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The Effects of Diffusion and Advection on the
Evolution of Competing Species: a Survey on the

Lotka-Volterra Competition Model *

Jia Yuan Dai |

Abstract

This thesis is a rather complete survey concerning an ecologically mean-
ingful problem: how would two competing species evolve in a given spatially
heterogeneous and isolated environment? A special kind of the Lotka-Volterra
competition model is derived by assuming that the mechanisms of redistribu-
tion consist of mutual competition, random diffusion, and advective motion.
The main task is to analyze the evolutionary results of the competing species
in the long run, or equivalently, to determine the stability of equilibria of the
model. The mathematical methods such as maximum principles, calculus of
variation, and the theory of monotone dynamical systems are utilized as the
standard procedure. The main conclusion is that both random diffusion and
advective motion decide the evolutionary results; thus different combinations
of diffusion rates and advective tendencies may influence the evolutionary re-
sults. Accordingly, a preliminary bifurcation diagram can be established to

provide certain theoretically reliable predictions.

*Keywords: Lotka-Volterra competition model, random diffusion, advective motion, equilibria,

local stability, global stability
"Department of Mathematics, National Taiwan University. E-mail: R97221006@ntu.edu.tw
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The Effects of Diffusion and Advection on the
Evolution of Competing Species: a Survey on the

Lotka-Volterra Competition Model

Jia Yuan Dai

1 Introduction

In 1910, Alfred J. Lotka proposed the article ”In the Theory of Autocatalytic
Chemical Reactions” which was effectively the logistic model. In 1920, Lotka ex-
tended the model to analyze predator-prey interaction in his book on biomathe-
matics. In 1926, Vito Volterra derived the model independently for the purpose to
make a statistical analysis of fish catches in the Adriatic. Today, being a special
kind of the reaction-diffusion-advection model which is proved to be mathematically
meaningful and challenging, the so-called Lotka- Volterra model has been widely and
deeply investigated both by ecologists and mathematicians, and indeed it can pro-
vide theoretically reliable predictions on the complicated interaction among different
species in an ecological system.

In this thesis, a rather detailed survey concerning a special kind of the Lotka-
Volterra competition model is presented. To state the problem more precisely, we
utilize the common-used approach based on fluxes to derive the model. Firstly, we
consider N species or N different pheotypes of a species which are mutually com-
peting in a given environment Q C R’ with boundary 9Q (in reality, [=3) and each
has the density w;(z,t) at location = and time ¢. There are some factors concerning

the reasonable setting:



(a)  Environment

In reality, the environment € is surely bounded, but for mathematical reasons
we require it to be a domain with smooth boundary. Since resources are not uni-
formly distributed, the heterogeneity of the environment can be reflected by the
intrinsic growth rate m(xz,t). Nevertheless, we assume two rather particular con-
straints: (C1) All species or N different phenotypes of a species have the
same intrinsic growth rate. (C2) The environment is homogeneous in
time, that is, m(z,t) = m(x).

(b)  Mechenisms of Redistribution

There are two basic mechanisms that make the densities vary in time: one is
the local process such as birth, death, competition etc.; the other mechanism is the
motion of individuals which can be understood as a combination of the random mo-
tion and the advective motion, that is, conditional dispersal. Now, we take w;(z,t)
for example and let u(z,t) = (uy(x,t), us(x,t),...,uy(x,t)), then the rate of change

of the total population of u; is given by

%/ﬂui(:ﬁ,t)dx =— /aQ Ji - nds + /Q Fi(u(z,t))dx (1)

where J; is the density flux of u; through the boundary, n is the unit outer normal
on 0. and F;(u) = u;f;(u) with f;(u) being the per-capita growth rate of the i-th
species.

How can we describe the density flux? Since the effects of the random motion
in the flux is usually assumed to be proportional to the density gradient Vu;, and
it is reasonable to assume that all species move toward more favorable habitats, we
derive

Ji = —szuZ + aiuiVm

where d; > 0 is the diffusion rate of u;, and «; > 0 is the advective tendency of u;
toward the resource gradient Vm. To describe the per-capita growth rate, we need
to take into account not only the birth rate and death rate, but the interaction with

all other species; hence
N
filu(z, t)) = m(x) + > tiju;(x,t)
j=1

2



where ¢;; measures the intensity of mutual interaction between u,; and w;. Here for
mathematical simplicity we assume another constraint: (C8) All diffusion rates

and advective tendencies are constants. Since the divergence theorem implies

/ Ji-nds:/V-Jidx
o0 Q

we obtain the equation:

N

j=1

(‘3ui
ot

Let T = [t;;] be the N x N interaction matrix, ¢; should be negative for all 7
because the living space and resources are limited, and concepts of cooperation and

competition are defined as:

dfi
Definition. Two species u; and u; (i # j) are called cooperative if 8_f > 0 and

Uj
gi > 0; competitive if 2’;’; g gf

< 0.

In particular, our model is competitive if ¢;; < 0 and ¢;; < 0 for 7 # j. However,
in this thesis we make a further constraint: (C4) t;; = —1 for all i,j ! in other
words, all species have the same competing ability. In ecological fields, the scenery
could occur if they were different phenotypes of the same species, or they were
different species but they had gained mutation from the same ancestral species, and
the result of mutation is not effective.

Finally, we assume that the ecological system is isolated; hence each equation
is equipped with the no-flux boundary condition. Owing to assumptions from (C1)

to (C4), we derive a special kind of the Lotka-Volterra competition system:

N
85:52 =V - (d;Vu; — a;u; Vm) + w;(m — Zuj) in © x (0, 00) )
i— 2
7=1
Blu] = Ji - n = di0yu; — cu;0,m = 0 on 092 x (0,00)
where 0,,u; = ) is the normal derivative.

on
It is obvious that the diffusion rate and the advective tendency are two important

1See Lemma 3.5 for the mathematical reason of the constraint.



parameters of the full system (2). An interesting question is: How would com-
peting species evolve under a given combination of diffusion rates and
advective tendencies? Even though there are only two biological consequences
in the long run: only one species wins (or equivalently, all other species extinct) or
some species coerist, it is not easy to answer the above question by rough observa-
tions. For writing strategies, the ranges of diffusion rates and advective tendencies
are classified into three types:

Type A: general N, a; =0 for all 7, and 0 < d; < dy < ... < dy.
Type B: N =2, as =0, and (2 is convex.
Type C: N =2, and «; > 0 for : = 1, 2.

and we make a notational convention whenever there are only two competing species:
(Notation) (u1,a;,dy) = (u, o, p) and (ug, ag, ds) = (v, 5,v) whenever N = 2.
At the first glance, the differences between the types may be slight, but the ap-
proaches to analyze the full system (2) become quite different as we will later see.
To study the full system (2), the first crucial task is to show that for any
non-negative continuous initial data ug(z) = u(x,0), there exists a unique classical
solution u(x,t) in Q x (0,7 (ug)) where T'(uy) > 0 is the existing time for uy. This
task is achieved by [15], Corollary 4.1 which proved that the full system (2) generates

a continuous local semiflow (or local semi-dynamical system):
S+ (0,T(uo)) x [CODIY — [C@QIT, S(tuo)(-) = ul~1)

where [C(Q))Y = {u : u: Q — RY is continuous}. However, the full system (2) is
biological meaningful only if the existing time 7T'(ug) = 0o. For Type A, this require-
ment is fulfilled with some a priori L*> estimates (ref.[1], Lemma 2.3). For Type B
and C, it is obvious that positive constants K > max{||uo|| o), Vol oo @)s 17| oo @) }
are supersolutions for each equation; hence by the Parabolic Comparison Principle
(see Appendix), the solution u(z,t) with initial data wug exists for all ¢ > 0. That is,
T(ug) = o0.

Now that obtaining exact solutions of the full system (2) is unlikely, it is wise



to consider the scalar equation:

00

— =V -(d;V0 — a;0Vm) +0(m —0) in Q x (0,00

= )+ 0(m — 0) (0,0) 5
Bl0] = d;0,0 — a;00,m = 0 on 02 x (0, 00)

Under some suitable assumptions on the intrinsic growth rate m(z), especially
(A1) m(z) € C*(Q) is not a constant function and / m(z)dz > 0
Q

where 0 < 6 < 1, we can prove that for any d; > 0 and «; > 0, there exists
a unique positive steady-state 0 = 0(z;a;,d;) of (3) (see Theorem 1.6) and the
solution (0, ..., 0, 0(x; v, d;), 0, ..., 0) to the full system (2) is often called a semi-trivial
equilibrium %. Beside the semi-trivial equilibria, we call w(x) a positive equilibrium
if it is an equilibrium of the full system (2) and all components are positive. For

each equilibrium, we define several kinds of the stability as:
Definition. Let w(x) be an equilibrium of the full system (2), then

(1) w(x) is locally stable if for given € > 0, there exists r > 0 such that for any
non-negative continuous initial data uy with ||uy — wHLoo@) < r, the solution
u(z,t) satisfies ||u(-,t) — wll =@ < € for sufficiently large t. Furthermore,

such w(zx) is locally asymptotically stable if tlgglo Ju(-t) — wll oo (@) = 0.

(2) w(z) is globally asymptotically stable if for any non-negative and not identically
zero continuous initial data ug which is not an equilibrium, the solution u(x,t)

satisfies tlgglo lu(-,t) — wHLoo@ —=0.

It is known that the study on the local stability of semi-trivial equilibria can
obtain some rather strong implications on the dynamics of the full system (2). From
both mathematical and ecological points of view, a species will invade (or not invade)
even when it is rare if its corresponding semi-trivial equilibrium is unstable (or locally
stable). Mathematically, the local stability (and equivalently invasibility) of a semi-
trivial equilibrium is often determined by the sign of principal eigenvalues of the

linearized system around it; thus we need to deal with eigenvalue problems.

2The terminology ”semi-trivial equilibrium” is in comparison with the ”trivial equilibrium” 0.



The most difficult part is perhaps to determine the global stability of semi-trivial
equilibria, but the result is quite decisive since a species will win in the long run if its
corresponding semi-trivial equilibrium is globally asymptotically stable. The main
difficulties are rooted in the lack of sufficiently powerful mathematical tools such
as the maximum principles if N > 2, whereas in the quite restrictive case N = 2,
the full system (2) which is competitive can be cooperative via a change of variables
(see the proof of Lemma 1.8). After performing this change of variables, most
mathematical tools, especially the theory of monotone dynamical systems becomes

applicable (see Theorem 1.9 and Theorem 4.9).

Main Results

In section 2, we deal with the main result of the Type A which comes from

Dockery, Hutson, Mischaikow, and Pernarowski [1]:

Theorem 1.1. (c.f.[1]) Suppose that (A1) holds. Let U;(x) be the semi-trivial equi-

librium of the i-th species, then

(a) (local stability) Uy(x) is locally asymptotically stable, whereas U;(x) (i > 2) is

unstable.

(b) (global stability) if N = 2, Uy(x) is globally asymptotically stable.

When N competing species move randomly and compete mutually, Theorem 1.1
shows that the difference of the diffusion rates principally drives the dynamics of
the full system (2), and the slower-diffusing species will win if N = 2.

In section 3, the main result of the Type B comes from Cantrell, Cosner, and

Lou [3][4].

Theorem 1.2. (c.f.[3][4]) Suppose that N = 2 and (A1) holds. Let (0(x;a,u),0)
and (0,0(x;0,v)) be the semi-trivial equilibria of the 1st and 2nd species respectively.
If Q is conver and p = v, then (0(x; «, 1), 0) is globally asymptotically stable provided

that o is sufficiently small but not too small relative to the difference p — v.



Here p ~ v means u — v = O(e) for sufficiently small ¢ > 0. When two species
compete in a convexr environment and the advective tendency of the 1st species is
sufficiently small, Theorem 1.2 generalizes the result of Theorem 1.1 in the case
i < v. The new implication is for the case p > v that the faster-diffusing species
can overcome the disadvantage caused by far rapider diffusion via directed move-
ment toward more favorable habitats.

In section 4, we deal with the main result of Type C which comes from Ham-
brock and Lou [6]. Before dealing with the main result, we need other technical
assumptions on m(z) to restrict the distribution of resources in the environment:
(A2) |Vm(z)] > 0 for almost = € Q. In other words, the set of critical points of
m(z) has Lebesgue measure zero.

(A3) 9,m < 0 on 99, m(z) has only one critical point in Q denoted by xg, and
7o € Q satisfies D*m(z0) is negative-definite, where D*m(x) is the Hessian matrix

of m(x) at = xo.

Theorem 1.3. (c.f.[6]) Suppose that N =2 and (A1) holds. Let (6(z;a, p),0) and
(0,0(z; B,v)) be the semi-trivial equilibria of the 1st and 2nd species respectively:

(a) if (A2) holds. then given any 0 < /v < 1/ maxm, both semi-trivial equilibria
Q
are unstable and the full system (2) has at least one locally stable positive

equilitbrium provided that o is sufficiently large.

(b) if (A3) holds and m > 0 in Q, given any B/v > 1/minm, then (0,0(z;3,v))
Q
18 globally asymptotically stable provided that o is sufficiently large.

