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Abstract

This paper employs a ’Heterogeneous Autoregressive’ (HAR) model which is
suitable to parsimoniously model long memory in realized volatility time series. The
purpose is to use this model to predict the future volatility and provide some statistical
results to explain volatility behavior in Taiwan stock index market. We hope to provide an
accurate predictive model on the volatility and then help investors with regards to risk
management or trading strategies.

The empirical results verify that the “best” model for volatility prediction is the
LHAR-RV-cum-Vol model which includes the leverage effect and trading volume as
regressors. Particularly, the leverage effect unveils a heterogeneous structure and this
effect is induced by jumps for short-run prediction horizons but not for long-run
prediction horizon. Besides, results reveal only daily trading volume has significant effect
on future volatility, especially the number of transactions as a proxy for information flows
provides the best predictive ability on the volatility.

The empirical results also reveal that the HAR model adds continuous components
(C) and jump components (J) extracted by Corrected Threshold Bi-power Variation
(Corsi et al. 2009) to predict volatility better than Bi-power Variation (Barndorff-Nielsen
and Shephard, 2004). However, we do not get significant gain derived by dividing the
continuous and jump components. Lastly, this study separates the market into up-market
days and down-market days. We find that the threshold continuous and jump (TCJ) as a
regressor is the top forecaster in both markets, while realized power variation (RPV) only
performs best on down-market days. When the market is down the amount of market

information increases, the predictive ability of future volatility also increases.

Keywords: volatility forecasting; jumps; leverage effects; corrected threshold estimator;

heterogeneous structure; high-frequency data.
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1 Introduction

Volatility forecasting plays a central role in a number of financial issues, such as
asset pricing, asset allocation, and risk management. A major difficulty in this kind of
forecasting is that volatility can only be observed after the fact. The traditional approach
to estimating volatility is to use a parametric framework, such as the ARCH and GARCH
and stochastic volatility models. In recent years, the Taiwan financial market has grown to
a mature level, coinciding with an increased availability of high-frequency data on asset
returns. The availability of this data suggests a non-parametric approach to modeling
volatility dynamics using improved measures of ex post, or integrated volatility,
constructed from high frequency data. This method is known as ’realized volatility’, or
RV.

The RV method has been advocated by such reputable financial analysts as Andersen
and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (henceforth ABDL)
(2001), Barndorff-Nielsen and Shephard (henceforth BN-S) (2002a, b), and Meddahi
(2002), among others. The main idea is to sum up the corresponding intra-daily squared
returns; this is a consistent estimator of integrated volatility, as well as a jump component
for a broad class of continuous time models. Specifically, models based on realized
volatility have been found to produce forecasts of volatility that are superior to traditional
measures of volatility, such as squared returns. As an example, empirical results produced
by ABDL (2003) powerfully indicated that the simple linear models of realized volatility

outperformed the popular GARCH and related stochastic volatility models in
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out-of-sample forecasting.

There are, however, two alternative measures to realized volatility: realized power
variation (RPV) and realized bi-power variation (BPV). Both of these alternatives were
introduced by BN-S (2004a, 2004b). The first, RPV, is based on summing powers of
intraday absolute returns, while BPV is the sum of products of consecutive intraday
absolute returns. Authors such as Ding et al. (1993), BN-S (2004b), Forsberg and Ghysels
(2007), Ghysels et al. (2006), Ghysels and Sinko (2006), have demonstrated that RPV
indeed improved the volatility forecasting. Not only this, but RPV and BPV are also
immune to jumps. This indicates, then, that both RPV and BPV are excellent methods for
predicting future volatility.

BN-S (2004a, 2006), have shown that RV can be decomposed into one continuous
component, known as ‘realized bi-power variation (BPV)’, as well as a discontinuous jump
component. Incorporating a measure of jumps is important because their relative
contribution to the total variation is about 7% as noted by Huang and Tauchen (2005).
The recent studies on jump issue include test specification, (Lee and Mykland, 2007), as
well as nonparametric estimation in the presence of jumps.( Mancini and Reno, 2006).

In Corsi (2009) a simple Heterogeneous Auto-Regressive (HAR-RV) model has
been introduced for realized volatility in order to capture the long memory of volatility in
a parsimonious manner. The HAR-RV model provides an additive cascade of various
volatility components, each of which is generated by the actions of different types of

market participants. The main idea is that agents with different time horizons perceive,
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react to, and cause, different types of volatility components. Typically, three primary
volatility components are used: the short-term traders with daily or higher trading
frequency, the medium-term investors, who typically rebalance their positions weekly,
and the long-term agents with a characteristic time of one or more months. The idea of
heterogeneity of volatility component stems from the so-called Heterogeneous Market
Hypothesis presented by Miller et al. (1993), which recognizes the presence of
heterogeneity across traders.

Andersen et al. (henceforth ABD) (2007), first incorporated the jumps into the
HAR-RV model to obtain a non-parametric HAR-RV-CJ model, using related bi-power
variation measures and adopting the jump test of BN-S (2004a, 2006). In doing so, it was
found that the jumps were not useful in predicting future volatility. However, Corsi et al.
(2009) provided an alternative intraday volatility estimator, the ‘corrected threshold
bipower variation’, or CTBPV. It was demonstrated that the apparent puzzle found in
ABD was due to a measurement bias, introduced by the bi-power variation in finite
samples. Specifically, this happened when two jumps occurred in the same daily
trajectory. In contrast, the CTBPV estimator was nearly unbiased in the presence of jumps.
Empirical analysis (on the S&P500 index, single stocks and US bond yields) has shown
that the newly proposed techniques significantly improved the accuracy of volatility
forecasts, especially during periods following the occurrence of a jump.

Equity and stock-index volatilities exhibit a significant asymmetric response to past

return. Early studies by Black (1976) and Christie (1982) found that volatility rises when
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stocks prices go down, and decreases when stock prices go up. This asymmetry in the
relationship between equity market returns and volatility is known as the ‘leverage effect’.
Figlewski and Wang (2001) found that the magnitude of the effect of negative return
realization on future volatilities is too significant to be explained on the basis of changes
in firm's financial leverage alone. Thus, the ’leverage effect’ should more properly be
termed a ‘down market effect’. Moreover, French, Schwert, and Stambaugh (1987), Engle
and Ng (1993), Zakoian (1994), Bekaert and Wu (2000), Wu (2001), and more recently
Bollerslev et al (2006) have all pointed out that volatility changes are negatively
correlated with returns. In view of the demonstrated importance of volatility leverage in
explaining the negative relation between return and volatility, Corsi and Reno (2009)
developed the LHAR-RV model. This model incorporates not only daily negative returns,
but also their weekly and monthly aggregation, into the HAR-RV model.

Typically, there is a positive correlation between volatility and trading volume, a
relationship that has been examined extensively. Two theoretical hypotheses designed to
explain this connection exist. One, the ‘Mixture of Distributions Hypothesis’ (MDH)
literature (see Clark, 1973; Epps and Epps, 1976; Tauchen and Pitts, 1983 and Harris,
1987), which is based on the tenet that volatility and trading volume are jointly driven by
the unobservable information flow. Indeed, MDH helps to explain the high degree of
positive relationship between volumes and volatility (see Karpoff, 1987). Lamoureux and
Lastrapes (1990) and Andersen (1996) have suggested that trading volume can serve as a

proxy measure of the latent information flowing into the market. More recently,
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Manganelli (2005) and Bowe et al. (2007) maintain trading volume conveys relevant

information relating to market conditions and may have a direct effect upon prices. The

second hypothesis is ‘Sequential Information Arrival Hypothesis’ (SIAH), developed by

Copeland (1976), Morse (1981), and Jennings and Barry (1983). In SIAH, new

information flows into the market to generate both trading volume and price movement in

a sequential manner. Thus, the SIAH suggests that lagged trading volume may have

explanatory power for predicting current volatility, and vice versa.. Gallant et al. (1992)

and Bessembinder and Seguin (1993) documented evidence which also supports a

positive relationship between volume and volatility.

As described above, the main contribution of this paper is to incorporate lagged

trading volume into the LHAR-RV model and attempt to examine the role of trading

volume as well as to improve the forecasting performance of realized volatility. This

study refers to the modified model as LHAR-RV-cum-Vol model. To the best of our

knowledge, no published study has yet modeled and forecasted realized volatility with

adding the lagged trading volume into the LHAR-RV model.

In addition to investigating the impact of trading volume on future volatility for

Taiwan’s stock market, this paper also investigates whether average trade size or number

of transaction provide the best explanation of price volatility. Admati and Pfleiderer

(1988), and Foster and Vishwanathan (1990) suggested that informed traders may

strategically break a large trade into many trades of smaller sizes. Thus, the number of

transactions may actually carry more information than trade size. Easley and O’Hara (1990)
5



demonstrated that market makers can also learn from a lack of transactions and the length

of no-trading periods. Therefore, the number of transactions is a crucial variable in

understanding the process of price formation.

Meanwhile, Harris and Raviv (1993) have argued that transactions occur due to traders’

different assessments of the impact of information on stock prices. They predicted that the

number of transactions would have a positive impact on the absolute value of price

changes. Jones, Kaul and Lipson (1994), using Nasdaq data, found empirical evidence in

support of Harris and Raviv’s prediction. They also suggested that the impact of average

trade size on price volatility was dominated by the impact of the number of transactions

on price volatility. Therefore, they concluded that it was the number of transactions, and

not trading volume, that possessed the most informational content. Moreover, using

Nasdaq data, Gopinath and Krishnamurti (2001) reported that the number of trades had a

larger impact on volatility than the average trade size. This finding was further

corroborated for the Taiwan OTC market data by Chiang et al. (2006). These publications

all concluded that the number of trades indeed produced more information than average

trade size.

Furthermore, this paper also investigates whether bid-ask frequency or bid-ask

volume provide the most information for explaining price volatility. From a supply and

demand point of view, bid-ask frequency (volume) represents supply and demand of the

stock market. Since that bid information and ask information can serve as a proxy

measure of the quantity demanded and quantity supplied in the stock market, bid-ask
6



information corresponds to excess supply or excess demand. Using Taiwan Stock
Exchange (TSE) market data, Chen (2005) provided empirical evidence that bid-ask
volume has a much larger impact on volatility than the impact of bid-ask frequency.

Finally, there is an interesting yet unaddressed issue within different market
conditions in the context of volatility forecasting using the HAR-RV model and its new
variant models. In particular, this paper examines whether different market conditions (e.g.
up market day and down market day) generate different empirical results for value-added
intraday data information in volatility forecasting. Using GARCH models, Fuertes et al.
(2008) showed that the additional use of intraday data for day t-1 to forecast volatility on
day t is more advantageous when t-1 is an up market day. The GARCH-RPV model ranks
top in both regimes, based upon 14 NYSE stocks.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
theoretical framework behind the concept of realized volatility and methodology used for
developing and testing the forecasting models. Section 3 presents a brief description of
the data and illustrates the empirical in-sample and out-of-sample results on a long series

of high frequency TAIEX data. Section 4 contains some concluding remarks.



