codes are

presented in Table 4.2(b). After applying decuda to our program, we found that the

repetitive four-line code segments correspond to at least four instructions including

two XORs and two conditional moves. However, according to our experiment result,

the four instructions average less than three SP cycles, which means executions of

XORs and conditional moves are much overlapped.

Figure 4.2: CUDA and Cubin Code Fragments of Degree-2 GPU Implementation

...

xor.b32 $r19, $r19, c0[0x000c] // d_y^=d_yz

xor.b32 $p1|$r20, $r17, $r20

mov.b32 $r3, $r1

mov.b32 $r1, s[$ofs1+0x0038]

xor.b32 $r4, $r4, c0[0x0010]

xor.b32 $p0|$r20, $r19, $r20 // res^=d_y

@$p1.eq mov.b32 $r3, $r1

@$p1.eq mov.b32 $r1, s[$ofs1+0x003c]

xor.b32 $r19, $r19, c0[0x0000]

xor.b32 $p1|$r20, $r4, $r20

@$p0.eq mov.b32 $r3, $r1 // cmov

@$p0.eq mov.b32 $r1, s[$ofs1+0x0040] // cmov

...

...

diff0 ^= deg2_block[ 3 ]; // d_y^=d_yz

res ^= diff0; // res^=d_y

if( res == 0 ) y = z; // cmov

if( res == 0 ) z = code233; // cmov

diff1 ^= deg2_block[ 4 ];

res ^= diff1;

if( res == 0 ) y = z;

if( res == 0 ) z = code234;

diff0 ^= deg2_block[ 0 ];

res ^= diff0;

if( res == 0 ) y = z;

if( res == 0 ) z = code235;

...

(a) decuda Result from Cubin (b) CUDA Code for an Inner Loop Fragment

4.1.5 Re-enumeration

In the check phase, the solutions found in enumeration phase are examined. If a

thread has found more than one solution, some mending work must be done on CPU

or we may miss some actual solutions of the target system. A remedy for this is to

repeat the work (GGCE) done by the thread again, which we call “re-enumeration.”

In fact, the re-enumeration can be aborted once the candidate solution meet the last

solution returned by the thread. However, this is still a situation we would like to

avoid as much as possible. Thus, our solution is to reduce the probability that any

thread has found more than one solution by restricting the number of variables in
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the small systems. The smaller the solution space is, the little the probability would

be. In fact, when n = 48, we restrict the number of variables (in small systems) to

26 to make re-enumerations take negligible time.

4.2 On x86-64 CPUs, with SSE2 Intrinsics

4.2.1 Overview

At the beginning, the target system would be partially evaluated into several (this

number usually equals to that of available cores) intermediary systems, each to be

solved by one process. The processes would be properly assigned to CPU cores such

that each core deals with (almost) equal amount of processes.

Each process would solve the first 16 equations of the intermediary system by

GGCE. Candidate solutions found by GGCE would be checked for the next 16 equa-

tions using näıve evaluation with the early-abort strategy, which we call “filtering,”

and those passing the first 32 equations would be checked against the remaining

equations using näıve evaluation (without early abort).

4.2.2 Batched Enumeration

In our GPU implementations, GGCE is implemented using a bit-slicing strategy,

such that 32-bit differentials are stored in 32-bit registers. However, for CPU im-

plementations, we would like to take advantage of the 128-bit XMM registers, while

differentials are only 16-bit. Thus, we run eight instances of GGCE at the same time.

Each differential is of the type int128, where each 16-bit block of it correspond to

one of the eight instances. In this way, accumulating can be done by manipulating

(XORing) the 128-bit variables directly. Note that we need to partially evaluate the

first 16 equations to generate at least eight sets of 16 equations.

After accumulating, the testing should be able to tell if there is any 16-bit all-zero

block in δ. Actually this can be achieved by using a few lines of SSE2 intrinsics as

presented in Fig. 4.3. The intrinsic mm cmpeq epi16 performs (16-bit) block-wise
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comparison between res (stands for δ) and zero, an all-zero 128-bit variable. A

16-bit-block of Mask will then be set to 0xFFFF if equivalence is found in the cor-

responding blocks, and 0x0000 otherwise. After that, mm movemask epi8 converts

the 128-bit Mask into the 16-bit mask by extracting the most significant bits of the

8-bit blocks in Mask.

After executions of the two intrinsics, it is clear that mask would be nonzero if

and only if there is any 16-bit all-zero block in res. When this happens, a routine

check would be invoked to handle the following jobs. Note that this branch-away

scheme is completely different with that in GPU implementations.

Figure 4.3: Code Fragments of Testing in CPU Implementations

Mask = _mm_cmpeq_epi16(res, zero);

mask = _mm_movemask_epi8(Mask);

if(mask) check(mask, idx, x^2);

4.2.3 Batched Filtering

Theoretically, we can evaluate f (i)(v) once the candidate vector v has passed f (i−1).