When both the diffusion rates and advective tendencies occur and the advective
tendency of the 1st species is sufficiently large, Theorem 1.3 shows that neither the
diffusion rate v nor the advective tendency [, but the ratio of dispersal 3/v plays
an important role in the dynamics of the full system (2). It is in strong contrast
to Theorem 1.2 that as « increases, Theorem 1.3(a) shows that the 1st species
which is smarter may not win the competition and coexistence becomes possible.
Such coexistence is called an advection-induced coexistence. An explanation for such

phenomenon is that the smarter species concentrates on the most favorable habitats,

7



leaving enough room for the other species to survive there. However, if every habitat
is favorable (m > 0 in ) and both species strongly pursue favorable habitats,
Theorem 1.3(b) shows that they will lead to overcrowd, causing an advection-induced
extinction of the 1st species which has the larger advective tendency.

In the last section, we establish a bifurcation diagram to organize the main

results and provide some further interesting problems.

Frequently-applied Theorems and the Main Scheme

In this subsection, three basic and frequently-applied theorems (see Theorem 1.6,
1.7, and 1.9) in our subsequent analysis are presented. The first theorem concerns
about the existence and the uniqueness of the semi-trivial equilibrium. Here we
denote u = d; and a = «; in (3) for notational convenience. To change the no-flux
boundary condition into the Neumann boundary condition, we set w = e~ (¢/#™g to

obtain the equivalent form of (3):

%—T = pAw + aVm - Vw + w(m — e(a/“)mw) in Q x (0, 00) )
Blw] = 0,w =0 on 02 x (0, 00)

Since 0 is a trivial equilibrium of (4), we linearize (4) around 0 and then consider

the eigenvalue problem:

AP +aVm -Vo+om = Ao inQ

(5)
Bl¢] = 0,0 =0 on 0f)

Lemma 1.4. For each m € 02+5(§), a >0, and p > 0, there exists a unique simple
principal eigenvalue \(m, «, p) such that the correpsonding principal eigenfunction

15 strictly positive.

Proof. Since Q is compact and m € C*™(Q), it is well-known (ref.[9], p.340, Theo-
rem 3) that the eigenvalue problem
pAd + aVm - Vo + ¢(m — maxm) = ¢ in Q
Q

Bl¢] = 0,0 =0 on 0f)



has a unigue simple principal eigenvalue S\(m,a,u) such that the corresponding
principal eigenfunction is strictly positive; hence the original eigenvalue problem
has A(m, a, p) = S\(m,oz, @) + maxgm as the simple principal eigenvalue and the

corresponding principal eigenfunction is strictly positive. O

In fact, owing to the assumption (A1), the following lemma shows that the

principal eigenvalue of (5) is positive; hence 0 is unstable.

Lemma 1.5. Suppose that (A1) holds, then

(a) /me(a/“)mdx > 0.
QO

[i, metalimdy

>0 as p — oo; hence 0 1s unstable.

Proof. The mapping o € R — / me /MMy is strictly increasing; hence (Al) im-
Q

plies / mel®Mmdg > 0 for all o > 0.

Toﬂprove the part (b), the main idea is to analyze the variational characteri-
zation of the principal eigenvalue. We let o(m, a, u) = —A(m, a, p) for notational
convenience and it suffices to consider the case ¢ > 0 by Lemma 1.4. Multiplying
(5) by ele/Wm g integrating over Q, and utilizing the divergence theorem and the

Neumann boundary condition, we obtain

(a/Bm|\7 b12de — (e/w)m 42 7

e T me T

olm,a, p) = inf K fQ Vel j;Q ¢
SEH(Q), 60 Jo ele/mme2ds

(6)
Take ¢ = 1, then o(m, o, ) < —m. Now, given € > 0, we want to show o(m, o, p) >
—m — € if p is large enough, but it is only required to obtain

u/ M7 |2 — /(m — rn)el MMy dy 4 6/ el mm g2y > ()
Q Q Q

for all ¢ € H'(Q) if u is large enough.
Since o(m, a, pt) is invariant under ¢ — c¢ for any nonzero constant ¢, it suffices

d
fQ|£| Y — 1. Define ¢(x) = 1+ () and apply the

Poincaré inequality, then there exists a constant K > 0 which is independent of ¢

to consider the case ¢ with

such that
[Vl 2@) < KlIVYl 2@ = KIIVOl 2@

9



Applying the Hélder inequality, we obtain

/(m — m)elmptdy
0

/(m — )l Mm (1 4+ 29 + ¢?)dx
Q
< 2|lmel®/™ — e @I |9 | 2y + MW7)

1
= MKVl gy + MKV,
where M = ||me®/mm — ﬁ’Le(o‘/“)mHLm@) < oo. This inequality implies

u/ e(o‘/“)m|v¢|2d:ﬁ—/(m—m)e(o‘/“)mq§2dx+e/ ele/mm 2 g
Q Q

Q
> (uamin e — M)V ey — 2MIAE KTl o+ [ g > 0
Q Q

if p is large enough. [l

The unstability of 0 makes the single species invade even when it is rare. We
see that in the logistic model (o; = d; = 0 in (3)), 0 is unstable, and there exists a
unique global attractor among all non-negative and not identically zero continuous
initial data. The following theorem shows that (3) shares this key feature of the

logistic model.

Theorem 1.6. (c.f.[8]) Suppose that (A1) holds, then for any a > 0 and p > 0,
there exists a unique positive steady-state 6 = 0(x;a,p) of (4), that is, 0 is the

unique positive solution to the scalar equation

V- (uVl —abdVm)+0(m —0) =0 in Q
Bl0] = 0,0 — ab0,m = 0 on 0N

In addition, 0 is the global attractor among all non-negative and not identically zero

continuous initial data.

Proof. 1t suffices to consider the equivalent form of the scalar equation:

pAw 4+ aVm - Vw + w(m — e@P™p) =0 in Q "
Blw] = d,w =0 on 0f2

By Lemma 1.4, we let ¢; > 0 be the principal eigenfunction of (5) with the corre-

sponding principal eigenvalue \; > 0, then we can choose sufficiently small € > 0
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such that

pA(ed1) + aVm - V(er) + edr(m — e/ egy)
= e(pA¢1 + aVm - Véy +mey) — el e

= My — €2 IMEE — ey (A — eel@HMp) > 0

hence e¢; is a subsolution of (7). If u(z,t) is a solution of (4) with u(x,0) = €y,

then
0 0
Qg? ) = pA(egy) +aVm - V(epy) + edr(m — e PMepy) > 0
and general properties of sub- and supersolutions imply that u(z, ) is increasing in ¢

maXxg m

(vef.[8], Proposition 3.2) . Since any constant K > is a supersolution

of (4), we can conclude that there exists a minimal positive steady-state of (4),
denoted by u*(z), such that u(z,t) 1 u*(x) as t — co.

If w** is another positive steady-state of (4) with «™ # u*, then since u* is
minimal, we have u** > «* and u** > u* somewhere in ). Since u* is a positive
solution of

pAY + aVm - Vip + h(m — elM™y*) = X in Q
B[] =0, =0 on 052
with A* = 0, and in the above eigenvalue problem, eigenfunctions belonging to

distinct eigenvalues are orthogonal; hence the principal eigenvalue A7 = 0. Similarly,

u™ is a positive solution of
pAY 4+ aNm - Vip 4 h(m — el WM™y = X4 in Q
B[] = 0,10 =0 on 0f)
with A** = 0; hence the principal eigenvalue \I* = 0. However, given h € C*™(Q),
the principal eigenvalue \; of the eigenvalue problem:
pAY +aVm -V +¢(m—h) =X p  in Q
Bl¢] = 0,0 =0 on 0f2
has a variational characterization:

\ —p fo, €M Y 2da + [, e/ (m — h)yid
= sup —
Ve (@) 440 Joelelkmytde

3Honestly speaking, I have not found the way to prove such general properties.
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hence m — e(@/WmMy™ < m—e@Pmy* and m—e @My < m— el @/Mmy* somewhere
in  imply A\]" < A}, which is a contradiction.

If u(z, t) is a solution of (4) with non-negative and not identically zero continuous
initial data, then u(z,t) > 0 in Q x (0,00) by the Parabolic Strong Maximum
Principle (see Appendix). For any ¢, > 0, we can choose sufficiently small € > 0
such that u(x,0) = ey (x) < u(mw,t) for all x € Q, then u(x,t —to) < u(x,t) for
all t > ty by the Parabolic Comparison Principle (see Appendix). Thus, u(z,t) is
bounded from below by u(z,t — t9) and u(z,t — ty) T u*(x) as t — oo. Since u* is
the unique positive steady-state of (4) and u(z,t) is bounded in Q x [0, 00), we have

u(z,t) = u*(x) as t — 0. O

Even though the full system (2) is non-linear (indeed, semi-linear), the local
stability of semi-trivial equilibria can be determined by the spectrum of the linearized
system around them (ref.[15], Theorem 4.2). In paricular, if N = 2, the second

theorem provides a manipulable criterion for the local stability:

Theorem 1.7. (c.f.[6]) If N = 2, then the semi-trivial equilibrium (0,6(z; B,v)) is
locally stable/unstable if and only if the following eigenvalue problem for (X, ¢) €
R x C?M(Q):

V- (uVo— agVm) + ¢lm —0(55,v)] = A in Q
B[§] = 10, — agdym =0 on 0Q, ¢ >0 in Q
has a negative/positive principal eigenvalue Ai. The criterion for the local stability

of (0(z; a, 1), 0) is analogous.

Proof. If N = 2, then the linearization of the full system (2) around (0, (z; 5, v))

leads to the eigenvalue problem:

Ly[¢]
Ly ()]

V- (1Y — adVm) + ¢lm — 0(+ B,v)] = Ao in
V- (Vi — B6Vm) + lm — 20( B,v)] = M — 0( 8,0)é  in

The main observation is that the principal eigenvalue of Ly is always negative.

To see this observation, we let (A, %) be a solution pair of Ly[t)] = Ay with ¢p > 0
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and 0 = 0(-; 5,v). Multiplying Ls[¢)] = A\ by e~B/Mmg - integrating over €, and

utilizing the equation of 6:

V- wV0—p0Vm)+6(m—60)=0 inQ
B[] = 9,0 =0 on 0f)

we can derive

A /Q e~ BIImGydy = /Q ve BIImag[e=B/myg (e=BIIm] 4 (m — 20)e= /WM Gypdr
:/Q ~Bmy 7 [e=BIIm (e=BMImG)] 4 (m — 20)e~ B/ MGy da
= — /Q e_(ﬁ/”)WGde:E <0

Let A\ be the principal eigenvalue of L;. Suppose that (0,60(z;3,v)) is stable,
and if (9) has a solution pair with A; > 0. Since the principal eigenvalue of L is
negative, which implies that A; lies in the resolvent set of Lo; hence there exists a
unique solution ¢ of (Ly — MI)[¢h] = —0¢. In other words, (9) has a non-trivial
solution with A\; > 0, which contradicts the local stability of (0,60(x; 3, v)).

Suppose that (0,0(x; 5,v)) is unstable, then there exists a non-trivial solution
pair (A, ¢,¢) with Re(A\) > 0. If ¢ = 0, then L, has an eigenvalue with positive
real parts; hence its principal eigenvalue is positive, which is a contradiction. Con-
sequently, ¢ # 0 implies that L; has an eigenvalue with positive real parts; hence

its principal eigenvalue is positive. O

To determine the global stability of semi-trivial equilibria, the first step is to

show that the full system (2) is a strongly monotone dynamical system if N = 2:

Lemma 1.8. Let (ui(x,t),v1(x,t)) and (uz(x,t),va(x,t)) be two solutions of the
< wy(,0) for x € Q, then

full system (2) with ui(x,0) > uy(x,0) and vi(x,0)
ui(z,t) > ug(z,t) and vi(x,t) < vy(x,t) for x € Q and t > 0. Furthermore, if
uy (,0) # us(z,0) and vi(z,0) # vy(x,0) for some x € Q, then ui(x,t) > ua(z,t)

and vy (z,t) < vy(z,t) forx € Q and t > 0.
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Proof. We set (u;, v;) — (e~ @My, e=B/Mmy) to get the equivalent form:

;ZZ = pAu; + aVm - Vu; + ug(m — el@/Wmy; — eBmy)in Q x (0, 00)
81: — vAv; + BVm - Vo + v;(m — e@mmy, — B/Imy) i Q x (0,00)  (10)
Blu;] = 9yu; =0, Blvi] = 0,v; =0 on 02 x (0, c0)

Since v;(z,t) is bounded in Q x [0,00) for any given initial data v;(x,0), we can
choose a constant K > 0 (which may be dependent on the initial data) such that
vi(z,t) < K for all (z,t) € Q x [0,00). Consequently, (10) becomes cooperative
via the change of variables (u;,v;) — (u;, K — v;). Since ui(x,0) > ug(x,0) and
K —vi(2,0) > K — vy(z,0) for all z € Q, by the Parabolic Comparison Principle
(see Appendix), we have wuy(z,t) > us(x,t) and K — vy(z,t) > K — vo(z,t) for
all z € Q and t > 0. The last part of the Lemma follows from the Parabolic Hopf

Boundary Lemma and the Parabolic Strong Maximum Principle (see Appendix). [

Combining with Lemma 1.5(b), Theorem 1.6, and Lemma 1.8, we can apply the

following theorem which provides a criterion to determine the global stability.