2. Research M ethodology

2.1 Modeling volatility

Assume that the state variable p(t), for example the logarithmic price of a stock , is
driven by the continuous time stochastic volatility jump-diffusion process:
dp(t) = u(t)dt + o(t)dw(t) + x(t)dq(t),0 <t <T (1)
where #(t) is a continuous and locally bounded variation process, o(t)is the stochastic
volatility process, W(t) denotes a standard Brownian motion, dq(t) is a counting
process with dq(t) =1 corresponding to a jump at time t and dq(t) = 0 corresponding to
no jump, a jump intensity A(t), and x(t) refers to the jump size. The quadratic
variation (QV) process of p(t) can be defined by
. n 2
[pIH) = p—1im > (p(s;.)— P(S)) @)
for any sequence of partitions0 =5, < §, <...< s, =t with sup{sj -S; }% 0 forn—eo.
j
The most important aim is attempt to predict the increments in quadratic variation over

certain horizons, H, is then:

t+H

QY = [o2(9ds+ Y K (9) (3)

where the first component, referred to as integrated volatility, is from the continuous
component of (3), and the second term is the contribution derived from discrete jumps.
This paper employs the intraday data on the Taiwan stock index to predict future

volatility using the trading hours between 9:00 a.m. and 13:30 p.m., Monday-Friday. Let



the discrete daily returns be denoted byr,, , =100(In P(t) —In P(t —1)), where the time
index t refers to the day of sampling. This study normalizes the daily time interval to
unity and divides it into M periods. Each period has length A =1/M . Then define the A
period return as 1"\ =100(p(t—j/M)—p(t—(j—-1)/M)), j=12,.,M, where M is
the sampling frequency. This paper sets M = 54 since this corresponds to the five-minute
sampling frequency as is adopted by Andersen et al. (2001, 2005) and BN-S (2004b).
ABDL (2001) claimed that sampling at five-minute intervals is sufficient to ensure that
there is minimal measurement error in the daily realized volatilities, while also preventing
microstructure biases from becoming a concern. This paper also defines daily ‘realized
volatility’ (RV), or quadratic variation, which can be estimated by the sum of the
corresponding M intra-daily squared returns, as follows:
RVl 3> 18 4)

This is a consistent estimator of QV,,,,, as M — oo, see BN-S (2002a, b) and ABDL

R
(2003) for a review. In this case, realized volatility consists of integrated volatility plus
the jump component. Other measures of realized volatility, introduced by BN-S (2004a),
are realized power variation (RPV), and realized bi-power variation (BPV), which this

study defines as:

RPVM, = g7'M 12 Tzl\rt?? | (5)
BPV,, = ﬂ;zzﬁ”:z\rt,“? [r| (6)

where y, =42/ = E(|Z|) denotes the mean of the absolute value of the standard

Gaussian random variable, Z. In particular, this study also defines the standardized
9



realized tri-power quarticity (TQ), adopted in the bi-power jump test (BN-S, 2004b;
2006), as follows:
_ M
TQM. =M a3 D (=) (7)

where 42 =27 T(7/6)I(1/2) = E(Z|"") . It is straightforward to drive that for M— oo,

. M t+1 2 _
,\5121 RPV i — J-t o (9)ds=0,,,, (8)
lim BPVY, — [ o*(s)ds= 07, ©)
and lmTQ, - [ o (9)ds =0l (10

Hence, BPV provides a consistent estimator of the integrated variance and it is also
immune to jumps.
Corsi et al. (2009) provides an alternative estimator of the continuous part of

volatility, the Corrected Threshold Bipower Variation (CTBPV):

2 M
CTBPV, :_Zzl(rt,jaej)zl(rt,j—laej—l) t=1..T (11)

j=2
where Z,(r, ;,6,) is a special function equal to ‘rm.‘ when 1 ; < 6;, and equal to

1.094./6. when r; 2 0;,and @; is the threshold that is a multiple of local variance,

J
\7j , that is chosen according to an iterative procedure, that is:
0,= ¢,V (12)
A typical value of ¢, is ¢,=3. Evenif CTBPV, convergesto IV, whenM — co, it

is possible to show that CTBPV, — BPV as c, — «. As will be shown in the next

sub-section, this correction is essential for building test statistics. Finally, this study also
defines the standardized corrected realized threshold tri-power quarticity (CTTQ),

10



adopted in the corrected threshold bi-power jump test (Corsi et al., 2009), as follows:

_ M
C-I_er,?/tIH =M :U4/33ZJ—:3 Z4/3(rt,j a‘9j )Z4/3(rt,j 79j—1)z4/3(rt,j 79j—2) (13)

4/3

where u;7 = 2P T(7/6)L(1/2) = E(|Z| ), and Z,.(r,;,6;) is a special function equal

4/3
to ‘rt,j‘ " When r, < 6,,and equal to 1.129-67° when r,, > 6,. It is also easy to

show that for M — oo,

lim CTTQY,, — [ o*(ds=07,,. (14)

M —eo

2.2 Modeling Realized Jumps

In this sub-section, I employ two tests for jump detection to separate the jump and
continuous sample path components of QV. The first jump test, introduced by BN-S
(2004a, 2005), utilizes bipower variation to estimate the continuous integrated volatility

and, by difference, the jump contribution to the total quadratic variation, defined as:

RV}, -BPVY, — z K2 (). (15)

t<s<t+1

Following Huang and Tauchen (2005) and ABD (2007), this paper identifies significant

jumps by using Z,,,, given by (17) and @, as the quantile function of the Normal

distribution at confidence level & , thus, the jump component is given by:

Jt(fm =1(Z > q)a) (th - BVt,t+1)+ (16)

tt+l S+l

RvV.. . —BPV, / RV,
Zt,t+1 _ N ( tt+l t,t+1) tt+l 2 (17)
J +2u7 = 5)max(,TQ,,,, /BRV,,,, )

where X* = max(x,0), and | (*) denotes the indicator function which equal equals 1 if

jumps are detected on day t, and equals to 0 elsewhere, and Z,,, is normally distributed

11



if there are no jumps (BN-S, 2004b). In order to correctly separate RV,,,, into
continuous and jump component, the continuous component is naturally defined as:
Ct(ftﬂ = RVt,t+1 - ‘]t(fm (18)

This ensures that C7,, and J7, add up to RV,

L+l

In the empirical study I set
a =0.999 throughout the paper. Huang and Tauchen (2005) use Monte Carlo simulation
to demonstrate that the z-statistic shown above has appropriate size, power, and jump
detection ability.

The second jump test proposed by Corsi et al. (2009), employs corrected threshold
bipower variation to estimate continuous integrated volatility. The residual jump
component is then calculated as the difference between the realized volatility and the
CTBPV:

RV, —CTBPV,Y,, = D> k(9 (19)

S+ Setal
t<s<t+l

Corsi also introduced a correction of the z statistics of BN-S (2006), based on corrected

threshold multipower variation, which identifies significant jumps as:

T‘]to,(tﬂ =1(C _th,t+1 > (I)a) (th,m - CTBPVt,t+1 )+ (20)

\/V (th,m - CTBPVt,m )/ RVt,t+1

C - th,t+1 = 2
Ju + 247 —5)max(1,CCTQ, ., /CTBPV, )

21)

It is possible to show that C—-Tz— N(0,1) stably in law as M — oo. The

corresponding continuous component is defined as:

=RV, T3¢

ttel Yt

TC!,

tt+1

(22)
which is equal toRV,,, if 1(*)= 0 and toCTBPV,,, if I(¥)= 1. Corsi et al. (2009)
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used Monte Carlo simulation to show that the C-Tz test has significantly more power than
the z test, especially when jumps are consecutive, which is quite common in
high-frequency data. Therefore, this paper employs the concept of BPV and corrected

threshold BPV to estimate both components.

2.3 Modedling lever age effects

Financial asset volatilities often exhibit significant asymmetric response to past
returns. In other words, volatility tends to increase more after a negative shock than after
a positive shock of the same magnitude. This asymmetric return-volatility phenomenon is
known as the ‘leverage effect’. This sub-section is inspired by Corsi and Reno (2009)
who found that not only daily but also weekly and monthly negative past returns (e.g.
leverage effect) have a high forecasting power for future volatility. Hence, this paper
defines daily returns r, =100(p, — p,_,) and past aggregated negative and positive
returns as:

= %(rt Fot M N+t 1) =0) (23)
e = %(rt ot M DI+ 4T y,) <0) (24)

where | () denotes the indicator function.

2.4 Modeling Trading Volume

Research on the importance of trading volume in financial markets is rapidly

growing. Much of this research has been focused on the positive correlation between both
13



trading volume and volatility, such as Gallant et al. (1992), and Bessembinder and Seguin

(1993). Tseng (2009) suggested that including trading volume in the HAR-RV model

provided more accurate predictions. Total trading volume can also be jointly determined by

number of transactions, and average size per trade. From the viewpoint of the market,

bid-ask frequency (volume) can represent supply and demand of the stock market. As a

result, any discrepancy between bid-ask frequency (volume) carries information on excess

supply or excess demand in the stock market.

In this sub-section, various measures of volume are employed, and daily volume is

measured in five ways:

Trading Volumevalue(VOL, ) - type = ZL Invol tf’} (25)
Number of Transactions(TNV, ) - type = ZL Intf" (26)
AverageTrade Size(TSV, ) - type = ZL In(vol % /tf :,A,- ) (27)
Bid - Ask Frequceny (TNR, ) - type = ln bf /z Inaf ! (28)
Bid - Ask Volume(TVR, ) - type = ln bv* / Z Inav’ (29)

It should be noted that these types are defined as the summation of the corresponding M

intra-daily logarithm of difference volume measures, with these intra-daily logarithm

volumes representing the rate of information arrival into the market within the same time

period, such as five-minute intervals; larger trading volume implies a more rapid rate of

information arrival. Notice that TNR (TVR,) is defined as bid frequency (volume)

divided by ask frequency (volume) to measure excess supply or excess demand.

14



2.5 Theforecasting Models

The Heterogeneous Auto-Regressive (HAR) model introduced by Corsi (2003) and
Corsi et al. (2009) can effectively capture the long-term memory behavior of RV quite
parsimoniously. Moreover, Corsi (2003) provided empirical evidence that the HAR model
is able to reproduce the observed hyperbolic decay of the sample autocorrelations of RV.
Hence, this paper employs the HAR model to forecast the RV.

The HAR model uses averaged future RV as the dependent variable and uses
averages of past values of variance measures as the independent variables. This allows the
models to take advantage of information from past price variation. We will define the
multi-period normalized realized variation over H discrete periods as:

RVun =H T (RV,, + RV, +..+ RV,,), RV, =RV, (30)
In this paper, the values 1, 5, 10, 15, and 20 are used for H, referring to one-day, weekly,
bi-weekly, tri-weekly and monthly frequencies respectively. To keep the HAR model
simple and intuitive, the HAR-RV model of Corsi (2003), including only the daily,
weekly and monthly RV components, is then expressed as:

HAR—RV = X : RV, .y = By + By X + BuX st + BuXi a0t + Eren 31
where €., is a standard IID noise and where X= RV, BPV, CTBPV, RPV, C, TC, with
C and TC denoting the continuous and threshold continuous components of RV,
respectively. This study follows the HAR-RV model introduced by Corsi (2003) and uses

the regressors such as RV, BPV, CTBPV, RPV, C and TC for predicting RV.

In addition to the HAR-RV model, this paper also uses the following model
15



suggested by ABD (2007) and Chung et al. (2008).

HAR-RV -CJ: RVt,t+H = :Bo + :Bcht—l,t + :Bcth—s,t + :chCt—zo,t + :Bjd‘Jt—l,t

(32)
+ B ise T Bimdiaos T Ein
where C and J denote the continuous and jump components of RV, as separated by the
jump test of BN-S (2006).

Corsi et al. (2009) proved that corrected threshold BPV (CTBPV) is an unbiased
estimation of oy, in the presence of jumps, but the BPV estimator is a biased measure
of ofm in days where jumps are present. For this reason, this paper modifies the
HAR-RV-CJ model of Andersen et al. (2007) and Chung et al. (2008) using the

continuous and jump component of RV as separated by the jump test of Corsi et al. (2009)

using the CTBPV measure.

HAR-RV -TCJ : RV, = By +:BchCt—1,t +:BchCt—5,t 2 chmTCt—ZO,t +:BdeJt—1,t (33)
+ ﬂij‘]t—S,t ity ﬂjmT‘]t—ZO,t i gt,t+H

where TC and TJ are the continuous and jump components. This paper computes these
regressors analogously to the realized volatility measures given by Equation (30),
including BPV,_,,, BPV,_,,,, CTBPV, _;,, CTBPV_,y;, RPV,,, RPV 5, Cisis Ciogys
Jisis Jizors TCisi> TC s T s, @nd T, .