However, this involves only single-bit operations (XORs and ANDs), which is not

cost-effective in CPUs that support 128-bit wide operations. Thus, our solution

to this is to maintain a buffer that can store up to 128 candidate vectors for each

f (i). Once the buffer is full, we would rearrange 128 inputs of n bits such that they

appear as n int128’s, then evaluate one polynomial for 128 results in parallel using

128-bit wide ANDs and XORs.

Note that we use multivariate Horner’s rule to achieve this batched filtering, for

the actions it takes are the same for any vector in F
n
2 . Also note that the equations

for filtering are also partially evaluated to reduce the cost for evaluation. However,

substituting too many variables in partial evaluation can make it difficult to saturate

most buffers, so this should be carefully tuned to achieve the best performance.
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Chapter 5

Experiment Results

Table 5.1: Performance Results for n = 48

Minutes Testing platform #cores #threads
d = 2 d = 3 d = 4 GHz Arch. Name USD available launched
1217 2686 3191 2.2 K10 Phenom 9550 120 4 1
1157 1992 2685 2.3 K10+ Opteron2376 184 4 1
142 240 336 2.3 K10+ Opteron2376×2 368 8 8
780 1364 1819 2.4 C2 Xeon X3220 210 4 1
671 1176 1560 2.83 C2+ Core2 Q9550 225 4 1
179 294 390 2.83 C2+ Core2 Q9550 225 4 4
761 1279 1856 2.26 Ci7 Xeon E5520 385 4 1
139 213 327 2.26 Ci7 Xeon E5520×2 770 8 8
95 154 225 2.26 Ci7 Xeon E5520×2 770 8 16
41 73 271 1.3 G200 GTX 280 n/a 240 n/a
21 36 126 1.25 G200 GTX 295 500 480 n/a

Table 5.2: Efficiency Comparison: Cycles Per Candidate Tested on One Core

n = 32 n = 40 n = 48 Testing platform
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 GHz Arch. Name USD
0.58 1.21 1.41 0.57 1.27 1.43 0.57 1.26 1.50 2.2 K10 Phenom9550 120
0.57 0.91 1.32 0.57 0.98 1.31 0.57 0.98 1.32 2.3 K10+ Opteron2376 184
0.40 0.65 0.95 0.40 0.70 0.94 0.40 0.70 0.93 2.4 C2 Xeon X3220 210
0.40 0.66 0.96 0.41 0.71 0.94 0.41 0.71 0.94 2.83 C2+ Core2 Q9550 225
0.41 0.66 1.00 0.38 0.65 0.91 0.37 0.62 0.89 2.26 Ci7 Xeon E5520 385
2.87 4.66 15.01 2.69 4.62 17.94 2.72 4.82 17.95 1.296 G200 GTX280 n/a
2.93 4.90 14.76 2.70 4.62 15.54 2.69 4.57 15.97 1.242 G200 GTX295 500

Architecture and Differences. In Table 5.1 and Table 5.2, we show our test

results with a variety of machines and graphics cards. It can be concluded from the

tables that cycles per attempt (candidate vector) is almost always a constant de-

pending on the testing platform. In other words, we can easily estimate the running

time given the architecture, frequency, number of cores, and n. Our implementations

are scalable w.r.t. n, which has been explained by the discussion in Section 4.1.2.
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Figure 5.1: Cycles Per Candidate Tested for Polynomials of Degree 2, 3, and 4
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The marked cycle count difference between Intel and AMD cores is explained by

Intel dispatching three XMM (SSE2) logical instructions to AMD’s two per cycle

and handling branch prediction and caching better.

Trends As Degree d Increases. Fig. 5.1 shows the variance in cycle count taken

by some fix amount of candidate vectors (which is eight vectors per core for CPUs

and one vector per SP for GPUs) as d increases. For most of the architectures, the

cycle count increases almost linearly, which is consistent with theoretical complexity

of GGCE. However, there are two exceptions. The burst in cycle count when d = 4

on G200 is apparently due to fast memory (register) pressure, while the anomaly on

K10 is believed to be caused by insufficiency in cache size.

Gaussian Elimination. On GPUs, with m − μ = 32 coefficients eliminated, we

have a speed up of 21% on quadratic cases, 18% for cubics, and 4% for quadratics.

On CPUs, with m−μ = 48 coefficients eliminated, we have 16% on quadratic cases,

20% for cubics, and 9% for quadratics. Although there is still some room for im-

provement, we have shown that this technique can bring considerable improvement
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in speed.
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in XL and Gröbner Bases-Related Algebraic Cryptanalysis, ICICS 2004, LNCS

3269, pp. 401-413.

xli