Theorem 1.9. (c.f. [14], Theorem B) Suppose that N = 2 and (A1) holds. Let
(0(x; o, 1), 0) and (0,0(x; B,v)) be the semi-trivial equilibria of the 1st and 2nd
species respectively. If (0(x; o, ), 0) is locally stable, (0,0(x; 3,v)) is unstable, and
the full system (2) has no positive equilibria, then (0(z;a, 1),0) is globally asymp-
totically stable. The criterion for the global stability of (0,0(x;5,v)) is analogous.
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We establish the following scheme to close this subsection.

Problems Main Ideas Related Theorems
Local Stability | eigenvalue problems | determine the sign of Theorem 1.7
principal eigenvalues
No Coexistence argue by contradiction Lemma 3.5
Lemma 4.10
Global Stability Theorem 1.9

Briefly speaking, the first task is to determine the local stability via the sign of

principal eigenvalues. The second task is to rule out the possibility of positive

equilibria. This may be the most difficult part because we need to compare with

some integral identities which are not a priori known (see Lemma 3.5) or to control

the asymptotic behavior of principal eigenvalues with respect to some parameters

(see Theorem 4.5 and Lemma 4.10). As long as all the conditions in Theorem 1.9

are fulfilled, the global stability follows directly.
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2 The Main Result of Type A

In Type A, all advective tendencies are zero; hence the full system (2) becomes

ou; al

C = d;Au; +ui(m — Y u;)  in Q x (0,00)
ot 2. ( (1)
Blu;] = 0pu; =0 on 02 x (0, 00)

and the scalar equation (3) becomes

65;’ = d;Au; + ui(m — u;) in  x (0, 00)
Blu;| = 0pu; =0 on 9N x (0, 00)

We note that Theorem 1.6 guarantees the existence and uniqueness of the positive
steady-state of (11) which is a global attractor among all non-negative and not iden-
tically zero continuous initial data. In this section, the ¢-th semi-trivial equilibrium
is denoted by U;(z) = (0,...,1;(x), ...,0) with @;(z) > 0 in Q. To understand the

local stability of U;(x), we need to determine the sign of principal eigenvalues of the

linearization operator of the full system around Uj(w) *:
6vi ,, =
at = LQ[U“ d,]Uz — U; Z Uj
5 j#i (12)
% = Ly [i@s; divk for k i

where L1,Ly : D = {u € C*™(Q) : B[u] = 00on 0Q} — C°(Q) are two linear

operators defined by

Ll[ﬁi; dk] = dkA + (m — 122) for k # 1
Even though (12) is a coupled system, we will show that it suffices to discuss the
sign of principal eigenvalues of Lq[u;;dg] (k # i) and Ly[i;; d;]. Since both m — 4;
and m — 24; lie in C**°(Q), we investigate the eigenvalue problem:

PAG + ho = Ao in )
B[¢] = 0,0 =0 on 0N

“We note that Theorem 1.7 deals with the case N = 2, not general N.
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for any given p > 0 and h € C*™(Q).
By Lemma 1.4, we denote the principal eigenvalue of L [id;; di] by A(m — 1, di),
and the principal eigenvalue of Ls[i;; d;] by A(m — 21;,d;). The following lemmas

provide more characterizations of the principal eigenvalues:
Lemma 2.1. (c.f.[9]) M h, 1) satisfies the following properties

(a) A(h,p) is continuous and non-increasing in u, and strictly decreasing in p if

h is not a constant function.

(b) If hi(x) > ho(x) for all x € Q, then A (hy,pu) > A(he, ). Strict inequality

occurs if hy(z) # ha(x) for some x € Q.

Proof. Put & = 0 and m = h into (6), we have

o IVoPPde — [, he*da

o(h, ) = inf
(1) $EH! ()60 Jo #2dx
hence (a) and (b) follow immediately. O

Lemma 2.2. (c.f.[1])

> 0 if15R K
<t © <k

)\(m = di, dk)

A(m — 24;,d;) <0 fori=1,2,...N

Ly, Ly have bounded inverses whenever the corresponding principal eigenvalue is
less than zero, and (—Ly)™", (—Ly)™" are positive operators in the sense that v > 0
implies (—L1) v > 0 and (—Ly)"'v > 0, and the inequalities are strict if v # 0

somewhere in €.
Proof. By definition, u; is a positive function that satisfies

hence u; is the principal eigenfunction with the corresponding principal eigenvalue
A(m — 1;,d;) = 0. Since d; > dj, for i > k, Lemma 2.1(a) implies A(m — 4;,dy) >

A(m — 1;,d;) = 0. The case i < k follows similarly. Also, Lemma 2.1(b) implies
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To prove the second assertion, we apply the Schauder interior estimates (ref.[10],

Theorem 6.2) to get a constant ¢ > 0 which is independent of u such that

ullc2ts(qy < el Lillcs) + [ullesi)) (i=1,2)

5 compact

Now that C** C? and 0 is not an eigenvalue of L; whenever the corresponding
principal eigenvalue is less than zero, by the Fredholm alternative (ref.[10], Theorem
5.3), L;

(2

! exists and it is bounded. The positivity of (—L;)~" and (—Ly)~" follows

from maximum principles (ref.[12], Lemma 14.3 and Theorem 16.6). O]

Theorem 2.3. (c.f.[1]) Ui(z) is hyperbolic and locally asymptotically stable, whereas
Ui(z) fori > 2 is unstable. Except the zero function, there are no other equlibria in

the biological feasible region K™ = {u € C*™(Q) : u > 0}

Proof. For fixed + and 1 < ¢ < N, it is biologically reasonable to consider the

linearized system of (11) around U;(z) in K; thus we consider (12):

ov;
8t —L2[u17 z _ulzv_]

J#i
% = Lq[d;; dig]vk for k #£1

with vy > 0 for k # ¢. It is known that the local stability can be determined by the

spectrum of the linearized system (ref. [15], Theorem 4.2). Since

L uza U/’LZU] < L2 ul7
J#i

we can conclude that the largest real parts of eigenvalues of the linearized system is

smaller than

max{A(m — a;,dg), \(m — 24;,d;) : k # i}

If 2+ = 1, then all eigenvalues have negative real parts by Lemma 2.2. Consequently,
Uy (x) is hyperbolic and locally aymptotically stable. If ¢ > 2, then A(m —;,d;—1) >
0, which implies the unstability.

Suppose that the final assertion of the theorem is false; hence another nonzero

equilibrium exists in K. By a rearrangement of indices if necessary, the equilibrium
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can be of the form (u},us,...,u;,0,...,0), 2 < i < N and u; > 0 is not identically

%)

zero for all 1 < j <. Put the equilibrium into the system (11), we get

dj Auy + uj(m — Zu;) =0
k=1

for all 1 < j < ; hence A\(m — Zuz,dj) =0forall1 <j<i. But Zu; is not a
k=1 k=1
constant function; hence Lemma 2.1(b) implies

0=A(m— Zu;,di) < A(m — Zu;, di—1) =0
k=1 k=1

which is a contradiction. O]
Proof of Theorem 1.1

Proof. The part (a) follows from Theorem 2.3. The part (b) follows from Theorem
2.3 and Theorem 1.9. O

An Interlude: Type A Under Effects of Mutation

In this subsection, the genetics of N species or N different phenotypes of the
same species are assumed to be haploid; hence their process of mutation is simple

enough that we can take the effects of mutation into account:

N
% :dlAuleul(m—Zuj) +€ZMijuj in  x (0, OO)
t j=1 j=1 (13)
Blu;] = Opu; =0 on 0N x (0, 00)

where M;j;u; is the density converted from u; into w; via mutation. The effects of
mutation is represented by the mutation matric M = [M,j]nxn. Even though it
is believed that mutation happens randomly, but for mathematical simplicity, we

assume that M is a constant matrix satisfying:

<0 ifi=7 self-mutation is harmful

>0 ifi#j
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and we focus on the case of small mutation rate 0 < e < 1.

What are behaviors of semi-trivial equilibria under effects of mutation? A stan-
dard method is to utilize the implicit function theorem to describe the perturbation
of U;(x), but the fairly interesting part is to show that after perturbation
Ui(z) still lies in the biological feasible region K, even in intK™.

To utilize the
by

For notational correctness, we consider u as column wvectors.

implicit function theorem, we define the operator F : DV x R — [C°(Q)]V
F(u,e) = D(Au) +u(m —1-u) + eMu

where D = diag[dy,ds, ...,dy] and 1 = [1,1,...,1]7. Equilibria of the perturbed
system (13) are solutions of F'(u,€) = 0, and we try to solve u in terms of € such
that F'(u(e),e) = 0 for all small € > 0. The Frechét derivative of F' at (Uy(x),0) is

the linear operator L : DV — [C°(Q)]Y given by
Liu] = D(Au) +u(m —1-U;) — (1 -w)U; (14)

The components of L are

(Llu])1 = Lo[ti; dyJuy — Zufluj

(L[u]); = Lq[us; dg)w; for i > 2
hence L can be written as
[ Lol d] el il D
0 Ly[uy;ds) ... 0 0
L —
0 0 Ly [dy; dy -] 0
I 0 0 0 L [uy; dy] |

Similar arguments of Lemma 2.2 can prove that L has a bounded inverse, but the

structure of L™! can be described explicitly:

~Ly' —Ly (@l ds]) o Lyt Ly s )
0 —Ly '[tir; do) 0
L (15)
0 0 0
0 0 — Ly [uy; dy) i
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where —Ly' = —Ly'[u;di]. By Lemma 2.2, each diagonal entry of —L™' is a

positive operator and other nonzero off-diagonal entry is a bounded operator.

Theorem 2.4. (c.f.[1]) There exists €g > 0 such that the perturbed system (13) has
an equilibrium U, (z;¢) € [C*T(Q))N for 0 < € < ey with Uy(z;0) = Ui(x), and

Ui (x;-) is real analytic, hyperbolic and locally asymptotically stable.

Proof. (c.f.[11], p.15) F is linear in €, quadratic in u, and it has partial Frechét
derivatives up to infinitely many order of which power series converges in some

neighborhood of (U3, 0); hence F is analytic. We define G : DV x R — [C°(Q)]Y by
G(u,€) =u— L' F(u,e)

then G is analytic and G(Uy,0) = U;y. Let D,G(u,€) be the partial Frechét deriva-
tive of G at (u,€), then D,G(U1,0) = 0; thus there exists 0 < x < 1 such that
|D.G(u,€)|| < K in some neighborhood of (U, 0). By the Contraction Mapping
Theorem, some € > 0 exists such that there exists f : (0,¢) — [C?(Q)]Y which
is analytic and satisfies f(0) = Uy, and F(f(€),€) = 0. Denote f(e€) = Uy(-;€), and
from Theorem 2.3 we can choose smaller €5 > 0 to maintain the local stability and

hyperbolicity. O]

To ensure Uy (€) (= Uy (x;€)) has any biological meaning, we must show that it lies
in K. Since 1;(x) > 0 in Q, it suffices to prove the other i-th (i > 2) components
of U;(€) remain non-negative under the perturbation. Define U () = Uy(e) = U, and
fix i with 2 < i < N. To investigate the Taylor series of U(e), we put U(e) into (14)
to get

LU(e) = DA[U(€) = Uh] + [m — 1- 1] [Us(e) — Ur] = {1 - [Un(e) — U]} Uh
= DAU(€) + [m = 1- Ui()|Us(€) + eMUi () — eMUy(e) + [1- U(€)]U(e)
= —eM[U, + U(e)] + [1- T (e)]U(e)

A~ k/\
Denote 9*U(0) = aaL]ge)|e_o. A direct computation and induction show
€
LOMU(0) = — MU,
k-1
LOFU(0) =Y [1-0F7U(0)]0/TU(0) — kMOF'U(0)  for k > 2
j=1
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Since L' exists, we substitute backward to obtain 861(7(0) = (=L7*M)U, and
U (0) = k{(—L'M)*U, + lower order term in (—L M)

If the principal term is of order k, then [8?U(0)]; = 0 for j = 1,...,k — 1. From the
special form of —L~* (see (15)) and U, (z) = (4i1(x),0, ..., 0), we observe

[85(7(0)]z # 0 if and only if [M@f_lﬁ(())]i # 0 if and only if [M*U,); # 0

hence the sign of the principal term is determined by the (i, 1)-entry of M ¥ denoted
by [M*];1, which is characterized by the following lemma:

Lemma 2.5. (c.f.[1]) For each i with 2 < i < N, there are two possibilities:
either [M*];; = 0 for all k > 1 or there exists p = p(i) with 1 < p(i) < N — 1 such

that
=0 if1<k<p

>0 ifk=0p

(M1

Proof. ° Suppose that [M7];; # 0 for some j, then we can always choose p = p(i)
such that [M*);; = 0 for 1 < k < p and [M?];; # 0. If p > N, then by the
Cayley-Hamilton theorem, [M*]; = 0 for all k > 1, which is a contradiction. If
1 <p< N —1, then we must utilize the structure of M to guarantee [M?];; > 0.