Another form of the HAR regression that is used in this paper incorporates leverage
effects into the HAR-RV model, and then proposes the following specification to obtain

the LHAR-RV model:

LHAR-RV - X: RVt,t+H =B, + B, Xt—l,t + ﬁth—S,t + :Bmxt—ZO,t + B4 rt(—_l,)t

=) =) (34)
+ ﬁrwrt—S,t + :Brmrt—ZO,t + gt,t+H
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where X = RV, BPV, CTBPV, RPV, C, TC and where r® denotes the ‘leverage effect’
components, given by Equation (24). Note that in order to keep the model as
parsimonious as possible, only the negative returns as suggested by Corsi and Reno (2009)
are included.

In what follows, the HAR-RV-TCJ model is extended to directly incorporate the

leverage effects to obtain the LHAR-RV-TCJ model of Corsi and Reno (2009):

LHAR-RV -TCJ : RV, = B, + :BchCt—l,t + :BchCt—s,t + chmTCt—ZO,t
+ﬁde‘Jt It +ﬁij‘Jt =5t +ﬁjmT‘Jt—20,t (35)

&) ) )
rt It +ﬁrwrt 5.t +ﬂrmrt 20,t +€t,t+H
where the definitions of TC and TJ are the same as those in Equation (33).

As suggested by Tseng (2009), this paper also incorporates lagged trading volume

into the LHAR-RV and LHAR-RV-TCJ model; hence, the proposed models read:
LHAR—- RV — X —cum-Vol :
tt+H ﬂ0+ﬂd tl’[+ﬂ Xt 5t+lB X’[ 20,t

) =)
+IBrdrtlt+ rwrt5t+ﬁrmrt 20,t
+ ﬂvdVC)lt—l,t + ﬂ\/\NVOlt—S,t + ﬂvmvoI t-20,t + gt,t+H

(36)

LHAR- RV —TCJ —cum-Vol :
RV, tt+H ﬂo +ﬂchCt Lt +ﬂ TCt 5.t +ﬂcmTCt 20,t
+ﬁde‘]t 1t +:ijT‘Jt -5t +:BjmT‘]t—2o,t (37)

=)
+ﬂrdrt 1t +ﬂrwrt 5.t +ﬂrmrt 20,t
+ ﬂvdVOII—l,t + ﬂvaOIt—S,t + ﬂvmVOIt—ZO,t + gt,t+H

where X = RV, BPV, CTBPV, RPV, C, TC and where Vol defines the summation of the

corresponding M intra-daily logarithm trading volume given by Equation (25). Also, the

measures of lagged volume, includingVol,_;, andVol, _,, ., are calculated using the same
formula presented in Equation (30).
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Following ABD (2007) and Forsberg and Ghysels (2007), this paper also models
RV using square root and log-transform methods. The square root forms of the above
equations are as follows:

HAR-RV'2 — X : RV,\y = By + By XLy + BuXiiss + B Xiiaox + Eppan (38)

where X =RV, BPV!2, CTBPV'2, RPV, C'%, TC'.

HAR-RV'? —CJ:RV'"2iin = B + B4Cl + BoCliy + BnClns

(39)
+ B It + Biudiie ¥ Bimdiis + Evvn
and the same transformations will be estimated for models (33) to (37).
The logarithmic forms of the above equations are as follows:
HAR-InRV - X:InRV, ., =B, + By In X, + B, In X + B, In X, +&

(40)

where X =RV, BPV, CTBPV, RPV, C, TC.

HAR-InRV -CJ:
INRV, ,,, = By + By InC_, + B, InC_, + B, InC_,, (41)

+ ﬂjd In(J +D+ ﬂjw In(J, 5, +1D)+ ,Bjm In(J 50 + D+ Epin

and the same transformations will be estimated for models (33) to (37).

2.6 M easur e of Performance

In their study, Andersen et al. (2007) compared the results of the different models
using only adjusted R%. The report demonstrated hat the adjusted R* was highest when
modeling the log transform of the realized volatility. However, Forsberg and Ghysels
(2007) and Chung et al. (2008) continued to place more focus on ‘mean square error’
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(MSE) than adjusted R?. There are two reasons cited for this. The first reason was based
on the argument of Forsberg and Ghysels (2007) who suggested that, when transformed
variables (such as log or square root) are used as dependent variables, the adjusted R?
from the regressions with different dependent variables are not comparable.

The second reason was related to the recent work of Hansen and Lunde (2006) and
Patton (2006). They have shown that the MSE loss function is robust with regards to the
volatility proxy used. Therefore, this study will use the adjusted R? and ‘root mean square
error’ (RMSE) evaluation measures in the in-sample forecasts, but only RMSE in the

out-of-sample forecasts.

1/2

This paper takes the inverse transformation of RV, andInRV,,,,

and then
computes RMSEs. To be specific, let RV, be the true in-sample value of RV for H
days, and let IQVLHH be the in-sample prediction value of the dependent variable.
Additionally, the following RMSE evaluation measure is employed for the different

transformed measures:

origin-type: RMSE = \/ N ZL (RVn — FAQVWH )? (42)

square roots-type: RMSE = \/ N ZL (R, — (IQV[;/fH ) (43)
N ~

log-type: RMSE = {N" Y™ (RV, ., —exp(nRV, .,,))’ (44)

where N is the number of in-sample forecasts. Hence, after recovering the dependent
variable to its original form, this paper can compare the in-sample and out-of sample

predictability for different models with different regressors.
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3 Empirical Analysis

3.1 Data Source and Descriptions

The data set analyzed in this paper is the Taiwan Stock Exchange Capitalization
Weighted Stock Index (TAIEX) time series from the Taiwan Economic Journal (TEJ)
database. Also, all high-frequency transactions from 2 January 2003 to 30 June 2008 are
disposed of, a total of 1361 trading days. In order to mitigate the impact of microstructure
effects on the estimates, as in ABD (2007), this study sets a sampling frequency as A=5
minutes, corresponding to 54 returns per day. Table 1 reports the descriptive statistics of
the realized volatility levels. These realized volatility levels include realized variance
(RV}), realized bi-power variance (BPV;), corrected threshold bi-power variance (CTBPV;),
realized power variance (RPV;), the threshold continuous element (TC;), the threshold
jump element (TJ;), and the jump element (J;), as well as their square root transforms and
log-transforms. The columns from two to seven of Table 1 report the sample mean,
standard deviation, skewness, kurtosis, and the minimum and maximum of the different
variables. The last column (LB)) reports the Ljung-Box test statistic for up to tenth order
serial correlation and the critical value of LBgis 18.307.

First, the LB statistic demonstrates that RPV; has the highest serial correlation and
CTBPV; has the second highest correlation for the original variables and their
transformations. For the RPV;the Ljung-Box statistic is 4821.6 compared to 2563.3 for

the CTBPV; For the square root transform the LB statistic is 5377.9 for the RPVtﬂ 2 against
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4006.4 for the CTBPV;Y2 For the log-transform this study finds the highest LB-statistic
again for the InRPV; which is 5650.2, which implies that RPV; may provide a better
predictable power on future volatility. It is worth noting that TJ; and J; have the lowest
serial correlation for the level and their transformations, while the TJ; is much higher than
Ji. This finding shows that the jump element measured by means of threshold bipower
variation will be better forecasted.

Second, RV; has the highest standard deviation and more volatile than others. Finally,
all the square-transformed and square-root-transformed variables are severely skewed to
the right. In contrast, the skewness values for the log transform are quit close to
symmetric value of 0 except for the TJ;and J; The estimates of the sample kurtosis are
well above the normal value of 3 for all the transformations, indicating that the
distributions of these variables are highly leptokurtic. This is especially true for the RV;of
Taiwan Stock Exchange (TSE) returns as argued by Andersen et al. (2001) (henceforth
ABDE) and ABDL (2001, 2003).

Figure 1 displays the time series plots of logarithm realized variance and logarithms
of the threshold continuous and jump elements. Also displayed is the jump element
computed using the bi-power variation of RV. Clearly, the jump is quit large in TJ;and J;
plot since that the average logarithms of the threshold jump and jump elements for the
TAIEX are 0.494 and 0.442 respectively, whilst Forsberg and Ghysels (2007) found that
the average logarithm of jump for the S&P500 was only 0.023. Figure 2 reports the

percentage contribution of threshold jumps estimated by Equation (20) to total quadratic
21



variation computed on a 1-month moving average window for the full sample. Jumps

contribute between 10% and 40% of total variation with an overall sample mean of about

25.7%. This finding is not in line with the results in Andersen et al. (2007), Huang and

Tauchen (2005) and Corsi and Reno (2009). Their empirical work documents the mean of

jumps contribution as only about 6% or 7% of total variance.

Chung et al. (2008) provided two possible explanations for the occurrence of higher

jump percentages for the TAIEX. Firstly, market participants in the Taiwan stock market

are mostly individual investors, known as noise traders. Their investment decisions are

often undertaken without sound and rational analysis, and can be greatly affected by

macroeconomic news announcements. Secondly, the Taiwan stock market has insufficient

market depth and as a result, major investors can artificially generate volatility through

excessive trading.

Figure 3 shows the sample autocorrelation function (SACF) of RV;, BPV;, CTBPV,,

RPV;, TC, T, and J. It is clear that RPV; is the most persistent, followed by BPV,,

CTBPV,;, and TC;. Similar to ABD (2007) and Forsberg and Ghysels (2007) this study

finds little persistence in the threshold jump and jump components of the realized

variance.

Descriptive Statistics on daily trading volume are presented in Table 2. Five

measures of volume are examined, including the daily trading volume value (VOLy), the

daily number of transactions (TNV}), the daily average trade size (TSV;), the daily bid-ask

frequency (TNR), and the daily bid-ask volume (TVR;). These measures of volume are
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transformed by taking their logarithms as the detrended versions of the corresponding

measures. The last column of Table 2 reports the Ljung-Box test statistic for up to

tenth-order serial correlation (LByo); the corresponding the critical value is 18.307. The

LB statistics indicate strong autocorrelation in all the volume variables. VOL; is the

highest followed by TNV; and TSV.. TNR and TVR; are less persistent. Additionally, the

standard deviation of VOL;is 23.038 which is the highest variable, meaning that the

trading volume value is more volatile.

Regarding sample skewness, the value of VOL;and TNV; are -0.091 and 0.048

which is quite close to symmetric value of 0, while the TSV, TNR; and TVR are clearly

asymmetric. Turning to the estimates of the sample kurtoses, this study finds that only the

value of VOL; is close to the normal value 3, indicating that the distribution is

approximately Gaussian. In contrast, the values of the TSV, TNR; and TVR; are well above

the normal value of 3, indicating that the distributions are highly leptokurtic.

Table 3 presents the Pearson correlation matrix between the five measures of daily

trading volumes. Notably, it can be seen here that the highest correlation is between

trading volume value and the number of transactions, while the second highest correlation

is between trading volume and average trade size. This finding may support the idea of

using TNV; and TSV; as volume explanation variables to replace VOL..

Figure 4 presents the logarithm of trading volumes including VOL;, TNV;, TSV,

TNR,, and TVR. As is obvious from the figure, periods with volumes above the mean are

often followed by periods of volumes below the mean. Further, the first three panels show
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an increasing trend toward the end of the sample period.

Summarizing, RPV;and CTBPV;exhibit the highest serial correlation, which implies
that RPV;and CTBPV; will be better at predicting future volatility. However, the threshold
jump and jump elements of RV;are much less persistent, while the jump element is less
persistent than the threshold jump element. VoI;is most persistent and volatile, and TVR;is
much less persistent and volatile. This study finds that the there is a high correlation
between trading volume value and number of transactions. Other proxies of volume, such

as bid-ask frequency, has a very low correlation with trading volume value.

3.2 In-sample Results

The data set covers a long time span of nearly 6 years of high frequency data for the
TAIEX. In this section, the main determinants of future realized volatility are analyzed,
and the performance of various HAR models in predicting future realized volatility are

examined.

3.2.1 Comparing Volatility Forecasts with Two Jump Detection M ethods

The primary purpose of this sub-section is to analyze the impact of jumps on future
volatility when threshold bipower variation is employed as a measure of jumps. This
study shall measure the corrected threshold bi-power variation with a value c,= 3, using
the C-Tz statistics to detect jumps. The C-Tz statistics are not only computed with a

confidence level a = 99.9% but the most interesting quantities will be computed and
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plotted for different values of a as well.

According to Corsi et al. (2009), the C-Tz statistics provide a more effective
estimation of the jump component than the z statistics. Furthermore, they proved that the
z statistics were biased and noisy when the jumps appeared in the form of two
consecutive jumps in the intra-daily returns. This bias can be completely removed by the
corrected threshold estimators.

To compare the detecting power of the C-Tz and z statistics, this study computes
the number of days which contain jumps in the TAIEX sample. Jumps are detected by the
condition C-Tz > ®, and z > @ , as a function of a and plots the results in Figure 5.
Thus, by using the statistics based on corrected threshold bi-power variation, it can be
seen that this study achieves a higher number of jumps than were achieved by BN-S
(2004b, 20006), using the statistics based on bi-power variation.

To further evaluate the relative contribution of the newly proposed C-Tz statistics,
this paper compares the estimation results with those of the standard HAR model (31), the
HAR-RV-CJ model (32), and the HAR-RV-TCJ model (33), as is adopted by Corsi et al.
(2009). This study will also consider the standard deviation and logarithm forms
following ABD (2007) and Forsberg and Ghysels (2007). Empirical results are reported in
Tables 4, 5 and 6, where all jumps have been estimated with the C-Tz statistics. Three
prediction horizons are considered: one-day, one-week, and four-week, corresponding to
RViun, for H=1, 5 and 20, together with their statistical significance evaluated with the

Newey-West robust t-statistic.
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As is seen in Table 4, most of the estimates for B4, Bw, and P, of the three models are
highly significant. The only exception is the coefficient of daily continuous component.
This result may be due to the fact that the time series of the TAIEX realized volatility
seems to exhibit a higher level of noise, due to a lower mean tick arrival frequency and
higher market microstructure effects, such as price discreteness. These microstructure
effects make the daily continuous component have an insignificant impact on future
volatility. Meanwhile, the weekly and monthly continuous components, being averaged
over long periods, arguably contain less noise and more information on the volatility
process. Therefore, higher weights are received from these models. However, this
confirms the existence of highly persistent volatility dependence for all the
transformations. Importantly, the coefficient (daily, weekly and monthly) of jump
component as measured using BN-S (2004b, 2006) and Corsi et al. (2009) is not
significant in many cases. This result also shows that only the weekly jump coefficient is
positive and significant at least 10 % level. This suggests that the weekly jump may play a
role in future daily volatility forecast for the Taiwan Stock Exchange (TSE) market. It is
noteworthy that the constant term in these regressions is always significant, suggesting
that all the regression models are biased. Most importantly, the HAR-RV-TCJ model
yields a higher R? and a lower RMSE, thus showing a better forecasting power.

To understand this point in depth, the sample is divided into days immediately
following the occurrence of a jump, and days following days with no jumps, as

introduced by Corsi et al. (2009). On these two samples this computes the adjusted R* and
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RMSE statistics separately, denoting them by J-R?, J-RMSE and C-R?, C-RMSE,
respectively. The results reported in Table 4 show that the HAR-RV-TCJ model greatly
improves the forecasting power on realized volatility in days which do not follow a jump,
and it is also slightly outperforming in days immediately following a jump. These results
are not in line with the findings reported by Corsi et al. (2009), which suggests that using
the newly proposed C-Tz statistics provide a superior forecasting, especially in days
which follow the occurrence of a jump. These results demonstrate that not only are C-Tz
statistics superior at measuring the jump component, but they also remove noise from the
continuous component in the explanatory variables. Therefore, this study introduces a
superior method for future realized volatility forecasting in the continuous component.
This study also examines the forecasting models for H = 5 and 20. Results are
reported in Tables 5 and 6, respectively. Again, Table 5 shows that the estimates of B4, Bw,
and By, which quantify the impact of the continuous sample path variability on the total
future variation, are all generally highly significant. The coefficient (daily, weekly and
monthly) of the jump component is also not significant in many cases. The result shows
that the daily and weekly jump coefficients are positive and significant up to at least a
level of 10%. This suggests that the daily and weekly jumps may play a role in future
weekly volatility forecasts. Furthermore, the t-statistics of the coefficient Bjqis larger for
the HAR-RV-TCJ model than for the HAR-RV-CJ model. Again, the adjusted R and the
RMSE suggest that the HAR-RV-TCJ model has better forecasting ability than the

HAR-RV-CJ model. Also, both days after a jump and days without one show that the
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HAR-RV-TCJ model provides superior forecasts compared to the HAR-RV-CJ model
measured in terms of adjusted R? and the RMSE. This is especially true for the days not
following a jump. Table 6 presents almost the same results as reported in Table 5.
However, it should be noted that the impact of weekly jump components on future
monthly volatility is insignificant. The impact of the monthly jump component on future
monthly volatility, however, is in fact significant for the HAR-RV-TCJ model. This
suggests that the daily and monthly jumps may play a role in future monthly volatility
forecasting.

Thus, these results reveal that since the newly proposed C-Tz statistics can
effectively estimate the jump component and completely remove jump noise from the
continuous component, it has superior detecting power over the z test and enhances the

forecasting ability on future realized volatility.

3.22TheLHAR-RV-TCJ Mode for Predicting Future Realized Volatility

In sub-section 3.2.1, this paper demonstrates that the HAR-RV-TCJ model is better at
predicting future realized volatility. However, it was suggested in the recent studies by
Figlewski and Wang (2001) and Bollerslev et al. (2006) that equities and stock indexes
often exhibit the so called “leverage effect”, i.e. volatility rises when stocks prices go
down, but decreases when stock prices go up. So it can be seen that the leverage effect
exhibits a negative correlation between past returns and future volatility. Thus, this paper

incorporates leverage effects into the HAR-RV-TCJ model to obtain the so-called
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LHAR-RV-TCJ model newly proposed by Corsi and Reno (2009). The purpose of this

sub-section, then, is to demonstrate that the newly proposed model indeed improves the

performance of realized variance forecasting.

The in-sample regression results of the LHAR-RV-TCJ model for the TAIEX

considering five prediction horizons. One-day and one to four-week periods are presented

in Table 7, together with their statistical significance, evaluated with the Newey-West

robust t-statistic. Table 7 shows that all the coefficients of the three continuous volatility

components are positive and, in general, highly significant. Interestingly, the weekly

continuous component affects future volatility more strongly than the daily and monthly

continuous components. This suggests that the weekly continuous component may play a

role in future daily volatility forecasting. The hierarchical asymmetric propagation of the

volatility cascade is also confirmed by these results. The impact of weekly volatility

decreases with the forecasting horizon, while the impact of monthly volatility increases.

The coefficient which measures the impact of monthly volatility on future daily volatility

is approximately three times than that of daily volatility in future monthly volatility.

These findings are consistent with Corsi (2009) and Corsi and Reno (2009). As noted by

Muller et al. (1997), Arneodo (1998) and Lynch and Zumbach (2003), who suggested that

volatility over longer time intervals has greater influence than volatility over shorter time

intervals, not the other than around.

For the jump components, most of jump coefficient estimates are insignificant,

while the daily jump components remain highly significant and positive. This suggests
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that the daily jump may play a role in future daily volatility forecasting. It is worth
mentioning that the impact of daily and weekly jump components decreases with the
horizon, but the impact of monthly jump component increases with the horizon. This
finding indicates that monthly jumps affect future volatilities more significantly over a
long period of time. For the leverage components, the coefficients of the negative returns
in the LHAR-RV-TCJ model are generally negative and highly significant, especially at
the daily aggregation frequency, which unveils a so-called “leverage effect”.

The square root transformed regression results are presented in Table 8. The daily,
weekly and monthly coefficients of continuous component are almost significant at the 1
% level. This confirms the existence of highly persistent volatility dependence. A similar
hierarchical structure is also confirmed in the square root model.

For the jump and leverage components, the results are the same as reported in Table
7. The daily jumps remain positive and highly significant. This result also reveals the
strong significance of the negative returns at only the daily aggregation frequency.

The log-transformed regression results are presented in Table 9. Again, the estimates
for Bed, Pew> and Pem confirm the existence of highly persistent volatility dependence. Most
of the jJump components are highly significant and positive, indicating that when they are
measured by means of threshold bipower variation, the jump terms will have a substantial
impact in determining future volatility. This empirical result is not in line with ABD
(2007), which suggest that the jump components are not statistically significant and

slightly increase the R” of the regression.
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This result also indicates that not only the daily negative returns, but also the
negative returns of the past week and past month, affect the next day volatility. This
finding further confirms the views of the Heterogeneous Market Hypothesis; especially
that heterogeneity originates from the difference in the time horizons. Most importantly,
in order to evaluate the relative contribution of the newly proposed model, this paper
compares their in-sample predictions with those of the standard HAR model and the
HAR-RV-TCJ model with jumps, but with no leverage effects, using corrected threshold
bipower variation as in Corsi et al. (2009), presented in Table 10. Panel B and C denote
the square root and log transformation of the variance. The results presented in Panel A, B
and C also give the highest adjusted R* and lowest RMSE for the LHAR-RV-TCJ model
at any forecasting horizon. These empirical results demonstrate that the LHAR-RV-TCJ
model including the leverage effects significantly improves the forecasting performance
of the TAIEX volatility at any forecasting horizon. This study also finds that the
HAR-RV-TCJ model outperforms the HAR model at any forecasting horizon in all the

transformations.

3.2.3 Isleverage effect induced by jumps?

The empirical results of Christie (1982), and French, Schwert, and Stambaugh (1987)
all suggest that stock price changes and volatility are inversely related ( the so-called
leverage effect). According to the previous discussion in section 3.2.2, the empirical

results also suggest that the leverage effect is a vital explanatory component on the future
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TAIEX volatility. In this sub-section, we set out to examine whether the leverage effect is
induced by jumps.

Corsi and Reno (2009) indicates that the leverage effect is only somewhat
attributable to jumps, and that it appears instead as a feature mostly induced by
continuous returns. This study closely follows Corsi and Reno (2009) separating the daily
jump contribution to quadratic variation into positive and negative parts, which are

defined as:

3 =3,-1(r, > 0)
37 =3,-1(r, <0)

(45)
and this study replaces J; in the LHAR-RV-TCJ model with J;” and J; to obtain the
newly model called LHAR-RV-TC] " proposed by Corsi and Reno (2009). This paper also
estimates the HAR-RV-TCJ" model but with no leverage terms. Results are reported in
Tables 11, 12 and 13, corresponding to prediction horizon H=1(one day), 5(one week) and
20(one month). In Tables 11,12 and 13, estimating the HAR-RV-TCJ" model, this finds
that the impact of negative jumps as measured by the corresponding coefficient in the
regression, is significantly larger than that of positive jumps, and this is true at prediction
horizon H=5 and 20. Moreover, the coefficient of positive jumps is sometimes negative
but the coefficient of negative jumps is always positive at prediction horizon H=1. This
result enhances the asymmetry in positive and negative jumps. Additionally , when this
study estimates the full LHAR-RV-TCJ" model with the leverage terms, the impact of

negative and positive jumps is estimated to be roughly the same for all the
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transformations at prediction horizon H= 5 and 20. At the same time, the coefficients of
negative jumps remain positive, while those of positive jumps remain negative, at
prediction horizon H=1.