Define an oriented-graph on the vertices {1,2, ..., N} as following: Two vertices
i and j are connected by an oriented-path p; ; started from 7 into j if M;; # 0, and
we define M;; to be the weight on p; ;. An example is given by

®The fairly simple and beautiful proof comes from Y. J. Cheng: R97221014@ntu.edu.tw
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Let Pj, i, : Djoir = DPjrja — - — Djr_1.jx D€ a total oriented-path of length | P;

JoJk‘ =
as w(PjoJk) = Mjojl Mj1j2"'MJ'k71]'k7

k connecting jo and ji. Define the weight of P ;,

then an inductive argument shows that
(MM = > w(Piy)
|Py 1| =k

Let p = p(i) be the least length of total oriented-paths connecting i and 1, then
[Mglin = 0 for all 1 < k < p, but each of them has no cycles p,, (r = 1,...,N) of

which weight is negative. Consequently, [M*];; > 0. ]

Lemma 2.5 implies that either [9*U(0)); = 0 for all k > 1 or [?U(0)]; = 0 for
1< j < pand [0°U(0)]; = p![(—L'M)PU]; > 0 which is independent of . Thus,
we have proved the following theorem which concludes that Uy (z;€) lies in K, even

in int K under the effects of small mutation.

Theorem 2.6. (c.f.[1]) Let U(e) = Uy(e) — Uy, and fiz i with 2 <i < N, then for
0 < €< e, either U(e); =0 in Q or

~

Ule); = Dy;(x) + O(eFDF)

where v(z) > 0 for all x € Q.
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3 The Main Result of Type B

In Type B, there are two competing species and only the 1st species pursues

more favorable habitats; hence the full system (2) becomes

@:V-(MVU—auVm)%—u(m—u—v) in Q x (0,00)

t
% =vAv+v(m—u—v) in  x (0, 00) (16)

Blu] = uo,u — aud,m =0, Blv] = 0,vy =0 on 9Q x (0, 00)

and the scalar equation (3) becomes

% =V (uVu—auVm)+ulm—u) inQ x (0,00) an
Blu] = popu — aud,m =0 on 02 x (0, 00)

% =vAv+v(m—ov) inQ x (0,00) (18)
Bv] =0,v=0 on 0N x (0, c0)
We note that for each a > 0 and p,v > 0, Theorem 1.6 guarantees the existence
and uniqueness of the positive steady-state u = a(a, u) = 0(-; o, ) of (17), v =
o(v) = 6(-;0,v) of (18) respectively, and each of them is a global attractor among
all non-negative and not identically zero continuous initial data.
To determine the local stability, we know from Theorem 1.7 that the semi-trivial

equilibrium (%, 0) is locally stable/unstable if and only if the principal eigenvalue of

the problem
vAY +¢(m —1a) =0t in 19)
B[Y] = 0,1 =0 on 0f)

is negative/positive. Similarly, (0,0) is locally stable/unstable if and only if the
principal eigenvalue of the problem
V- (uVo —apVm) + ¢(m —v) =1¢ in
Bl¢] = puop¢ — apd,m =0 on 0f)
or the equivalent form by taking ¢ — e~ (@/W™mg
uAp+aVe-Vm+o(m —0) =7¢ in
B[¢] = 0,0 =0 on OS2

(20)
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is negative/positive. In the subsequent analysis, we always consider the equivalent
form because it is equipped with the Neumann boundary condition.

How can we investigate the effects of diffusion and small advective tendency
on the evolution of competition? The main idea is to examine the results by the
perturbation analysis of parameters (o, p, ) in (16) from (0, o, f0) for some g > 0.
For readers’ convenience, we collect a version of the implicit function theorem (ref.

[8], Theorem 3.5) :

Theorem 3.1. (c.f.[8]) Let X, Y and Z be Banach spaces and F': U C X XY — Z
where U is an open subset. Suppose F(x,y) and F,(x,y) are continuous in U and
F(xo,y0) = 0 for some (xg,y0) € U. If the linear map F,(xo,y0) : Y — Z has a
continuous inverse, then some neighborhood V' of x exists such that for each x € V,
there ezists a unique y(z) € Y satisfying F(z,y(x)) = 0 and the mapping x — y(x)
18 differentiable.

Lemma 3.2. (c.f.[3]) Suppose that ay > 0 and jg, vy > 0. The map from R? to
C?(Q) given by (o, ) — i(a, p) is differentiable in some neighborhood of (v, o).
The map from R to C*™(Q) given by v — ©(v) is differentiable in some neigh-
borhood of vy. Let oo(a, p,v) and 1o(a, p,v) be the principal eigenvalues of (19)
and (20) respectively, then oo(a, p,v), To(e, 1, v) and their corresponding normal-
1zed eigenfunctions depend differentiably on o, p, and v in some neighborhood of
(co, po, o).
Proof. The main idea is to utilize Theorem 3.1 via comparison of principal eigen-
values. To show that @ depends differentiably on « and p, we set @ = e~ (*/®™g in
(17) and multiply e®/®™ then

pV - (el/Rmgp) 4 e/ mmap(m — e /PME) =0 in ©

B[w] = 0,w =0 on 0f2
Define Y = {w € C**(Q) : 9,w = 00on 9Q} and F: R x R x Y — C%(Q) by

F(a, p,w) = pV - (e@/Mmw) 4 el @/mmyy(m — e@/mmy)

For any v € Y, we calculate

d
Dy F (e p,w)o = == Fla g, wt€v)|mg = pV - (1" V0) + (10 (m = 2610 0)
€
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To show that Dy, F (g, f1o, W) is invertible, we must prove that for any h(z) € C°(Q),

the equation for v € Y
110V - (eleo/momgy) o eleo/mo)my, (i  9e(e/mo)mpy — p(z) in Q)

has a unique solution. Since F'(ap, po, w) = 0 implies that ¢ = @ is the positive

solution of the eigenvalue problem

LoV - (G(QO/#O)mv¢) + e(ao/uo)m¢(m _ 6(CVO/#O)m) =\ inQ
Bly] =0, =0 on 0f)

with A = 0; hence the principal eigenvalue \; = 0. By the variational characteriza-
tion of principal eigenvalues (8), the fact m — 2e(@0/Ho)mapy < — e(@0/HmMp implies

that the eigenvalue problem

1oV - (e(ao/uo)mvw) + 6(0‘0/“°)mw(m _ 2€(ao/uo)m) =\ inQ
Bly] =09, =0 on 0f2

has the principal eigenvalue A\] < A; = 0; hence all other eigenvalues have negative
real parts. Now that 0 lies in the resolvent set of D, F'(«y, g, W), we can conclude
that Dy, F'(av, 1o, W) has a continuous inverse; hence the differentiable dependence of
@ on « and p follows from Theorem 3.1. The proof for the differentiable dependence
of ¥ on p is an analogy.

However, the proof for the differentiable dependences of oy and 7 on «, p and

v need some modification. Multiplying (20) by e®/®™ yields

uV - (el B) 4 el Mg (m — §) = Tel@/Mmpin Q
Bl¢] = 0,0 =0 on 052

Define G : (R? x Y) x (Y x R) = C°(Q) x R by

Gl 1,5, 6,7) = (V- (1/9m7 @) 4 (@1 1y _ 5y peles/im s / /M 2 1)
Q

The linearization of G with respect to ¢ and 7 is Dy G (a, 1,0, ¢, 7)(v, p) =

(Vv - (e(o‘/“)va) + e(o‘/“)mv(m — ) — rele/mmy — pele/mm g 2/ e(a/”)mgbvdx)
Q
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where (v,p) € Y x R. Let 77 = 7o(, tto, %) and © = 0(rp). To show that
D G(w, 1o, D, ¢o, 73 ) is invertible, we should prove that for any (g,7) € C°(Q)xR,

the equations

1oV - (e(ao/uo)mvv) + e(ao/“O)mv(m — ) — 7-(>]’<e(ozo/uo)mv — peleo/m)m g — g(x)

21
2/e(a0/“0)m¢ovdx:r (21)
Q

in Q have a unique solution (v,p) € Y x R. By a special version of the Fredholm

alternative (ref.[8], Theorem 1.10), v € Y can be solved for given g € C°(Q) if
/(/)6(“0/“0)%0 + 9)¢odz =0
Q

We normalize ¢q as / elao/ “O)mgbgd:ﬂ = 1, then p is uniquely determined by p =
Q

— / ®ogdx. To show that v is uniquely determined, we observe that v has the form
Q

v = vy + Sy where vy is a given particular solution of the first equation of (21) and

s € R. Substituting this form into the second equation of (21) and utilizing the

normalization of ¢q yield

2/ e(O‘O/MO)mgbOvodx +2s=r
Q

hence s is uniquely determined by s = r/2 — / eleo/rom g vodz. By the Schauder
interior estimates (ref.[10], Theorem 6.2) the Sosllution mapping from (g,r) to (v, p)
is continuous; thus the differentiable dependence of 75 on «, p and v follows from
Theorem 3.1. The proof for the differentiable dependence of oy on «, pu and v is an

analogy. O]

When («, p,v) = (0, o, o), we know @ = o = 6 where 6 is the unique positive

steady-state of
A0 +60(m—0)=0 inQ
Lo (m —8) in (22)
B[] = 0,0 =0 on 0f2

By Lemma 3.2, we let (a, p,v) = (a(s), u(s),v(s)) where a(s), u(s), and v(s) are
differentiable functions in a neighborhool of 0 with (a(0), 1(0),2(0)) = (0, o, fto)-
When s = 0, ¢ = pof is a positive solution of (19) with 0 = 0 and ¢ = pyb is a
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positive solution of the equivalent form (20) with 7 = 0 where p, is any positive con-

stant; hence oo(0, o, to) = 70(0, o, o) = 0. To be consistent with Lemma 3.2, we

choose py = 1/ / 6?dx and require that the eigenfunctions vy and ¢, corresponding
Q

to o¢ and 7y respectively satisfy

/ Yide =1, / e/ mm g2y — 1
Q Q

We express the parameters («, i, ), the positive steady-state @ and 0, the principal

eigenvalues oy and 7y, and the normalized eigenfunctions ¥y and ¢, as
a=0+4+ais+o(s), pp=po+ p1s+o(s), v=po+11s+o(s)
u=0+us+o(s), v =0+ vs+o(s)
0o =0+ 015+ 0(s), 70 =0+ 15+ o(s)

Yo = pol + P15+ 0(s), ¢o = pol + P15+ 0(s)

Substituting the above expressions into (17), (18), (19) and (20), dividing by s and

letting s — 0, we obtain the following relations:

A0 + poAuy — V- (an0Vm) + ug(m — 20) =0 in Q (23)
A + poAvivy + (m —260) =0 in Q (24)
Po1 A0 + oAy + Y (m — 0) — pour@ = o1pel in Q (25)

poulAH + MOA¢1 + quOVG -Vm + (bl (m - 9) - p(ﬂ)l@ = Tlpoe in Q2 (26)
where 0, uq, vy, ¥ and ¢, satisfy the boundary conditions:
3n9 = &ﬂ)l = &ﬂ/}l = 8nq51 = 0, ugﬁnul — alﬁﬁnm =01in (‘39

Since the sign of the principal eigenvalue oy (resp. 79) is determined
by the sign of o1 (resp. 1), our next goal is to express o, and 1 in terms
of ay, p1, and vy.

Multiplying (25) by 6, integrating over 2, and utilizing the divergence theorem,

we have

/ U1 [0 AG + 0(m — 0)]dx — porry / |VO|*dx — po/ u0*dz = poo / 0*dw
0 0 0 Q
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The first term vanishes according to (22). Dividing by p, yields

—V1/ |vey2dx—/u192dx=al/92dx (27)
Q Q Q

To evaluate the second integral in (27), we multiply (23) by 6, integrate over {2 and

utilize the divergence theorem and (23), then

/ O(poOnur — 109, m)ds — ul/ VO’ dz + ay / OVEO - Vmdr = / u02dx
89 Q Q Q

By the boundary condition of u;, we have
— / IVO|*dz + ay / OVl - Vmdx = / u10*dx (28)
Q Q Q

Substituting (28) into (27), we can express o; as

o - (11 — 1) [ IVOPde — oy [, 0V - Vmda
Jq, 0%dx

The process to obtain the expression of 7y is roughly analogous. Multiplying
(26) by 0, integrating over €2, utilizing the divergence theorem and (22), and dividing
by po yield

—,ul/ |V9|2dx—|—a1/QVG-dex—/vlegdx:7'1/92dx
Q Q Q Q

Multiplying (24) by 6, integrating over €2, and utilizing (22) yield

—1/1/ |V0|2d:v+oz1/9V9-de$:/0102dx
Q Q Q

Substitution yields

(1 —m) [, IVO]Pda + oy [, 0V - Vmdz
Jo, 0%dx

(29)

T = —01 =

We note that V@ is not identically zero since m(x) is not a constant function.
The signs of o7 and 71 can be determined and independent of 0 if we can guarantee

that / OV 6 -Vmdzx is always of the same sign. This is not obvious, but the following
Q

lemma which may be surprising proves that / OV - Vmdzx is always positive if the
Q
shape of the environment is convex.
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Lemma 3.3. (c.f.[3]) Suppose that Q C R is convex, then / OVo - Vmdx > 0.
Q

Proof. Differentiating the equation ©
A)+0(m—0)=0 inQ
B[] = 0,0 =0 on 0f2

(30)

and taking dot product with V@, we have
VO - V(A + |VO|*(m —20) + VO - Vm = 0 in
A straightforward computation yields the identity
V0. V(A0 + | D2|? — %A(\VGP)
hence we have
%A(We\?) D + [VOP(m — 260) + 0V - Vi = 0 in Q (31)
Integrating (31) over €2 and utilizing the divergence theorem, we have