This result is evidence of the fact that the leverage effect is indeed attributable to
jumps for a short-run prediction horizon. This empirical result is not consistent with Corsi
and Reno (2009). However, leverage is not induced by jumps for the longer-run
prediction horizon. Instead, it appears to be a feature primarily induced by continuous

returns. This empirical result is in line with Corsi and Reno (2009).

3.24 The Reformed Model for Prediction Future Realized Volatility

The prior studies have clearly demonstrated that the LHAR-RV-TCJ model is better
at predicting future realized volatility (Corsi and Reno, 2009). The impact of trading
volume measured in value (dollar volume or notional value) on realized volatility,
however, was not discussed in the LHAR-RV-TCJ model proposed by Corsi and Reno
(2009). Anderson (1996) suggested that according to the MDH concept, trading volume
could serve as a proxy measure of the amount of unobservable information flowing into
the market. Therefore, this study incorporates lagged trading volume value into the
LHAR-RV-TCJ model in an attempt to improve the performance of realized volatility
forecasting. The reformed forecasting model is referred to as the LHAR-RV-TCJ-cum-Vol
model.

The in-sample regression results of the LHAR-RV-TCJ-cum-Vol model for TAIEX
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are presented in Table 14, with the adjusted R* and the “root mean squared error” (RMSE)
for the one-day and one- to four-week in-sample RV predictions. In the first case, the
estimates of Peq, Pew and Pem are mostly positively significant for all the prediction
horizons, indicating that the RV also exists in highly persistent volatility dependence. The
coefficient of the jump component shows that only the daily jump coefficient is positive
and significant up to at least 5% level, with the exception of the one-day prediction
horizons. The coefficient of the negative returns also reveals that only the daily negative
return is positively significant to a level of 1 %.

In the second case, the estimates of the three lagged trading volume components are
mostly positive but, in general, not significant. This result suggests that trading volume as
an explanation variable is not helpful in this regression.

The square root form regression results are presented in Table 15. These results are
similar to the results reported in Table 14. This study finds that the continuous, jump and
negative returns components are the primary determining factors for future realized
volatility. Again, trading volume as the regressors has no significant explanatory power on
future volatility.

The log-transformed regression results are presented in Table 16. As expected, all the
coefficients of the three continuous components are positive and highly significant. A
similar hierarchical structure is confirmed by these results. Indeed, the impact of daily and
weekly volatility decreases with the prediction horizon of future volatility, while the

impact of monthly volatility increases. The daily jump component remains highly
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significant and positive, with the exception of the three-week prediction horizons,

indicating that daily jumps may play a role in future volatility forecasting. The estimation

of model (37) also reveals the strong significance of the negative returns at the daily

aggregation frequency. It is noteworthy that the impact of the daily negative returns

decreases with the prediction horizon of future volatility. Additionally, the negative

returns of the past week also have a significant impact on future volatility, when

computed over a two week period. Most importantly, however, this study finds that the

estimates of PByqare positively significant to a level of at least the 10%, with the exception

of the three-week prediction horizons. This indicates that lagged trading volume indeed

has a significant forecasting power on future volatility. As pointed out by Karpoft (1987),

Gallant et al. (1992) and Bessembinder and Seguin (1993), there is a positive relationship

between volatility and trading volume. The majority of the coefficients of trading volume

in the far past, such as B.w, Bvm, however, are revealed to be insignificant.

This result demonstrates that the lagged weekly and monthly volumes have

relatively weaker impact on future volatility than the lagged daily volume. As noted by

Tseng (2009), the impact of the lagged volume on the future volatility decreases from

high to low aggregation frequency.

In order to evaluate the relative contribution of the newly proposed model, this paper

compares its in-sample prediction with that of the LHAR-RV-TCJ model; leverage effects

are included but trading volume is not. The results of Table 17 unambiguously indicate

that the inclusion of the lagged trading volume considerably improves the forecasting
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performance of the TAIEX volatility at any prediction horizon for all the transformations.
In line with Tseng (2009), this study finds that the difference in the RMSE between the
LHAR-RV-TCJ and LHAR-RV-TCJ-cum-Vol model increases with the prediction horizon
of future volatility. This is because the standardized measure of the multi-period for the
RV, leverage effects, and volume over longer horizons, contribute to easier RV predictions.
The percentage of reduction in the RMSE of the LHAR-RV-TCJ-cum-Vol model, for
instance, ranges from 0.36% (H=1) to 8.46% (H=20).

Thus, this study has successfully demonstrated that the LHAR-RV-TCJ-cum-Vol
model can significantly improve the performance of future realized volatility forecasting
after adding trading volumes as the regressors. Coefficients of the trading volume
components, however, are insignificant for any prediction horizon. This implies that the
trading volume components have no explanatory capabilities.

All of this data clearly indicates that the inclusion of lagged trading volume (the
proxy measure of the amount of unobservable information flowing into stock market) in
the reformed model does indeed affect future realized volatility forecasting. As noted by
Bowe et al. (2007) and Manganelli (2005), the trading volume contains relevant market

information about the financial asset’s true price movement.

3.2.5In-sample Resultsfor Different Measures of Trading Volume

Trading volume can be determined by number of trades (i.e. trading frequency) and

average trade size. From the viewpoint of the market, bid-ask frequency (volume) can
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represent supply and demand. As a result, the discrepancy between bid-ask frequency
(volume) carries information on excess supply or excess demand in the stock market. This
sub-section will empirically analyze which of these will contribute the most to the future
realized volatility forecasting for the Taiwan capital market. Using the
LHAR-RV-TCJ-cum-Vol model, trading volume, trading frequency, average trade size,
bid-ask volume, and bid-ask frequency will all be compared. The results of the in-sample
predictions of RV unfor H = 1, 5, 10, 15, and 20, using the five measures of trading
volume are presented in Table 18. The left-hand column under each prediction horizon
report the adjusted R” and the right-hand columns report the RMSE. This study also
considers the square root and logarithm models. Five measures of trading volume are
examined: trading volume value (VOL), number of trades (TNV), average trade size
(TSV), bid-ask frequency (TNR), and bid-ask volume (TVR), corresponding to Equations
(25) to (29).

We will first consider the results obtained by implementing the square volatility
measure, which are presented in Panel A of Table 18. These results indicate that the
highest adjusted R? value is achieved with trading frequency as the explanatory variable;
the results range between 0.209 for the one-day horizon and 0.514 for the four-week
horizon among trading volume value, trading frequency, and average trade size. The
results for RMSE also reveal that trading frequency dominates all other measures of
volume, with the RMSE of trading frequency ranging between 0.808 and 2.165 across

five prediction horizons. This finding is consistent with Gopinath and Krishnamurti (2001)
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and Chiang et al. (2006).

In the second case, the highest adjusted R?and the lowest RMSE are both achieved
with bid-ask volume as the explanatory variable for two- to five-week prediction horizons
between bid-ask volume and bid-ask frequency. The highest adjusted R* and lowest
RMSE, meanwhile, are achieved with bid-ask frequency for one-day and one-week
prediction horizons.

The results of the RV, predictions using the square root volatility measure with
different measures of volume regressors are presented in Panel B of Table 18. Again,
trading frequency achieves the highest adjusted R* among trading volume value, trading
frequency, and average trade size. This is with the adjusted R” of trading frequency
ranging between 0.393 and 0.652, while the RMSE of trading frequency ranges between
0.211 and 0.442 across the five prediction horizons. With the exception of the one-day
prediction horizons, bid-ask volume ratio achieves the highest adjusted R% and the lowest
RMSE, between bid-ask volume ratio and bid-ask frequency ratio across the five
prediction horizons.

The results of the RV, predictions using the logarithmic volatility measure with
different measures of volume regressors are presented in Panel C of Table 18. First of all,
trading frequency achieves the highest adjusted R* and the lowest RMSE between trading
volume value, trading frequency, and average trade size. This indicates that the number of
transactions (trading frequency) may actually carry more information than the average

trade size does. This result is consistent with Gopinath and Krishnamurti (2001). This
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empirical result suggests that, in the Taiwan stock exchange (TSE) market, the number of
transactions is more important in explaining the future realized volatility than the average
trade size. Admati and Pfleiderer (1988), and Foster and Vishwanathan (1990) explained
that informed traders may strategically break a large trade into many trades of smaller size,
so the number of transactions could contain more information.

Secondly, bid-ask volume achieves the highest adjusted R? between bid-ask volume
and bid-ask frequency, with the adjusted R” of trading frequency ranging between 0.468
and 0.682. The results for RMSE also reveal that bid-ask frequency is dominated by
bid-ask volume. This paper using the LHAR-RV-TCJ-cum-Vol model, finds that the
empirical results are also in line with results of Chen (2005), which demonstrated that

bid-ask volume was better at predicting future realized volatility.

3.2.6 In-sample Resultsfor Different Volatility Predictors

Recent literature suggests that realized power variation (RPV) is the most effective
predictor of future volatility. Such publications include the work of Ghysels et al. (2006),
ABD (2007), Forsberg and Ghysels (2007), Fradkin (2008) and Chung et al. (2008), to
name a few. This study employs eight measures of realized variance: realized volatility
(RV), realized bi-power variation (BPV), corrected threshold bi-power variation
(CTBPV), realized power variation (RPV), continuous (C), jump and continuous (CJ),
threshold continuous (TC), and threshold continuous and jump (TCJ).

RPV outperforms other volatility measures for the forecasting of future volatility, for
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several reasons. First, BN-S (2004) showed that realized power variation is immune to
jumps. Jumps are generally large outliers that may have a strong effect on model
estimates and forecasts. Second, Taylor (1986) and Ding et al. (1993) found that the
absolute value of returns displays stronger persistence than squared returns. In other
words, RPV may provide a better signal than RV when predicting volatility. Third,
Forsberg and Ghysels (2007), Ghysels et al. (2006) and Ghysels and Sinko (2006)
demonstrated that absolute returns enhance volatility forecasts. Lastly, Forsberg and
Ghysels (2007) argue that the gains are due to the higher predictability, smaller sampling
error, and immunity to jumps which means jumps don’t have any affect on the model.

To the best of our knowledge, the issue of different market conditions, in the context
of volatility forecasting using different regressors and different model structures, has not
been previously addressed. Hence, in this sub-section, this study sets out to examine the
in-sample fit for realized variance with different regressors, using the standard HAR
model, the LHAR-RV model, and the LHAR-RV-cum-Vol model. The next sub-section
will then focus on the performance of these models in forecasting future volatility
during ’up-market days’ (U) versus ’"down-market days’ (D).

The results of the in-sample predictions of RV, for the different regressors are
presented in Table 19, with the left-hand columns under each prediction horizon reporting
the adjusted R?, and the right-hand columns reporting the RMSE. The results using the
standard HAR models are reported in Panel A of Table 19. These results indicate that RPV,

as a regressor, achieves the highest adjusted R and lowest RMSE, followed by TCJ and
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TC. It is interesting to note that the predictive ability on future volatility between RPV
and TCJ is nearly the same. This is also true for BPV and CTBPV. For the HAR-RV-TC
and HAR-RV-TCJ regressions, the difference in adjusted R* between TC and TCJ
regressors is quite small, increasing the fit by at most 0.03. This indicates that there is not
much to gain by separating RV into its continuous and jump parts and modeling them
separately. The difference in RMSE between TC and TCJ regressors also yields similar
results. Further, the adjusted R?of TC and TCJ regressors is higher than that of C and CJ
regressors. This suggests the use of the tests and measures proposed by Corsi et al. (2009),
which provide a better identification and more precise measurement of jumps.
Interestingly, the RMSE decreases for all regressors as the prediction horizon increases,
an indication that RV computed over longer horizons are easier to predict since they are
smoother series, as discussed in Forsberg and Ghysels (2007).