1
/ OVl - Vmdr = / |D?0)? — |VO|*(m — 20)dx — 3 0,(IVO*)ds (32)
0 0

o0

Since 6 is a positive solution of (30); hence the eigenvalue problem
Ap+d(m —0)=XAp in
B[] = 0,0 =0 on 0f)

has the principal eigenvalue \; = 0. However, by the variational characterization of

the principal eigenvalue, we know

—|V$[2 + ¢*(m — 0)]d
R A
PpEH(Q),6#0 fQ¢ dx

hence
/[—|V¢]2 + ¢*(m — 0)]dr < \ / ¢*dx =0
Q Q
for any ¢ € H'(Q) and ¢ # 0. Since 6 € C?*°(Q), we have 6,, € H'(Q) for each i

| =Ive.,

69 may not be three-times differentiable, but (32) still holds.

and

402 (m—0)de <0
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Summing over ¢ yields
/[_\02912 +V6[2(m — )]dz < 0
Q

Thus, (32) can be rewritten as

/9V0~dex:/9|V€|2dx—1/ On(IVOP)ds
Q Q 2 15)9)

+/ D20 — V02 (m — 0)da
Q

1
2/9|V9|2d93——/ 0. (IV0]?)ds
Q 2 o0

0.(|VO|*)ds <0
o0

To prove the above inequality, it suffices to show that 9, (|V8[*) < 0 on 09. Fix

which is positive if

x* € 012, and let z* = 0 without any loss of generality. Since €2 is convex, we can
choose a local coordinate system, still denoted by z, such that {2 can be expressed
by x; = f(x1,...,21-1) where f(z1,...,2-1) is a concave function with f(0) = 0,

Vf(0) = 0, and D?£(0) is non-positive definite. Near z* = 0, the unit outer normal

-1
— 1
(=Vf1) hence 9,0 = 0 implies 6,, = Z 0z, [z, Differentiating

V1+ IV e

the equation With respect to x (k = 1,...,l — 1) and putting z; = ... = 2,1 = 0

is given by n =

yield 8,,,, = Z 02,(0) fz,2,(0). Since (0, ...,0,1) is the unit outer normal at 2* = 0,

we have 6,,(0 ) 0 and

an(]V9|2)(0) = (‘V9|2)$l (O> =2 Zeivj (O)Qwﬂ:z (O> =2 ZHT«]’ (O)szfc]' (O)

7j=1 7j=1
— -1
=2 Z ‘gzv] Z ezrk fﬂ:ka?] + 29$z (0)0561131 (0)
7j=1 k=1
=2 Z 02, (0) frpar; (0)0,,(0) < 0
7,k=1

]

By (29) and Lemma 3.3, we can derive the following theorem which concludes
that (1, 0) is locally stable if « is sufficiently small, but not too small relative to the

difference p — v.
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Theorem 3.4. (c.f.[3]) Suppose that Q C R' is convex. Let
(11, 9) = (05 +0(8), o + s + 0(8), o + 115 + 0(3))
then for sufficiently small s > 0, we have
oo(a, p,v) <0 < 1o, 1, V)

provided that

Jo |VO2dz
> J—
= ) TG N mda
Th 3.4 shows that th tit Jo [VOdr 1 i tant
eorem o.4 SNoOws a € quantl ma ay an 1mportan
v Y T 9v0 - Vmdy 0 P AT TP

role in studying the dynamics of the full system (16). Hence, for u > 0, since V0 is
not identically zero, its reciprocal
Jo 0@z 1) VO(z; 1) - Vim(x)da

Jo IVO(z; p)|?dx

is always well-defined, and a* () > 0 if  is convex by Lemma 3.3. To determine

o (p) =

the global stability of (@, 0), we need to rule out the possibility of positive equilibria.

Lemma 3.5. (c.f.[4]) Suppose that m(x) is not a constant function. Let (a, pu,v) =

(ars+o(s), o+ pns+o(s), po+ris+o(s)). If & (po) # 0 and cy # (1 —v1) /" (o),
then the full system (16) has no positive equilibria for sufficiently small s > 0.

Remark. In Lemma 3.5, € is not necessarily conver.

Proof. Suppose that (16) has a family of positive equilibria {(us,vs)} where s > 0
is sufficiently small. By elliptic regularity, that is, a process consists of an a priori
global Schauder estimate (ref.[10], Theorem 6.30), the uniform boundedness of the
family in [C?™(Q)]?, and the precompactness result (ref.[10], Lemma 6.36), then
passing to a subsequence if necessary, we have (us,vs) — (u*,v*) in [C?*(Q)]? as
s — 0 and u*,v* > 0 in Q satisfy
0 inQ

poAv* + v (m —u* —0v*) =0 inQ (33)

Blu*] = 0,u*, B[v*] = 0,v" =0 on 0N

poAu* + u*(m —u* —v*) =
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hence u* + v* satisfies

poA(u® +v*) + (u +v")[m— (v +0")] =0 inQ
Blu" 4+ v*] = 0, (u" +0v*) =0 on 0N

(This is the crucial mathematical reason to assume (C4)). By the
uniqueness of (22), either u* + v* = 0 or u* + v* = 0(-; o). If u* +v* = 0, then
(us,vs) — (0,0) uniformly in z as s — 0. Setting v = vy/||vs||r~(), by elliptic

regularity, v, — 0 in C*(Q) as s — 0 where © > 0 is not identically zero and satisfies

oAV +mo =0 1in Q
B[o]=0,0 =0 on 09

Multiplying the above equation by 6(-; i), integrating over 2, and utilizing (22)
yield / 02(z; j19)0(2)dx = 0, which is a contradiction. Hence u* + v* = 0(-; o).
Q

If w* =0 and v* = 0(-; o), we set Uy = uy/||us||L=(0), then u, satisfies

V- (uVis — au,Vm) + dg(m — us —vg) =0 in Q
Blus| = poyuis — atigdpym = 0 on 0f)

By elliptic reqularity, i, — @ in C*(Q) as s — 0 where @ > 0 satisfies maxa = 1
Q

and
oA+ alm — (5 u0)] =0  in Q

Blu) = 0,4 =0 on 0f2
Therefore, @ = 0(-; 110)/||0(-; f0) || Lo () by the uniqueness of (22).

Since u,; and v, satisfy

V- (uVus — ausVm) + ug(m — us — vg) = 0 in
vAvs +vs(m —us —vg) =0 in

Blug| = poyus — augsdym = 0, Blug] = 0,vs =0 on OS2

Multiplying the equation of us by v, the equation of vy by ug, subtracting and

integrating over € yield

a/ usVus - Vmdr = (u — v) / Vu, - Vugdx (34)
Q Q

"Here, we see that the full system (2) has a rather special 72 in 17 structure, that is, two

equations with the same parameters can be added into one equation.
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Dividing both sides by s and ||u,||=(q), we have

(@ +o(1)) |

UsVus - Vmdz = (up — v1 + o(1)) / Vi, - Vugdx
Q

Q

Letting s — 0, we obtain

al/QG(:z:;uo)V@(x;uo) -Vm(z)dr = (u1 — 1) /Q |VO(x; po) Pdx

Hence, a; = (u1 — v1)/a* (1) which is a contradiction. The case for v* = 0 and
u* = 0(-; po) is analogous.

If w*,v* > 0 are not identically zero and satisfy u* + v* = 0(+; o), then from
(33), (u*,v") = (KO(+; o), (1 —rK)O(+; o)) for some k € (0,1). Dividing (34) by s and

letting s — 0, then again a; = (u; — 1)/ (o) which is a contradiction. O
Proof of Theorem 1.2

Proof. By Theorem 3.4, (@, 0) is locally stable, whereas (0, ) is unstable. Lemma 3.5
rules out the possibility of positive equilibria; hence (u,0) is globally aymptotically
stable by Theorem 1.9. [

Remark. We note that the assumption on the convezity in Theorem 1.2 is neces-
sary. In other words, for any p > 0, we can construct a non-convexr domain £ C R?
and smooth function m(x) such that o*(u) < 0; hence by Theorem 3.4, Lemma 3.5
and Theorem 1.9, (0,0) is globally asymptotically stable. See the section 3 of [3] and
the section 2.2 of [4].
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4 The Main Result of Type C

In Type C, both competing species move toward more favorable habitats; hence

the full system (2) becomes

%:V-(MVU—auVm)+u(m—u—v) in Q x (0, 00)
a—: =V wVov—pvVm)+ov(m—u—v) in 2 x (0, 00) (35)

Blu] = puo,u — aud,m = 0, B[v] = vo,v — fvd,m =0 on 92 x (0,00)

and the scalar equation (3) becomes

%:V-(uVu—auVm)%—u(m—u) in Q x (0,00) (36)
Blu] = popu — aud,m =0 on £ x (0, 00)

% (Vo - fu¥m) + v(m—v) 0 x (0,00)

— =V - wVv—5vVm)+v(m—v) in , 00

ot (37)
B[v] = vO,v — pvd,m =0 on 9 x (0, 00)

We note that for each o, 5 > 0 and p,v > 0, Theorem 1.6 guarantees the existence
and uniqueness of the positive steady-state 6(-; «, u) of (36), 6(-; 5,v) of (37) re-
spectively, and each of them is a global attractor among all non-negative and not
identically zero continuous initial data.
To determine the local stability, we know from Theorem 1.7 that the semi-trivial
equilibrium (6(z; o, i), 0) is locally stable/unstable if and only if the principal eigen-
value o7 of the problem
V- (Ve = BuVm) + Um — 0 a,0)] = o in © -
B[] = vo,1b — B1p0,m = 0 on 02

is negative/positive. Similarly, (0,6(z; 3, v)) is locally stable/unstable if and only if

the principal eigenvalue 77 of the problem
V- (V6 — agVm) + élm — 6(54,v)] = 76 in Q .
B[¢] = p0n¢ — apd,m = 0 on 0f2

is negative/positive.

In Type B, the assumptions of similar diffustion (u =~ v), small advective ten-

dency, and the convexity of the environment determine the sign of principal eigenval-

ues (see Theorem 3.4). In Type C, the situation becomes more complicated because
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the convexity assumption is dropped out and each species may have quite different
conditional dispersal. To deal with the situation, the main idea is to search
suitable ranges of parameters («, [, u,v) where some important inequal-

ities are applicable.

Local Stability of (0,60(x; 8,v))
To take the sign of 7, for example. Let ¢ > 0 be the principal eigenfunction
with the corresponding principal eigenvalue 7. We set ¢ — e~ (@/"™¢ to change

(39) into the equivalent form:

v - (e(a/u)qug) + e(a/u)m¢[m —0(+; 8,v)] = mel®Mmgin Q
Blg] = 0,0 =0 on 0f)

Dividing the above equation by ¢ and integrating over (), we obtain

(a/w)ym 2
M/ e Q\VW das+/G(O‘/M)m[m—e(‘;ﬁ,”)]d$:Tl/e(a/“)md:r (40)
Q ¢ QO Q

Since the first integral in left-hand side of (40) is positive, it is natural to expect

that the inequality

/ @M _ (s B, )]dz > 0 (41)

holds, then we can conclude that (0,6(x; 8, v)) is unstable. To prove (41), it suffices
to show

/ e(@/mm=ll0all) [y — 9(-; B, 1)]dx > 0
Q

where ||0zcc = [[0(+; B, V)| 1 @) Define
Qp ={z€Q:m(2) < [Ifall}, Q- = {2 € Qrm(z) > |02}

m* = maxm
9)
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The main observation is that if ||02]|. < m* holds ® provided that 3/v lies

in some compact interval R, then

/ ele/mm=102llee) (1 _ 9(.; B, v)]da:
Q4

S/‘gwmmnwm%m_gﬁﬁwwm

Q4

< / Im — 0(; 5, v)|dx < 2[|ml||Q] < 00
Q4

holds whenever /v lies in R. Since 6(-; 3, ) depends continuously on 3 (see Lemma
3.2), we can define

1
= — mi *—|0s|les) >0
€ Qgggm 1102/ )

and there exists » > 0 which is independent of  such that
1. , _
m(z) — ||02]|co > E(m —10s]l00) > €, if 2 € B(xg;r) NQ C QL
where m(xy) = m*. Hence

/ e(a/u)(m—\wzllw)[m —0(:; B,v)]dx > / e(a/u)(m—uezllw)[m —0(+; 8,v)]dx

_ B(zo;m)NQ

2 / el @M 5 oo
B(zo;r)NQ

as a — 00. As a result, we find that there exists a constant C; = Cy(u, v,m, Q) >0
which is independent of o and 3 such that (41) holds. Consequently, (0,0(x; 5,v))
is unstable provided that a > C} and /v € R.

What is the compact interval R? Before answering the question, we shall utilize

the maximum principles to gain some useful information.

Lemma 4.1. (c.f.[6]) Suppose that m is not a constant function, then the inequal-

1ties

min(me~(*/m) < e~ m9(.: 5, v) < max(me™ /™) (42)

Q Q

hold in Q.

8We note that the inequality [|02]|s < m* is a direct consequence of the Hopf Boundary Lemma

and the Strong Maximum Principle if @ = 0; hence this inequality is not beyond our experience.
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Proof. Setting w = e~ #/Y)™g(.; B, ), then w satisfies

vAw + BVw - Vm +w(m — eP®M™My) =0 in Q
Blw] = 0,w =0 on OS2

(43)

Let w(zg) = maxw > 0. If o € Q, then Vw(zy) = 0 and Aw(zg) < 0; hence we
0

have m(xqg) — e(ﬁ/l’)m(“’)w(xo) > 0. If 2y € 9Q and suppose m — e¥/*™y < 0 near

zo, then the Hopf Boundary Lemma (ref.[10], Lemma 3.4) implies d,w > 0 which is

a contradiction. Consequently, from (43) and w > 0, we obtain

w(zg) < m(xo)e—(ﬂ/u)m(xo) < m@X(me—(,a/y)m)
Q

To show that the second inequality is strict, we let M; = max(me~#*™) and

)
wy () = My —w(z), then w, satisfies

vAw, + fVwy - Vm — e(ﬂ/”)m(Ml — wl)[me_(ﬁ/”)m — My +w]=01in
Multiplying the above identity out and utilizing the definition of M;, we obtain
v AW+ BV w -Vm+eB/m; (wy —2My +me™BImy = B/Im (me=B/vm _ )y <0

where the last inequality is not identically zero since m is not a constant function.
Since w; > 0 in Q, d,w; = 0 on 09, and wy — 2M; + me~B/m < 0, by the
Hopf Boundary Lemma (ref.[10], Lemma 3.4) and the Strong Maximum Principle
(ref.[10], Theorem 3.5) we have w; = M; — w(x) > 0 in Q. The proof for the first

inequality is an analogy. O

From Lemma 4.1, we may suspect that the mapping y — ye ¥/ plays an
important role. Since

d — 14 — v /8

dy

we know that ye™¥/") is increasing for y < v/B. If we consider m* < v/[3, then

mgx(me—(ﬁ/v)m) < mre=B/vIm
)
Combining with (42), we derive

Os B,v) < m I <
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for all z € Q if B/v < 1/m*; hence the suitable compact interval R = [0, 1/ maxm).
)

In addtion, we know that ye~ /") is decreasing for y > v/B. If we consider
minm > v/
Q

(here we see the reason to assume m > 0 in Q), then

min(me= /M) > e (8/m

Q

and by (42) we obtain
Oz B.1) > m*ePlm@)-m]

for all z € Q if /v > 1/ minm.
Q

As a consequence, we have proved the following lemmas:
Lemma 4.2. (c.f.[6])
(a) If B/v < 1/mﬁaxm, then
0(z: B,v) < m*eBm@=m] < s
for all x € Q.
(b) If m >0 in Q and B/v > 1/m%nm, then
0(z: B,v) > m*elB/)m)-m]
for all x € Q. In particular, 0(xo; 8,v) > m* if m(xg) = m* for some xq € Q.
Lemma 4.3. (c.f.[6]) Suppose that (A1) holds. If B/v < 1/ max m, then some

constant Cy = Cy(p,v,m, Q) > 0 exists such that (0,0(x; 3,v)) is unstable provided
that o > C}.

We note that in Lemma 4.2, the inequality 6(+; 5,v) < m* may not hold for all
S, but under the assumption (A3), we can establish an upper bound for 6(-; g, v)

which is uniform in 5.
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Lemma 4.4. (c.f.[6]) Suppose that (A3) holds, then there exists a constant K > 0
which is independent of B such that

0(z; 3,v) < KeB/mm@)-m" < ¢ (44)
for all x € Q.

Proof. We assume v = 1 without any loss of generality. From the proof of Lemma

4.1, (44) holds uniformly for 3 € [0, 2] by choosing K > ¢”™ maxme™"™. For > 2,
0

we set w(z; f) = eP~Im@g(z: B) with 0(x; 8) = 6(x; 5, 1), then w satisfies
Aw+ (8 —2)Vm - Vw — w[(B — 1]|Vw]* + Am +0(-;8) —m] =0 in Q
Define z = z(3) € Q with w(z) = maxw. By the no-flux boundary condition and
(A3), we have 0, w = wd,m < 0 on E)QQ; hence the Hopf Boundary Lemma (ref.[10],
Lemma 3.4) implies Vw(z) = 0 and Aw(z) < 0. Consequently,
(B = DIVw(2)* + Am(2) + 0(z; 8) < m(2)
Hence, we have
(B = DIVw(2)] <m* = Am(2) < |ml|c2q) (45)
and
0(z; 8) <m™ = Am(2) < [z
Since xg € 2 is the unique point such that m* = m(xg), there exist k1, kg, and k3
satisfying
[Vm(z)| > mile = wol, Kalx — 2ol > m* —m(x) > kale — w0l (46)

for all z € Q. By (45) and (46), we can derive
ke (B —1)

2
R1

Since w(z) < w(z) implies 8(z; B) < O(z; §)eP~ VM@ =mE] e have

“2HmHC2(§)
ki

(8 = Dlm" —=m(2)] < [Vm(2)]” <

e~ Hm@)-mlg (e ) < ¢=Bm@-mlg (5. ) (B-Dlma)-m(:)
_ (2 B)elm @ B-Dlm —m(2)]
< [|m gaye®™ e/ DImle2@ = K
for all z € Q. O
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We set ¢ = e~ @/W™ g to change (39) into the equivalent form:

pA +aVeo-Vm+ om —0(;5,v) =1¢ in

(47)
B[p] = 0,9 =0 on 0N

hence it is natural to investigate the principal eigenvalue A;(a) of the eigenvalue

problem:

pA¢ + aVe - Vm+ ¢c = M)y  in Q

(48)
Bl¢p| = 0,0 =0 on 0f)

where m € C*(Q), ¢ € C(Q), and ¢ > 0 on Q. The following theorem characterizes
the asymptotic behavior of principal eigenvalues of which proof is given in the next

subsection.

Theorem 4.5. (c.f.[5]) Suppose that all critical points of m are non-degenerate.

Let M be the set of points of local maximum of m, then

s )~

Since xy € Q2 is the unique point of global maximum of m(z) (see the assumption
(A3)); hence by Lemma 4.2(b), we have 0(xg; 5,v) > m* where m(zg) = m*. By

Theorem 4.5, we observe that the principal eigenvalue 7 = 71 («) of (47) satisfies:

lim 7 («) = max[m(x) — 0(x; 5,v)] = m* — 0(zo; B,v) <0

a—00 xeM

for any given B /v with 5/v > 1/ minm. We should notice that the above inequality
Q
may be false for some range of 8/v. However, this inequality provides a clue to

expect that (0,0(x; 5,v)) is locally stable.

Lemma 4.6. (c.f.[6]) Suppose that (A3) holds and m > 0 in Q. For any n >

1/minm, if B/v € [1/minm,n|, then some constant Cy = Co(p,v,m,Q,n) > 0
Q Q

exists such that (0,0(z; B,v)) is locally stable provided that o > Cs.

Remark. Cy depends on n which determines the range of B/v; hence how large «

should be depends on B/v.
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Proof. Suppose the statement is false, then there exist some 7 > 1/ min m, sequences
Q

{a;, Bi}32, with a; — 0o and f3;/v € [1/ minm]| such that the eigenvalue problem
Q

V- (uV¢ — aigVm) + ¢[m — 0(-; 8;,v)] = 7¢  in Q
B[¢] = uon¢ — a;p0,m = 0 on 0f)

has the principal eigenvalue 7; > 0 with the corresponding principal eigenfunction
¢; > 0. Set ¢; — e @/WMp. to change the above eigenvalue problem into the

equivalent form:

pAG; + Vi - Vm + ¢g[m — 0(+; Bi, v)] = gy in Q
Blgy] = Ot = 0 on 0N

Passing to a subsequence if necessary, we let §; —  for some /v > 1/minm.
By the assumption (A3) and Lemma 4.2(b), we have 0(xq; 5,v) — m(xg) > 0 vgx)/here
%[9(9&0;5, v) — m(zo)] > 0, and let 7;(¢) be the principal
eigenvalue of the eigenvalue problem:

m(zg) = m*. Set € =

pAp 4+ a;Vo-Vm+ ¢m —0(-;6,v) + € =7¢ in
Bl¢] = 0,9 =0 on O

Since [ is a fixed number, we can apply Theorem 4.5 to obtain

lim 7;(¢) = max[m(z) — 6(-; B,v) + €] = m(xo) — O(x; B,v) + € <0

i—00 reM
However, since 6(-; 5;,v) — 6(+; B, v) uniformly as 5; — [ (see Lemma 3.2), we have
0(-; Bi,v) > 0(-; 3,v) — € in Q for sufficiently large i. By the variational characteri-
zation of principal eigenvalues (8), we have 7;(¢) > 7; for sufficiently large i; hence

7; > 0 implies 7;(€) > 0 for sufficiently large i, which is a contradiction. O

Local Stability of (6(z;a, p),0)
Let v» > 0 be the principal eigenfunction with the corresponding principal

eigenvalue oy, and we set ¥ — e~ #/")™) to change (38) into the equivalent form:

vV - [P (eI 4 plm = 0(5 a, p)] = 01y in Q
BlY] = 0,0 =0 on 02
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Dividing the above equation by e~(#/*)™) and integrating over Q, we obtain

(B/v)m (B/v)m
/ vV -l B/V( w)]da:—l—/e(ﬁ/”)m[m—é’(-;a,u)]da: = al/e(B/V)mdx
Q elB/v)my), Q Q

By the divergence theorem and the Neumann boundary condition, we have

DV - [eBImg (o= B/rm )] e(B/v)m
/Q BIvIma; dz = / (e~ (B/my)2

hence given n > 0 and if 5/v € [0, 7], we have

Ul/e(B/V)mdxz/e(’B/")m[m—G(-;a,u)]d@”:/e(ﬁ/”)mmda:—/e(ﬁ/y)mG(-;a,u)dﬂc
Q Q Q Q
>/ BImmdy — eB/vm’ /9 oy p)da

/mdm—e"m /0(-;a,p)dx

where we have utilized Lemma 1.5(a) for the last inequality. Since / mdx > 0, we
Q

. |V(e('8/")m¢)|2da: > ()

find that if we can show

lim [ 0(z;a,pu)dz =0
a—r00 Q

then oy > 0 provided that « is sufficiently large, and thus (6(z; «, i1), 0) is unstable.
Lemma 4.7. (c.f.[4]) Suppose that (A2) holds, then

lim £ 0z, o f ) dai—-0

a—r00 0

Proof. Multiplying the equation of 6; = 6(-; o, )

V- (,uV01 — a91Vm) + Hl(m — 01) =0 in

(49)
Bl6y] = po,0; — ab10,m =0 on 0f2

by g € S ={g € C*Q) : 0,9 = 0on N}, integrating over 2, and utilizing the

boundary condition of g, we have

u/ 01 Agdx + a/ 0:Vm - Vgdr + / O1g(m — 01)dx =0 (50)
Q Q Q

Integrating (49) over € and utilizing the boundary condition, we have

Q Q
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hence [|01[/12(q) is uniformly bounded by ||m||2(q). Therefore, passing to a subse-
quence if necessary, we assume 6, — 0 weakly in L?(Q2) as a — oo and #; > 0

almost everywhere in . Dividing (50) by « and letting o« — oo, then

/ 0*Vm -Vgdr =0
Q

holds for all ¢ € S. Since S is dense in H'(f2), we have /Q*Vm -Vgdr =0
Q

for all ¢ € H'(Q). In particular, we put g = m to derive / 0*|Vm|*dz = 0;
0

hence §*|Vm|* = 0 almost everywhere in 2. Since the set of critical points of m has

Lebesgue measure zero (see the assumption (A2)), we have §* = 0 almost everywhere

in . Thus, 6, — 0 weakly in L*(Q2) as o — oo, which implies

lim [ 6,x(Q)dz = lim [ O1dx =0

a—0o0 0 a— o0 [¢)

where x(€2) is the characteristic function of 2. O
As a consequence, we have proved the following lemma:

Lemma 4.8. (c.f.[6]) Suppose that (A1) and (A2) hold. For any n > 0, if B/v €
[0,7], then some constant Cs = Cs(n) > 0 exists such that (0(x; a, i), 0) is unstable
provided that o > Cs.

Remark. C5 depends on n which determines the range of B/v; hence how large «

should be depends on (B /v.

Advection-induced Coexistence
Combining with Lemma 1.5(b), Theorem 1.6, and Lemma 1.8, we can apply the

following theorem from the theory of monotone dynamical systems:

Theorem 4.9. (c.f.[153], Theorem 4) The full system (35) has at least one locally

stable equilibrium.
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Proof of Theorem 1.3(a)

Proof. By Lemma 4.3 and Lemma 4.8, both semi-trivial equilibria are unstable
provided that o > max{C4,C5}. But Theorem 4.9 guarantees at least one locally

stable equilibrium. Consequently, such equilibrium must be a positive equilibrium.

]

Advection-induced Extinction
To determine the global stability, we need to rule out the possibility of positive

equilibria.

Lemma 4.10. (c.f.[6]) Suppose that (A3) holds and m > 0 in Q. For any n >
1/minm, if /v € [1/minm,n|, then some constant Cy = Cy(p,v,m,Q,n) > 0
Q Q

exists such that (35) has no positive equilibria provided that o« > Cy.

Remark. Cy depends on n which determines the range of 5 /v; hence how large «

should be depends on B/v.