The results of the in-sample predictions of RV using the LHAR-RV model with
different regressors, are presented in Panel B of Table 19. Again, RPV achieves the
highest adjusted R* ranging between 0.194 and 0.433 in the LHAR-RV model, followed
by TCJ and TC. The results for RMSE also reveal that RPV dominates almost all other
regressors. The differences in the adjusted R? and RMSE between BPV and CTBPV are
quit small, indicating that using CTBPV as the regressor, as proposed by Corsi et al.
(2009), yields no better predictive power on future volatility than BPV. For the
LHAR-RV-TC and LHAR-RV-TC]J regressions, using TC and TCJ as regressors produces

essentially the same results; indicating that only the continuous component has predictive
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power. In other words, the jump component is simply ‘noise, due to the fact that the jump
component is less persistent. This study also does not find a large improvement in
explanatory power from dividing the continuous and jump components, as suggested by
ABD (2007). From the previous discussion, the possible explanation for this result is that
the new jump test proposed by Corsi et al. (2009) improves significantly the accuracy of
volatility forecasts especially in periods not following a jump.

The results of the RV predictions using the LHAR-RV-cum-Vol models with
different regressors are presented in Panel C of Table 19; in general, these results are
found to be similar to the results reported in Panel A and B of Table 19. Panel C, however,
yielded a different result, finding that with TCJ as the regressor, the adjusted R” is the
highest and RMSE is the lowest. Obviously, this means that TCJ has a more accurate
predictive ability than RPV. In other words, RPV is not a top forecaster anymore in the
models. This result confirms that when corrected threshold bipower variation is employed
as a measure of jumps, the threshold continuous and jump components can improve the
forecasting of future volatility.

Summarizing, the best regressors are RPV and TCJ. This study does not find that
explanatory power is significantly improved by dividing the continuous and jump
components using corrected threshold bipower variation. Nevertheless, threshold-based
tests indeed perform much better than bipower variation-based tests. These results are
consistent with the findings of Corsi et al. (2009). It has also been demonstrated that RPV,

BPV and CTBPV all outperform the RV. This confirms Forsberg and Ghysels’ (2007)
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finding that the realized absolute value is a better forecaster of future realized variance
than realized variance itself.

The square root transform regression results are presented in Table 20. The results
using the HAR-RV'? models with different regressors are presented in Panel A of Table
20. TCJ"? almost achieves the highest adjusted R? within the HAR-RV"? model, with the
adjusted R? of TCJ" ranging from 0.363 for the on-day horizon, to 0.589 for the
three-week horizon. Turning to the RMSE of the in-sample predictions, it is clear that
TCJ"* also dominates in RMSE terms. Comparing across prediction horizons, the RMSE
is always lowest when TCJ 2 is used as the regressor, with the RMSE of TCJ 12 ranging
between 0.941 and 2.229 across the five prediction horizons. For the HAR-RV'2-RPV
regression, the RMSE ranges between 0.946 and 2.233 across the five prediction horizons.

12 s almost the same. For the

Notice again that the performance between RPV and TCJ
HAR-RV"2-TC" and HAR-RV'"*-TCJ"? regressions, the results of the difference in
adjusted R? between TC"?and TCJ"? as regressors are quite small, with increasing the fit
by at most 0.030. Again, this indicates that the jump component of RV is of little help in
predicting future volatility. The difference in RMSE between the TC and TCJ regressors
also yields similar results. It is obvious that the C and CJ regressors do not outperform the
TC and TCJ regressors as independent variables in these regressions. Again, this study
finds that CTBPV"? does not seem to be of any help in improving forecasting. These

results hold up for Panel B and C of Table 20, using the LHAR-RV'? and

LHAR-RV"*-cum-Vol models, respectively.
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The log-transformed regression results are presented in Table 21. From the results of
the HAR-In RV, LHAR-In RV, LHAR-In RV-cum-Vol models reported in Panels A, B and
C of Table 21, this study finds that In RPV achieves nearly the highest adjusted R? and the
lowest RMSE. This result is followed by In TCJ, both for the HAR-In RV and LHAR-In
RV models, while InBPV achieves the highest adjusted R? and the lowest RMSE within
the LHAR-In RV-cum-Vol model. It is noteworthy that the predictive powers on future
volatility provided by In RPV and In TCJ are identical. Again, Table 21 shows that the
difference in adjusted R* and RMSE between the In TC and In TCJ regressors within the
different models is quite small. Corsi and Reno (2009) explained that this is because the
difference between the two forecasts is mainly in the days which come after a jump,
which are quite few. Also, the In TCJ regressor outperforms the In CJ regressor in these
models, although the In C regressor outperforms the In TC regressor. This result confirms
that the threshold continuous and jump components seem to capture the main
determinants of volatility dynamics.

It should be noted that when comparing the square and square root forms, the
adjusted R? is higher with log-transformed regressors as it reduces the variance of the data.
In other words, logarithmic models outperform the square root and square models, as
noted by ABD (2007) and Forsberg and Ghysels (2007). In addition, when the RMSE of
the HAR-RV-TCJ is compared with the HAR-RV"2-TCJ"? and HAR-InRV-InTCJ models,
this study finds that for the last two models, the square root and log transform do appear

to be detrimental. Considered from the RMSE perspective, HAR-RV-TCJ model is found
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to provide the best predictions. The same results are found when this paper models the
realized volatility in the LHAR-RV'? and LHAR-RV"?-cum-Vol models with TCJ"* as
the regressor. Interestingly, this seems to be the case for the RPV-based regressions as
well. This finding is in line with Forsberg and Ghysels (2007) and Chung et al. (2009).

As noted above in the discussion of Table 20, TCJ indeed has more accurate
predictive ability on future volatility than all other regressors, especially the RPV for
square root transformation. This finding contradicts the results of Forsberg and Ghysels
(2007). Importantly, there is significant gain to using TCJ and TC instead of CJ and C as
the explanatory variables. These surprising results are clear evidence that using corrected
threshold bipower variation not only better measures the jump components, it also
removes noise from the continuous component in the explanatory variables better than the
bipower variation of BN-S (2006).With this, the significant impact of the continuous and
jump components on future volatility as noted by Corsi et al. (2009), is easily seen.

Finally, in order to evaluate the relative contribution of the inclusion of both the
leverage effects and the jumps, this paper compares its in-sample prediction with those of
the HAR-RV, LHAR-RV, and LHAR-RV-cum-Vol regressions. From an adjusted R* or
RMSE perspective, this paper finds that with the same regressor, the best performance is
obtained by the LHAR-RV-cum-Vol model. This implies that not only does the leverage
effect accurately reflect the asymmetric responses of realized volatility, but also that
lagged trading volume does indeed contain extra information that affects future realized

volatility. This study also demonstrates that the LHAR-RV-TCJ-cum-Vol model provides
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the most accurate predictions, because the TCJ component successfully captures the

dynamics in future volatility. Thus, the choice of regressor is clearly more important than

either the model or the weighting scheme selected for use as noted by Ghysels et al. (2006)
and Forsberg and Ghysels (2007).

To sum wup, the results provided by the HAR-RV, LHAR-RV and
LHAR-RV-cum-Vol models suggest that using realized power variance, threshold
continuous and jump components as the regressors provides most accurate predictions, in
terms of capturing the fluctuations in future volatility for these models. The results of
these comparisons show that threshold jumps contribute only marginally to the
performance of these models. Additionally, the corrected threshold bipower variation
(CTBPV) proposed by Corsi et al. (2009) is a good estimation of the jump component of

realized volatility, but it does not improve the forecasts.

3.2.7 In-sample Results of an Up-market and a Down-mar ket

This sub-section is inspired by Fuertes et al. (2008) which compares the value-added
intraday information for future volatility forecasting during an ’up-market’ (U) versus
a ’down-market’ day (D). The definition of an up/down market day is based on the

moving average of daily returns over the most recent 20-day window, defined as:

) 1 20
|20 = 1 if Z—OZZI l_in >0 (Up-market day)

0 dse (Down - market day)

(46)

There are two questions to be asked: (a) Dose the performance of future volatility
46



forecasting with different regressors differ over market conditions? (b) Do the benefits
from exploiting intraday data differ over market conditions?

The results of the in-sample predictions of RV, for the various different regressors
are presented in Table 22, which reports the adjusted R*and RMSE, respectively, for up-
and down- market days as defined by Equation (46). For the sake of brevity, this study
limits itself to the HAR-RV model, since this model provides the simplest, most
parsimonious method of capturing the memory persistence of realized variance. The
square transform regression results with different regressors are presented in Panel A of
Table 22. In the first case, Panel A shows that TCJ, as a regressor, achieves the highest
adjusted R? and the lowest RMSE for all prediction horizons in both regimes as pointed
out by the previous discussion. Regardless of TC and TCJ, this study finds that the
adjusted R* and RMSE of RPV, as a regressor, dominates all other regressors for all
prediction horizons in down-market days. This result does not hold in up-market days,
however, implying that RPV has more forecasting ability in down-market days than in
up-market days. This interesting result implies that RPV regressors are invariant to jumps
in down-market days, but not invariant to jumps in up-market days.

Additionally, for the HAR-RV-TC and HAR-RV-TCJ regressions, the inclusion of
the jump component on down-market days increases the adjusted R?, ranging from
21.58% for the one-day prediction horizon, to 0.98% for the three-week prediction
horizon. Conversely, it decreases to -0.47% for the one-day prediction horizon and 0.86%

for the three-week prediction horizon over up-market days. Similarly, the percentage
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reduction in the inclusion of jump component forecast errors for up-market days is 0.05%
for the one-day prediction horizon and 0.68% for the three-week prediction horizon,
compared to an increase to 8.15% and 1.28% over down-market days, respectively. This
finding indicates that the jump element of RV is of little help in predicting future volatility
in up-market days. In the second case, the forecast losses tend to be smaller for
down-market days. This suggests that realized volatility at day t is relatively more
difficult to forecast when t-1 is an up-market day.

The square-root transform regression results are presented in Panel B of Table 22. A
glance at these values shows the superiority of the HAR-RV-RPV and HAR-RV-TCJ
models in a down-market regime, and the superiority of the HAR-RV-TCJ model in an
up-market regime. Regardless of TC and TCJ, this study also shows that the performance
of RPV is greatly superior to other regressors in down-market days, in terms of the
adjusted R* and RMSE. For the HAR-RV" 2.TC"* and HAR-RV"2-TCJ"? regressions, the
difference in adjusted R? between TC"?and TCJ" regressors is larger in up-market days,
but smaller in down-market days. This result is dissimilar to that of the square form. The
explanation for this finding might be that the predictive ability in down-market days is
originally high, so that adding the jump element only marginally contributes to the
performance of the model. The result of the difference in RMSE between C"?and CJ'"?
regressors is ambiguous. Furthermore, the RMSE from down-market days is relatively
smaller than that from up-market days. This finding is consistent with Fuertes et al.

(2008), suggesting that the future volatility is easier to forecast when the market is
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underperforming (i.e. in down-market days).

The log-transformed regression results are presented in Panel C. This study notes
that In TCJ achieves almost the highest adjusted R* in both regimes; In RV is also the best
forecaster in up-market days. However, the results for RMSE reveal that In RV
achieves a low RMSE in down-market days, indicating that there is a smaller deviation
between the actual and predicted values; meanwhile, In TCJ dominates all other
regressors in up-market days. Regardless of In TCJ, In TC and In RV, In RPV performs
relatively well in down-market days. For the HAR-InRV-InTC and HAR-InRV-InTCJ
regressions, the results of the difference in adjusted R? and RMSE between InTC and In
TCJ regressors are similar to the results reported in Panel A. This study finds that there is
a relatively significant gain derived from implementing InTCJ as the explanatory variable
in down-market days compared to up-market days. From the RMSE perspective, this
paper can compare the HAR-RV-TCJ with the HAR-RV"?-TCJ"? and HAR-In RV-In TCJ
models over different market conditions. For the last two models, the square and log
transform do appear to be detrimental and indeed the HAR-RV-TCJ model is found to
provide the best predictions.

Overall, it is not difficult to see that the most tangible benefits from exploiting
intraday data in order to predict a future volatility occur during a bearish market. Fuertes
et al. (2008) explained that if market is bearish, volatility is higher during down days than
up days. This effect is exacerbated because, as Admati and Pfleiderer (1988) demonstrate,

trades from both informed and discretionary liquidity traders come in clusters, with both
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groups preferring to trade during “thick’ markets' in order to minimize transaction costs.
This clustering of trades, when trading activity is already high, triggers the release of even
more information, which aids forecasting future volatility in down-market days. It is also
possible high trading activity may mitigate the microstructure noise (e.g.
infrequent-trading effects); this would explain why the HAR-RV model tends to provide
better forecasts during down-market days. Hence, the use of intraday data is relatively
more beneficial during down-market days.

Take summarize section 3.2, this paper shows that jumps can be effectively detected
using the newly proposed C-Tz statistics and that the HAR-RV-TCJ model provides a
superior forecasting, especially in days which do not follow a jump. The inclusion of the
leverage effects in the HAR-RV-TCJ model noticeably improves the forecasts and the
model confirms the views of the Heterogeneous Market Hypothesis. Moreover, the
leverage effect is indeed attributable to jumps for short-run prediction horizons, while the
leverage effect is not induced by jumps for long-run prediction horizons. Trading volume
contains stock-market-relevant information and as a result the modified model, the
so-called LHAR-RV-TCJ-Cum-Vol model, improves the performance of future volatility
forecasting. This study also reveals that TNV provides more information on explaining
volatility and that TVR has a significantly greater impact on volatility than TNR does.

The results of comparing the forecast performance of different volatility predictors

'In Lippman and McCall (1986), a ‘thick’ market indicates that more transactions of a homogeneous good

(an equity) take place in a unit of time, so-called a ‘liquid’ market.
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suggest that RPV and TCJ are the top forecasters. This study also notes that the TJ
regressor contributes only marginally to the forecast performance. From market
conditions analysis, TCJ is the top forecaster in both regimes. Additionally, RPV performs
relatively well in down-market days as compared to up-market days. Importantly, the
forecast losses tend to be smaller on down-market days, indicating that the volatility is

relatively is difficult to forecast within up-market days.

3.3 Out-of-sample Results

In this sub-section, out-of-sample predictions of the realized volatility of TAIEX are
reported. The data is split into two parts to provide an in-sample section for estimating the
models, and an out-of-sample section for measuring the predictions. The in-sample period
covers 2 January, 2003 to 29 December, 2006, for a total of 994 days. The out-of-sample
period is 2 January, 2007 to 30 June, 2008, for a total of 367 days.

In terms of predictive ability, the in-sample fit measures clearly demonstrate greater
accuracy for the LHAR-RV-cum-Vol model compared to the HAR-RV and LHAR-RV
models; the measures also indicate that the TCJ and RPV clements are the most effective
forecaster for predicting future volatility. Since the primary purpose of this study is to
seek out improvements in the forecasting of future volatility, it is important to determine
whether the superior performance of the LHAR-RV-cum-Vol model is confirmed in the
out-of-sample forecasts. Table 23 reports the out-of-sample results for the HAR-RV,

LHAR-RV, and LHAR-RV-cum-Vol models, as well as their square root transforms and
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log-transforms. Panel A of Table 23 presents results pertaining to the prediction of RVi+H.
The out-of-sample results confirm the in-sample results; with the same regressor, and for
all prediction horizons, all of the RMSE results are significantly lower in the
LHAR-RV-cum-Vol regressions than those in the HAR-RV and LHAR-RV regressions.
Compared to the other regressors within these models, RPV achieves the lowest RMSE
for all the prediction horizons, making it by far the most preferable. This empirical result
is consistent with the results achieved by both Forsberg and Ghysels (2007) and Chung et
al. (2008), which indicate that the predictable features of absolute returns (realized power
variation) are shown to improve forecasting the usual squared return-based measures of
volatility. Interestingly, the TCJ regressor does not outperform the TC regressor.

Panel B of Table 23 reports the results for the square root transform. Again,
RPV-based measures continue to provide the best out-of-sample predictions. Most
importantly, it shows that TCJ 2 models slightly improve the forecasting power with
respect to TC"? models. As noted by ABD (2007), jumps have a null impact in
determining future volatility when the jump component is estimated through the concept

of corrected threshold bipower variation. Furthermore, CTBPV'*

does not provide more
accurate out-of-sample predictive ability than BPV'?

Panel C of Table 23 reports the results for the log transform. The results are
displayed on Panel A and B. Surprisingly, it seems that In RV is the top forecaster for all

the prediction horizons. In light of the findings of Corsi et al. (2009), it is not surprising to

see that In TCJ produces a better predictive power than InTC. Indeed, the RMSE is
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always lower for the LHAR-InRV-cum-Vol model than for the HAR-InRV and

LHAR-InRV models. These findings suggest that the LHAR-RV-cum-Vol model does

improve the forecasting of future volatility for all the transformations with the results

holding for both the in-sample and out-of-sample forecasts.

53



4 Concluding Remarks

This paper provides five contributions to the literature. The first contribution is to
show that C-Tz statistics, which are based on corrected threshold bipower variation, are
more efficient in detecting jumps than z statistics, which are based on bipower variation.
The HAR-RV-CJ model is also evaluated, using the jumps detected by the z statistics, as
in BN-S (2004a, 2006), and compared with the HAR-RV-TCJ model estimated with the
jumps detected by the C-Tz statistics. The results indicate that the predictability of the
HAR-RV-TCJ model is more accurate than HAR-RV-CJ model, especially in days which
do not follow the occurrence of a jump. Meanwhile, the continuous volatility components
present the hierarchical asymmetric propagation of the volatility cascade.

The second contribution is the incorporation of the leverage effects into the
HAR-RV-TCJ model enhances the forecasting of future volatility. Results reveal not only
daily but also weekly and monthly negative past returns are highly significant. This
empirical finding confirms the view of the Heterogeneous Market Hypothesis. In addition,
this study demonstrates that the leverage effect is indeed attributable to jumps for one-day
prediction horizons. However, the leverage is not linked to jumps for the one-week or
four-week prediction horizons; it appears instead to be a feature primarily induced by
continuous returns.

The third contribution of this paper is to present a new improved model for volatility
forecasting. This model extends the LHAR-RV-TCJ model by incorporating lagged

trading volume, which is a proxy for the rate of information arrival into the market.
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Results find that the only daily trading volume and daily jump components appear to play

a role in future volatility forecast and the LHAR-RV-TCJ-cum-Vol model shows

remarkably good forecasting performance. This result seems to support the Sequential

Information Arrival Hypothesis and Mixture of Distributions Hypothesis. In particular,

the number of transactions as a proxy for information flows provides the best predictive

ability on the volatility. The informational content of the bid-ask volume appear to be

higher than that of the bid-ask frequency in the TSE market.

The fourth contribution of this paper finds that the absolute returns-based volatility

measure is better at forecasting than the squared returns-based volatility measure. Besides,

RPV and TCJ under different transformations are the preferred regressors for future

volatility predictions. The magnitude and occurrence of jumps in price does not have a

significant effects on future volatility even if jumps are effectively detected using the

newly proposed C-Tz statistics. This suggests that it is not necessary to separate the

continuous and jump components of volatility for the purpose of forecasting. However,

given the inadequacy of bipower variation in measuring volatility in the presence of

jumps, this paper employs the tests and measures introduced by Corsi et al. (2009) to

separate the RV into the continuous and jump components; this indicates that the TC and

TCJ regressors indeed outperform the C and CJ regressors as independent variables.

Moreover, CTBPV does not provide a better forecast of future volatility than BPV. These

results hold good for both the in-sample and out-of-sample data.

Last, but definitely not least, using intraday data to model and forecast future
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volatility in ‘up-market’ and ‘down-market’ days, results suggest that TCJ is the most
preferred regressor to predict future volatility in both regimes. It also appears that the
jump component contains more information about future price movements when the
market is down. Moreover, the RPV regressor performs relatively well in down-market
days, indicating that it is invariant to jumps in down-market days, but it is variant to
jumps in up-market days. In other words, there is no change in the RPV repressor with
regard to its ability to predict future volatility in down-market days. Interestingly, the
RMSE tends to be smaller for down-market days. That is, when the market is down the
amount of market information increases, the predictive ability of future volatility also
increases.

As the future research directions, we may include the realized volatility of
international stock markets in the HAR-RV models. Meanwhile, for checking the
adequacy of the fitted model, we should examine the sample ACF and the time plot of the
residual series. Visual examination of such a residual plot often is useful in detecting
problems with the estimated model. Besides, we believe choosing an optimal sampling
frequency could improve the forecasting performance of realized volatility. These issues

warrant further study in the future.
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Table I Descriptive Statistics of Realized Volatility Levels in the TAIEX

Variables® Mean Std. Dev. Skew Kurtosis Min. Max. LB(lo)d
RV, 1.506 2.451 9.504 137.429 0.080 46.846 574.630
BPV, 0.896 0.870 3.182 18.167 0.063 8.199 2517.100
CTBPV, 0.781 0.757 3.224 19.540 0.019 7.614 2563.300
RPV, 0.853 0.354 1.296 5.706 0.256 2.826 4821.600
TC, 0.862 0.874 3.231 18.575 0.019 8.902 2273.600

TI?  0.643 2.234 11.926 197.696 0.000 46.826 83.266
J© 0470 2.060 13.762 253.528 0.000 46.735 52.715

RV 1.084 0.574 2.901 19.976 0.284 6.844 2034.1
BPV,?  0.872 0.368 1.422 6.091 0.252 2.863 3935.6
CTBPV,”  0.813 0.346 1.369 5.999 0.138 2.759 4006.4
RPV,?  0.905 0.181 0.666 3.515 0.506 1.681 5377.9
TG 0.850 0.374 1.446 6.152 0.138 2.983 3590.8
TI?*  0.434 0.674 2.697 16.490 0.000 6.843 87.155
10306 0.613 3.421 23.117 0.000 6.836 57.847
InRV,  -0.047 0.886 0.419 3.397 -2.515 3.846 3045.5
InBPV,  -0.432 0.786 0.220 2.793 -2.750 2.104 4707.6
InCTBPV,  -0.575 0.804 0.091 2.978 -3.950 2.030 4751.1
InRPV,  -0.236 0.393 0.145 2.661 -1.361 1.039 5650.2
InTC,  -0.497 0.825 0.110 3.054 -3.950 2.186 4352.2
In(TJ+1  0.295 0.494 2.437 10.984 0.000 3.867 128.66
In(J+1,°  0.209 0.442 3.080 15.781 0.000 3.865 89.298
Notes:

a. RV, denotes realized variance; BPV, denotes bi-power variance; CTBPV, denotes corrected threshold
bi-power variance; RPV; denotes realized power variance; C;and J; are the respective continuous and
jump elements of RV, as separated by the CTBPV, jump test of Corsi et al. (2009).

b. A significant daily jump test are computed using a critical value of a = 99.9% while the C-Tz statistics are
computed using cy= 3.

c. A significant level of a = 99.9% was used in the bi-power jump test.

d. The critical value of the test statistic for LB;¢) was 18.307.
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Table 2 Descriptive Statistics of Daily Trading Volume for the TAIEX

variables® Mean Std. Dev. Skew Kurtosis Min. Max. LB
InVOL, 394.986 23.038 -0.091 2.814 320.204 463.193 7190.0
InTNV, 504.578 19.223 0.048 2.662 433.893 562.7526 7154.7
InTSV, -109.592 6.107 -0.676 3.853 -130.042 -92.593 7102.6
InTNR, 1.004 0.013 0.211 3.605 0.938 1.054 2453
InTVR, 0.999 0.007 -0.204 3.773 0.965 1.030 19.916
Notes:

a. VOLdenotes daily trading volume value (unit: NTD million); TNV, denotes daily number of transactions

(trading frequency); TSV, denotes daily average trade size; TNR denotes daily bid-ask frequency; TVR,

denotes daily bid-ask volume.
b. All measures of volume are transformed by taking their logarithm.

c. The critical value of the test statistic for LB(;9) was 18.307.