Proof. Suppose the statement is false, then there exist some 1 > 1/ minm, sequences
Q
{a;, B;}72, with a; — oo and B;/v € [1/minm| — (/v € [1/minm| such that the
Q Q
full system (35) has positive equilibria (U;, V;) with respect to (o, ;). We set

W; = e~ (@/M™[J; to obtain the equivalent form:

uV - (elSIMGWL) 4 eI (m — Uy — Vi) =0 in Q
B[W;] = 0,W; =0 on 0f)

(51)

For any 0 < € < 1, we let \;(¢) be the principal eigenvalue of the eigenvalue problem
uv - (e(ai/u)mv@) + e(ai/u)mqbi[m — (1 =)0 8,v)] = )\i(e)e(ai/u)m@ in O
B[¢l] = 8n¢z =0 on 0f)

where ¢; > 0 is the corresponding principal eigenfunction. Multiplying (51) by ¢;

and (52) by W;, subtracting, and integrating over €2 yield

/ M b (Ui + Vi — (1 — €)0(-; B, v)]dx = Ni(e) / e MY, i dx
Q Q
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We observe that for fixed 0 < e < 1,if V; — (1 — €)0(+; 5,v) > 0 in Q for sufficiently
large 4, then \;(¢) > 0 for sufficiently large i. Thus, from Theorem 4.5, we have

lim \;(e) = max[m(z) — (1 —€)0(x; B,v)] = m* — (1 — €)f(xp; B,v) > 0

i—00 zeM

Letting € — 0, we derive m* > 0(xo; 3, v), which contradicts to Lemma 4.2(b).
To justify the observation, it suffices to show V; — 6(-; 8, v) uniformly in Q) as

i — 00. Since V; and 0 = 6(+; B, v) satisty

V- WV, — BV;Vm) + Vilm —U; — V) =0 in Q
B|V;] = v0,V; — BV;0,m =0 on 0N

V- (V0 —p50Vm)+6(m—0)=0 inQ

B[0] = v0,,0 — BOO,m =0 on 0f2
respectively, we may expect that U; — 0 in some norm as i — oo. By the Com-
parison Principle, we know U; < 0(-;a, ) for all . Furthermore, Lemma 4.4, the
inequality (46), and the Dominated Convergence Theorem imply U; — 0 in LP()
as i — oo for all p > 1. By the elliptic reqularity (see the proof of Lemma 3.5), we
have V; — 0(-; B,v) in W?P(Q) as i — oo for all p > 1; hence the Morray’s inequality
implies W2P(Q) < C*(Q) for p sufficiently large, which proves the observation. [

Proof of Theorem 1.3(b)

Proof. For a« > max{Csy, C3,Cy4}, (0,0(x;5,v)) is locally stable by Lemma 4.6,
whereas (6(z;a, p1),0) is unstable by Lemma 4.8. Lemma 4.10 rules out the possi-
bility of positive equilibria. Consequently, (0,6(x;,v)) is globally asymptotically
stable by Theorem 1.9. O
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The Asymptotic Behavior of Principal Eigenvalues

We devote this subsection to proving Theorem 4.5 which characterizes the

asymptotic behavior of principal eigenvalues A;(c) that satisfy:

—A¢p—2aVeo-Vm+ ¢c=A(a)p in
Bl¢] = 0,0 =0 on 0N

(53)

where m € C*(Q2), ¢ € C(Q), and ¢ > 0 in Q is the eigenfunction normalized by
/ e?mp?dxr = 1. Tt is clear that Theorem 4.5 is equivalent to
Q

i o) = g ee)

Setting w = e*™¢, since {w?(-;a)} is weakly compact and / w?dx = 1, there exist
Q
a subsequence {«;}72, with a; — oo as j — oo and a probability measure P such

that

lim | w?(x;a;)n(r)dr = / n(x)dP, for all n € C(Q) (54)

J—00 QO Q

The principal eiganvalues can be characterized by the variational characterization:

A () = inf / 2™ (V)2 + cp)dr = inf / Vv — avVm|? + cv’dx(55)
0 Q

fﬂ e2omyh2dr=1 fQ v2dz=1

where v = e*™1). Since the limit of A\;(«) is not a priori known, we define

A" = limsup Ay (@), A = liminf A\ (o)

a—00 Q=00

The following lemma provides an upper bound of A\*.

Lemma 4.11. (c.f.[6]) Suppose that all critical points of m are non-degenerate. Let

M be the set of points of local maximum of m, then

A" < mine(x)
zeM

9Notational convenience is the only reason to consider (53) rather than (48).
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Proof. Let x € M, since m € C?(Q) and all critical points are non-degenerate, there

exists some sequence {f;}io, with 8; — 0 as i — oo such that

m(z) > max m
dB(,8;)NQ

for all 7. For each f3;, define r; and d; with 0 < d; < r; < 3; such that

min m=m; > M, = max m
B(z,d;)NQ B(z,8:)\B(z,r;)NQ
Define
1 if © € B(z,1;)
wle) =4 B itw e pas)\ Bl
i — T
0 if z € R'\ B(z, 3)
then the principal eigenvalues satisty
Jo, 2™ eu? 4+ e**™|Vu,|*dx e2eMi gl
A < Q 7 7 7
(o) < Jo eomuidz = By |Bi — i 2dje2om
Letting o — oo first, and then i — 0o, we derive \* < ¢(x) for all z € M. O

The proof in Lemma 4.11 explains the reason why we focus on the set M. To
show that A\, = A", we select a subsequence {a;}32, with a; — oo as j — oo such

that lim Ay(a;) = A.. From (55), we obtain
j—oo

Q

A > lim /Qc(x)wQ(a:;aj)dx:/c(a:)dP (56)

j—o00
The main observation is that if the support of P is contained M, then
combining with Lemma 4.11, we can derive
/Qc(x)dP > gélﬁ% c(x) /de = ggl\% c(x) >\ (57)

Thus, QILHSO A(a) = géll\r& c(x), and Theorem 4.5 follows from (56) and (57).

How can we measure the support of P? According to the main observation, it
is natural to classify points in Q \ M firstly:
1. Non-critical interior points:

O ={zxeQ:|Vm(z) >0}
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2. Non-degenerate critical interior points which are not points of local mazxima:
Q={rcQ:Vm(x)=0, IecS™"3(-V)?m(z) >0}

where S is the unit sphere in R' and the term (e-V)?m(z) > 0 means that D?m/(z)

is positive-definite along the direction e.

To classify the boundary points, we define the operator Vyq = V —nd,, which is
the gradient restricted to 0€2, and the boundary critical points x are defined as x € OS2
satisfying Vaom(z) = 0. We note that the condition Vagm(xz) = 0 is equivalent
to [Vm(x)| = |0,m(z)|. The boundary Hessian of m, denoted by D3qm, is defined
as follows: Let x € OS2, we make a rotation such that n(z) = —e¢; = (0, ...,0, —1).
Locally 02 can be written as a graph x; = f(2') where x = (2/,2;) and f,,(2') =0
fori=1,...,1 — 1, then m(z) = m(2’, f(z')) and

Voam(z) = Vm(z) — ndym(z) = (my, (z), ..., my,_, (x),0)

Dggm@) = [mxia:j (oo LT, (fﬁ)fzixj (x,)](l—l)x(l—l)

Non-degenerate boundary critical points x € 02 can be classified as follows:

Points of boundary local minima:

{z:|Vm(z)] = —0,m(z) > 0 A Digm(z) > 0} U {x: |[Vm(z)| = 0A D*m(z) > 0}

Points of boundary local mazima:

{x:|Vm(z)| = 9,m(z) > 0A Diym(z) < 0} U {z: [Vm(z)| = 0A D*m(z) < 0}

Boundary saddle points:

{z:|Vm(z)| = —0ym(x) >0A3e €S e Ln(x)> (e V)*m(z) <0}
{z: |[Vm(z)| = 9,m(z) > 0A3e €S e Ln(z) 3 (e V)*m(z) >0}
{x:|Vm(z)] = 0A3er,ep €S (1 - V)*m(x) > 0> (en- V)?m(n)}
We continue classifying points in Q \ M:
3. Non-critical boundary points:

Q3 ={x € 0 : |Vm(x)| > |0,m(x)| V |Vm(x)| < |0.m(x)|}

4. Non-degenerate boundary critical points which are not points of local maxima:
Q= {z€o: |Vm(z) = d.m(z) >0ATe € S e Ln(z) > (e-V)*m(z) > 0}
Qs ={zx € 0:|Vm(x)| =—-0,m(x) >0}

Qs ={r€co0:|Vm(z)|=0ATec S35 (e-V)*m(z) > 0}
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A direct observation shows that

6
Q\Mc o

i=1
As a result, the support of P is contained in M if we can show P(Q);) =0
for i =1,...,6. How can we compute P(€2;)? A surprising guideline follows from

the simple inequality:
= > / IVw(z; o) — aw(r; a)Vm(z)|*de (58)
Q

where ¢, = minc and ¢* = maxc because (55) implies ¢ > A\ («) by taking v =
0 )

e [|le®™ || 2@ and thus the inequality

- /Q IVw(z; ) — aw(z; o) Vm(z)|*de

> (o) =~ [ [Vuaia) — auwlzio) V@) Pl = [ caju(aapts >
holds for all a € R.
Lemma 4.12. (c.f.[5]) P(21) =0 and P(§22) = 0.

Proof. Fix & € Qy, there exist K > 0 and R > 0 such that |Vm| > K in B(Z,2R) C
Q. Let p be a smooth cut-off function satisfying

p=1in B(0,1), p=0inR'\ B(0,2), 0<p<1, |Vp <2in B(0,2)

r—2x
R

Setting &(x) = p( ), then
£=1in B(#,R), £=0inR"\ B(#,2R), 0<¢<1, |VE < }% in B(%,2R)

From (54), we have

P(B(z,R)) = lim / w?(z;o5)dr < lim [ € (2)w*(z;a)dw
B(#,R)

7] —00 a—0o0 [¢)

hence if we can show lim [ &*(z)w?(x;a)dr = 0, then P(B(Z, R)) = 0, and thus
a—r00 0
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From (58), a careful calculation gives
= > /952(56)|Vw(x;a) — aw(z; a)Vm(r)|*de
= [ €Vul + 0t Vi) - agV(u?) - Vinda
_ /Q Vw2 + Ew?(02Vm|? + aAm) + 200EVE - Vinda
> [ ut(Ga VP + acm) — 2V

1 8
> 202 (= 02| Viml? Am)de — =
_/wa(2a| m|* + aAm)dzx e

where the second equality follows from integration by parts, and the second inequal-

ity follows from

1
202 |Vm|* 4 2a£VE - Vim > §§2a2|Vm|2 — 2a|EVE - Vm| > —2|VE[?

1 A
Since |Vm| > K in B(Z,2R), some constant C' > 0 exists such that §|Vm| Il
a

C'in B(z,2R) for sufficiently large . Thus, for sufficiently large «, we obtain
¢ —co+ 2 A

1
—L :/(—|Vm|2—|——m) 2widz > C/§2w2dac
Q 2 H Q

«

That is, lim /ﬁz(x)wQ(x;oz)dx ={0
a—r 00 QO
The proof of P(€,) = 0 is almost similar. Fix 7 € Q, and let (e-V)*m(Z) > 0 for
some e € S'"1. By rotation, we assume e = e; = (1,0, ...,0), then there exist K >0

and R > 0 such that (e V)?*m = my,,, > K in B(%,2R) C Q. Let {(x) = p<$;gx)’

then a similar calculation gives
= > / (z)|Vw(z; a) — aw(z; a)Vm(z) *dx > / | wy, — cwmy, |*dr
Q Q
= /Q£2w§1 + Ew(a®m2 + amg,y,) + 20w EE, my, dx
> /9045210277%1951 — 2w2§§1da:

> aK/géQdex — %

1 8
hence /§2§2w2d:v < a_K(C* —c + ﬁ)’ and we can conclude

P(B(z,R)) = lim w?(z;o5)dr < lim [ € (2)w*(z;a)dr =0
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That is, P(B(Z, R)) = 0, and thus P(s) = 0. O
Lemma 4.13. (c.f.[5]) P(23) =0 and P(y) = 0.

Proof. The main idea is to flatten the boundary via some change of variables. Let
z € (3. By translation and rotation, We can assume ¥ = 0, n(0) = —¢;, and

Vm(0) = Key + [—0,m(0)]e; where K = \/HVm )2 — |0,m(0)]?] > 0.

We flatten 02 near © = 0 as follows. locally 02 can be written as a graph
x; = f(2') where x = (2/,2;), f(0) =0, and f,,(0') =0 fori =1,..,0 —1. 9Qis
flattened by

y=Y() =@\ u—-[f@) er=Xy) = u+ /)
Since D, X (0) is the identity matrix, there exists R > 0 such that

1Dy X ()]l <2, |detDy X (y)| = 5, and my, (X(y)) > K

1
o
in B*(0,2R) = Y(QN B(0,2R)) = {y € B(0,2R) : y, > 0}. Let £(y) = p(%), then

a careful calculation gives
= > /f 7)) |Vu(r; a) — aw(z; o) Vm(z)|*dr = / Ew? |V, (Inw — am)|*dz

> / £202|9, (Inw — am)|2|det(D, X (y))|dy
4 B+(0,2R)

1
> g/ & lwy, — awmy, |*dy
B+(0,2R)

1
2 g/ §2w51 + §2w2(a2m§1 + amylyl) + 2O‘w2§§y1my1dy
B+(0,2R)

V

1 1
> —/ Ew(za®ml + amy,,,) — 20*|VE[dy
8 JB+(0.2R) 2

V

| =

1 1
2 2 2 2
— 8 /B+(0,2R)f v (504 T Oy )y R?

1
Since my, (X (y)) > K in B*(0,2R), some constant C' > 0 exists such that §a2m§1 +

My o o in B*(0,2R) for sufficiently large a. Thus, for sufficiently large «, we
a

V

obtain

cF—c,+ 1 1
£ = /Q(_mz211y1 + mz(/;yl) 2w2dy > C’/Qgngdy

o? 2

52



which implies
P(B(0,R)NQ) = lim w?(z; aj)dr < lim & (z)w? (z; a)dy = 0.
=% JB(0,R)NQ @00 JB+(0,2R)
The case of the proof of P(§24) = 0 is almost the same since the differences are

K =0 and my,,, > 0 by choosing e = e; in the case of (24. [
Lemma 4.14. (c.f.[5]) P(Q25) = 0.

Proof. Fix & € Qs, there exist K > 0 and R > 0 such that |Vm| > K and d,m < 0

in B(%,2R) N Q. Setting £(x) = p(%), then a similar calculation gives

= > / & (z)|Vw(z; o) — aw(z; o) Vm(z) |*dz
/ E(|Vwl* + *w?|Vm|?) — a*V (w?) - Vmda

= Ew?,mds + / E|Vuw|* + Ew?(®|Vm|* + aAm) + 20w?¢VE - Vmdx
20

> / E|Vw|? + Ew?(®|Vm]* + aAm) + 20w*¢VE - Vmda
"

where the last inequality follows from d,m < 0. The remaining proof is the same as

the proof in Lemma 4.12. O
Lemma 4.15. (c.f.[5]) P(2) = 0.

Proof. The difficulty of our proof comes from the condtions |Vm(x)| = 0 and arbi-
trary direction e. The way to deal with such situation is to flatten 0€2 and change
the Hessian of m into a diagonal matrix via some change of variables.

Let Z be a non-degenerate boundary critical point, a, ..., a;_1 be the eigenvalues
of D3om(%) and ay, ..., a;_1,a; be of D*m(%). By rotation, we assume n(Z) = —e
and [Djom(%)]i; = a;d;; for i,5 = 1,...,1 — 1. Let y = Y(x) be a change of vari-
ables that flattens 0Q N B(z,4R) where R > 0 is sufficiently small, then Y (Z) = 0,
D,Y () is the identity matrix, and Y (0Q N B(z,4R)) C {y : y; = 0}. Let x = X(y)
be the inverse of y = Y (z), then the conditions that Vm(z) = 0 and D,Y (%) is the
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identity matrix imply

N 1
m(X(y)) = m(&) + 3 > (a? + 2aayip) + sy + O(lyl*)
=1
-1 -1 o
7,l

1 a
— E ; — E )+ O
=5 a;( yz 2+ yz ag — a, )+ O(Jy]?)

i=1 =1
Thus, there exists a change of variables z = Z(y) defined by
ai Y

i

zi =y + +O(ly*) fori=1,....,1 — 1 and 2z = y[1 + O(y)]

such that 1

m(X(y) = m(@) + 5 3 a2

That is, the Hessian of m is a diagonal matrix V\;itlh variables z. We note that the
definition of z; implies Z o Y(0Q2 N B(0,4R)) C {z: z; = 0}.

The above discussion holds for all points of €25. Let & € Qg, then there exists
a; > 0 for some i € {1,...,1}. Setting Bt = B*(0,2R) = {z € B(0,2R) : z > 0}

and £(z) = p(%), a careful calculation gives

¢ —c,
> / E\|\Vw — awVm(z)|?dr = / Ew* V. (Inw — am)|*dz
Q Q
2w?| V. (Inw — am)D, Z|*|det(D,X)|d=z
B+

>C 2w? |V, (Inw — am)|*dz = C V. w — awV,m)2dz
Bt

Bt

> 52’w2i o awmzi)lzdz
B+

=—Ca *w?0,mds + C §2wi + §2w2(a2mi +am,,.,) + 20w?€E, m. dz
aB+ B+

=C Ewl + Ew(e®mZ, + am.,,) + 20w, m.,dz
B+

>C & wms,., — 2wEL dz
B+

4
> C’aia/ 2wdz — C’—2 w?dz
B+ (0,R) R* Jp+
where 0 < C' < |D,Z|?*|detD.X| in B" and the fourth equation follows from

2w?0,mds = 0
OB+
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because e; is a normal vector of {z : z; = 0} and m,, = 0 on {z : z, = 0} in case
i =1. Let R’ > 0 satisfy B(Z, R)NQ c X(Z'(B*(0, R)), then
P(B(#, R)NQ) = lim / w(w30;)de < lim (2 (2 a)dz = 0.
=0 JB+(&,R)NQ a0 JB+(0,R)
[

Proof of Theorem 4.5

Proof. 1t suffices to show that (56) and (57) hold. (56) follows from (55). (57)
follows from Lemma 4.12, 4.13, 4.14, and 4.15. O]
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5 Discussions

Conclusions: a Bifurcation Diagram

To organize our main results, we focus on the case N = 2, and establish a
bifurcation diagram with « as the bifurcation parameter.
Case: (/v € 0,1/ maxm)|.

We fix Q, m, pu, Vg,l and consider the case p < v. Let 6; = (0(; , 1), 0) and 0y =
(0;0(-,8,v)). When o = 0 and /v = 0, then 6, is globally asymptotically stable (or
the slower-diffusing species wins), whereas 5 is globally asymptotically stable (or
the faster-diffusing species wins) if the diffusion rates are similar, 5/v > 0 is small,
and the shape of the environment is convex (see Theorem 1.1(b) and Theorem 1.2).
By some perturbation argument, the results still hold in the range 0 < o < ¢ for
some ¢€; > 0 sufficiently small.

When a > max{C}, Cs} where C; and C5 come from Lemma 4.3 and Lemma
4.8 respectively, then coexistence is a stable state.

In fact, all we have dealed with are the limiting cases: the advective tendency «
is sufficiently small or large. The reason is that the limiting behaviors of the positive
steady-state and the principal eigenvalues are easier to control (see Lemma 4.7 and
Theorem 4.5). In the intermediate cases ¢, < a < max{C},C3}, the stable states,
even the dynamics of the full system are unknown. As a consequence, the following

table organizes our main results:

Parameter Range Stable States | Related Theorems | Remarkable Conditions

0<a<e,pu<v 01 Theorem 1.1(b), 1.2 B/v =0
0, Theorem 1.2 p v, /v>0small

() is convex

61 < a<max{C,C3} | unknown

a > max{Cy, Cs} coexistence Theorem 1.3(a) (A2)
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Remark. The case p > v is almost analogous. In the singular case p = v, if
a = =0, then a continuum of positive equilibria of the form {(k0(x;0,u), (1 —
K)O(x;0,1)) : 0 < k < 1} is globally asymptotically stable. If o > 0 is small and
B =0, then 0y is still globally asymptotically stable. (see Theorem 3.4).

Case: (/v € [1/minm, c0).

We fix ), m, u,ﬂand v. When 0 < o < p/ maxm and f > max{C}, Cs}, then co-
existence is a stable state (see Theorem 1.3(&)).Q 10 When o > €' = max{C,, Cs, Cy}
where Cs5, (3, and Cy come from Lemma 4.3, Lemma 4.6, and Lemma 4.8 respec-
tively, then 65 is globally asymptotically stable (or the species with less advective
tendency wins) provided that (A3) holds and m > 0 in © (see Theorem 1.3(b)). In
the intermediate cases p/ maxm < a < C, the stable states, even the dynamics of
the full system are unknowi. As a consequence, the following table organizes our

main results:

Parameter Range | Stable States | Related Theorems | Remarkable Conditions
0<a<u/ max m coexistence Theorem 1.3(a) p > max{Cy, Cs}
w/ max m <a<C| unknown

a>C ) Theorem 1.3(b) (A3), m >0in Q

Further Problems

The following are some interesting problems which may be worth further re-
searching:
1. Problems concerning the bifurcation diagram

To completely establish the bifurcation diagram, a challenging task is to control
the behaviors of the positive steady-state and the principal eigenvalues when « lies
in intermediate ranges. Another problem arises when /v € (1/maxm, 1/ minm),
a challenging task is to construct some useful estimates alike to QLemma 4% and

Lemma 4.4.

YHere, a and 3, p and v are switched mutually in order to apply Theorem 1.3(a).

o7



2. Problems concerning the assumptions on the intrinsic growth rate m
We see that (A1) is not removable (see Lemma 1.5 and Theorem 1.6) and (A2)
is not too biologically restrictive. The problem is that (A3) is not realistic. It is
very challenging to weakend (A3) since if there are many points of local maxima of
m, Theorem 4.5 may provide no useful information (see Lemma 4.2, the proof of
Lemma 4.6 and 4.10).
3. Problems concerning the suitable modifications on the full system
We assume that the species move toward along the resource gradient Vm, but
neglect other crucial effects such as population densities. A more realistic term is
V(m — g(u,v)) rather than Vm, then the first problem is to choose some suitable
g(u,v). For mathematical analysis, sometimes we need to guarantee the "2 in 17
structure, that is, two equations with the same parameters can be added into one
equation (see the proof of Lemma 3.5 and ref.[7], Lemma 5.4). A suitable choice is
g(u,v) = k(u + v) for some constant x > 0. To study the modified full system is
a challenging task. Indeed, our main results may provide some useful information
for the modified full system since our full system (2) is an approximation if x is

sufficiently small.
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Appendix: a Manual for Maximum Principles

This appendix is contributed to be a collection of (parabolic) maximum prin-
ciples for weakly-coupled parabolic linear systems '*. The main ideas to prove such
maximum principles can be found in [16], Chapter 3, Section 8.

Let Q C R’ be a bounded domain with smooth boundary 9. For given T > 0,
let u(x,t) = (ui(x,t),us(z,t),...,un(x,t)) be continuous in Q x [0,7], and D,u,
D?u, and u, are continuous in € x (0,7]. Suppose that for each k = 1,2,..., N,
ug(x,t) satisfies the differential inequality:

Our _ ~—~ () Pur w0 O S~
i < ijzzlaij (x’t)ax oz, +ij (55775)% + ch (@, t)u; in 2 x (0, 7]

j=1 J j=1

(k)

ij

al(-j]?) (x,1), bgk) (x,t), and c§k) (z,t) lie in L>®(Q x [0, T]). Suppose cg-k) >0in Qx(0,7T]

where [a;;’ (x,t)];x; is non-negative definite and uniformly elliptic in Q x (0,7,
for k # j, then the following maximum principles hold.

The Parabolic Strong Maximum Principle

If max max u;j(z,t) = uk(zo,to) for some (xg,t9) € 2 x (0,7, then ug(x,t) =
uk(xjg, tf:)x [i(;lT]Q x (0,tp).

The Parabolic Hopf Boundary Lemma

If max max u;j(z,t) = ug(zo,t9) > 0 for some (z,%) € (2x{0}U(O2x(0,T)), and
(xO,JtO)Qsjgiz]fies the interior sphere condition in € x (0,7), then either u; restricted
in some neighborhood in Q x (0,ty) is a constant function or d,ux(xg,t) > 0.

The Parabolic Comparison Principle

Let D C RY be a nonempty closed convex set, and f : Q@ x D — RY given by
f = f(z,u) is C* and cooperative in u. Let @ and u be continuous in Q x [0, T, and
D, Dyu, D, Du, %, and u, are continuous in € x (0,7]. Suppose that for each

k=1,2,...N, the following differential conditions hold:

8uk ! ) aQuk l ) aUk '
= ]Zl 0 @) 5o+ jzlb" (@) gy + file) QX (0.7)
Blus] = O < 0 on 002 x (0,7)

1A parabolic linear system is weakly-coupled if it is coupled only in the reaction terms.

29



_ P l -
T = 3 @) S W, ) 0% ¢ fam) i@ x (0,T)

9 Y 0, )

= 7 3xj
Blay) = 0,ur > 0 on 902 x (0,7)

If uy,(z,0) < (2, 0) in Q for all k, then ug(z,t) < ug(z,t) in Q x [0, 7] for all k.

Some Remarks
1. A direct consequence from the maximum principles is the uniqueness of the
classical solution of the weakly-coupled parabolic linear system:

% = i a(’?)(:c t) Oy + ib(-k)(a: t)% + ic(.k)(x tu; inQx(0,7T)
ot i1 Z] ’ 8&31833'] - J ’ 63:j = J ’ J ’

J=1

B[uk] = 8nuk =0 on 0f) X (O,T)

For any given T' > 0, the maximum principles are applicable whenever the solution
of the above linear system for the domain §2 x (0, 00) is restricted on 2 x (0,7"); thus
by the uniqueness, the maximum principles hold for the domain 2 x (0, 00).
2. In the full system (2):

[0t (2, )it = di],

0 (,t) = —agmy, (z)
cék)(m,t) _ [m(z) — ;ui(x,t) —arAm(z)] ifj=k
0 if § £k
D =K"= {ueC*™Q):u>0}
(ﬁ@uu)zaﬁtauh“wuN)zz%ﬁgﬂhnmﬁ——zzuxxiﬂ

Hence, except that fr may not be cooperative, all the required conditions are obvi-
ously satisfied.
3. If N =1, then fi(z,u) is cooperative in u vacuously by definition; hence The

Parabolic Comparison Principle is applicable.
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