Table 3 Pearson Correlation Matrix Between Measures of Daily Trading Volume

VOL, TNV, TSV, TNR; TVR,
VOL, 1.000 0.974 0.705 -0.098 0.033
TNV, 1.000 0.527 -0.089 0.026
TSV, 1.000 -0.091 0.042
TNR; 1.000 0.329
TVR, 1.000000

Note:

a. This table reports correlation estimates of daily trading volume value (VOL,), daily number of

transactions (TNV)), daily average trade size (TSV,), daily bid-ask frequency (TNR;), and daily bid-ask
volume ( TVR)).
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Table 4 Coefficient Estimates and Significance of Jump Terms in HAR-RV Regressions (H=1)

HAR. RV RV} In RV,
RV CJ TCJ RV CJ TCJ RV CJ TCJ
5 0.420%*%  0247*%%%  0.141%  0.158%**F (.103%**  0.076**  -0.008  0.097*** (.]149%**
0 (5.089)  (3.027)  (1.769)  (3.875)  (2.620)  (2.037)  (0.435)  (2.657)  (3.193)
5 0.159 -0.078 0.100 0.068 0.029 0.139 0.028 0.072 0.126%*
d (1.440)  (-0.522)  (0.552)  (1.014)  (0.349)  (1.513)  (0.711)  (1.391)  (2.154)
5 0.330%*  0.859%%*  (.990%**  (.530%**  (.660%*F* (.685%**F  (.520%%*  (.459%*k  ().428%**
w (2303)  (2977)  (2.726)  (5.636)  (4.950)  (4.469)  (7.723)  (5.818)  (5.138)
5 0.219%%*  (.296* 0293  0.252%F%  (252%%%  (.194%  (.350%k%  (299%%k () 208k
m (2.963)  (1.668)  (1.405)  (4.238)  (2.754)  (1.850)  (5.716)  (4.294)  (3.114)
5 0.205 0.168 0.031 0.022 -0.005 -0.006
Jd (1.579)  (1.365) (0.665)  (0.551) (-0.086)  (-0.134)
5 0.196**  0.150% 0.265%*%  (0.234%%%* 0.512%%%  (.488%**
w (2.002)  (1.647) (4.039)  (4.456) (4.188)  (4.499)
5 -0.108 -0.055 0.045 0.068%* 0.083 0.160
jm (-0.668)  (-0.548) (0.413)  (0.854) (0.459)  (1.091)
R’ 0.168 0.188 0.194 0.345 0.352 0.363 0.432 0.439 0.445
RMSE 2.228 2.198 2.190 2.235 2.234 2.229 2271 2277 2275
J-R? 0.184 0.216 0.244 0.223 0.397 0.595 0.201 0.217 0.226
J-RMSE 1.699 1.664 1.634 1.747 1.723 1.710 1.863 1.826 1.831
C-R? 0.051 0.090 0.162 0.140 0.329 0.578 0.236 0.243 0.243
C-RMSE  1.824 1.785 1.712 1.860 1.786 1.693 1.843 1.805 1.784
Notes:

a. OLS estimate for daily (H=1) HAR-RV, HAR-RV-CJ, HAR-RV-TCIJ volatility forecast regressions.
b. The significant daily jumps are computed using a critical value of a = 99.9%.
c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 5 Coefficient Estimates and Significance of Jump Terms in HAR-RV Regressions (H=5)

HAR. RV RV} In RV,
RV cl TCJ RV Cl TCJ RV CJ TCIJ
5 0.563%**%  0.350%**  0.217%%  0211%** 0.149%** (0.122%% 0012  0.105%*  0.157**
0 (5229)  (3.682)  (2.237)  (4.383)  (3.274)  (2.812)  (-0.544)  (2355)  (2.807)
5 0.097*%%  0.163%*  0.246%** (.112%%*  (.142%%%  0216%** (.101%** 0.]119%** (. ]5]%%*
d (3.741)  (2.042)  (2.606)  (4.608)  (3.230)  (4.648)  (4.569)  (4.055)  (4.860)
0.240%* 0217  0.706%%* 0.349%%* Q411*%% (0464%F*F (3]6%* (297** (.285%**
A (2244)  (1.109)  (2.662)  (3.934)  (3.516)  (3.509)  (4.506)  (3.873)  (3.708)
5 0.278%*%  (.678%%%  (.475%%  (338%%%  (350%kk  (3]5EEE  (449%Hk () 302%kx ()34
m (3456)  (3.506)  (2413)  (4907)  (3.789)  (2.847)  (6.804)  (5.415)  (4.237)
5 0.098**% (0,097 0.053%*  0.064%** 0.083**  (.105%**
d (3.137)  (3.847) (2.560)  (3.785) (2.570)  (3.735)
5 0.093 0.049 0.172%*%*  0.110% 0.326%**%  (.245%*
w (1.455)  (0.878) (2.641)  (1.816) (2.750)  (2.176)
5 -0.081 -0.064 0.047 0.082 0.094 0.220
jm (-0.568)  (-0.743) (0.474)  (1.097) (0.508)  (1.486)
R? 0.263 0.320 0.351 0.528 0.554 0.573 0.640 0.653 0.656
RMSE 1.356 1.301 1.271 1.329 1.308 1.293 1.367 1.360 1.360
J-R? 0.214 0.223 0.236 0.229 0.274 0.288 0.489 0.505 0.507
JRMSE  0.900 0.894 0.886 1.019 1.005 1.004 0983  0.976 0.981
C-R? 0.148 0.246 0.299 0.213 0.323 0.393 0.491 0.501 0.501
C-RMSE  0.830 0.781 0.753 0.936 0.910 0.890 0.820 0.810  0.806
Notes:

a. OLS estimate for weekly (H=5) HAR-RV, HAR-RV-CJ, HAR-RV-TC]J volatility forecast regressions.
b. The significant daily jumps are computed using a critical value of a = 99.9%.
c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 6 Coefficient Estimates and Significance of Jump Terms in HAR-RV Regressions (H=20)

HAR. RV, RV} InRV,,
RV CJ TCJ RV CJ TCJ RV CJ TCJ
5 0.724%%%  ().581%**k*  (0435%%k () 323%*k () 267*k*  (0244%k*%  _(.019 0.095%  0.125%
0 (7.108)  (6.308)  (4.480)  (6.457)  (5.607)  (5.362)  (-0.741)  (1.942)  (2.058)
5 0.044%*%  0.107**  0.161***  0.063%** (.096%** (.146%*F* (. 058%*k* (.077**k  (.097%**
d (2.133)  (2377)  (3.015)  (2.880)  (2.826)  (3.793)  (3.350)  (3.342)  (4.027)
0.081 0.179  0.567*%*  (.183%*  (.206%** (.395%k* () 233%kk () 27]k%k () 293%k
B 0.987)  (1.219)  (3.367)  (2.165)  (2.961)  (3.754)  (3.458)  (3.685)  (4.016)
5 0.380%*%  (.546%*%%  (0.447%%  (0.448%%*  (407*F*  (0.3]18%k*  (.493%%k () 385%k* () 29k
m (5.081)  (3.021)  (2.185)  (5.661)  (3.758)  (2.696)  (6.854)  (4.626)  (3.355)
5 0.044%%% () 045%** 0.034%#* (), 039%*** 0.055%*%  0.065%**
id (3.539)  (4.582) (2.765)  (3.645) (2.445)  (3.190)
5 -0.065  -0.099%* 0.021 -0.035 0.073 0.014
w (-1.209)  (-2.345) (0.333)  (-0.598) (0.608)  (0.129)
5 0.123 0.124 0.172  0.235%** 0293  0.454%%*x
jm (0.838)  (1.184) (1.603)  (2.695) (1431)  (2.624)
R? 0.268 0.333 0.389 0.513 0.549 0.571 0.649 0.654 0.657
RMSE 0.995 0.948 0.908 0.984 0.959 0.941 1.024 1.021 1.018
J-R? 0.236 0.274 0.303 0.291 0318 0.321 0.585 0.595 0.599
J-RMSE 0.585 0.569 0.558 0.739 0.735 0.733 0.665 0.666 0.667
C-R? 0.210 0.306 0.359 0.348 0.447 0.476 0.593 0.593 0.595
C-RMSE  0.538 0.503 0.484 0.688 0.674 0.666 0.530 0.524 0.522
Notes:

a. OLS estimate for monthly (H=20) HAR-RV, HAR-RV-CJ, HAR-RV-TC]J volatility forecast regressions.
b. The significant daily jumps are computed using a critical value of a = 99.9%.
c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 7 In-sample Results modeling RV,,,,; of TAIEX using the LHAR-RV-TCJ Model

Horizons
Variables lday Iweek 2weeks 3weeks 4weeks
0.077 0.144 0.233** 0.309%** 0.384#+*
'BO (0.857) (1.401) (2.347) (3.280) (4.072)
-0.052 0.126 0.045 0.104 0.111**
'BCd (-0.315) (1.317) (0.622) (1.639) (2.023)
1.041%* 0.723%* 0.870%** 0.762%** 0.666%**
'BCW (2.253) (2.389) (3.336) (3.405) (3.569)
0.307 0.595%** 0.513** 0.485%* 0.474%%*
'ch (1.357) (3.070) (2.300) (2.186) (2.243)
0.122 0.071%*** 0.039** 0.031%** 0.028%***
'Bjd (1.015) (2.660) (2.527) (2.849) (2.913)
0.159* 0.054 -0.012 -0.048 -0.079*
'BiW (1.833) (0.848) (-0.220) (-0.996) (-1.823)
-0.026 -0.038 -0.013 0.046 0.135
'Bjm (-0.276) (-0.460) (-0.134) (0.471) (1.328)
-0.342%%* -0.161%* -0.165%** -0.174%** -0.134%**
'B'd (-2.791) (-2.375) (-3.253) (-3.925) (-3.587)
-0.140 -0.410 -0.223 -0.067 -0.002
B (-0.515) (-1.241) (-0.956) (-0.320) (-0.014)
0.338 1.083 1.027 0.982* 0911*
'B”" (0.468) (1.317) (1.515) (1.784) (1.938)
R’ 0.203 0.366 0.408 0.416 0.401
RMSE 2175 1.254 1.040 0.945 0.898
Notes:

a. OLS estimate for LHAR-TCIJ regressions, estimated on 1day and 1- to 4 -week of the realized volatility.
b. The significant daily jumps are computed using a critical value of a. = 99.9%.
c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 8 In-sample Results modeling Rtht/ 2, of TAIEX using the LHAR-RV-TCJ Model

Horizons

Variables lday Iweek 2weeks 3weeks 4weeks
0.100** 0.113%* 0.149%** 0.181%** 0.215%**

By (2.236) (2.169) (2.907) (3.712) (4.475)
-0.026 0.106%* 0.071* 0.104%** 0.112%**

P (-0.270) (2.320) (1.762) (2.743) (3.085)
0.683*** 0.446%*** 0.544 %% 0.501%*%* 0.462%**

P (3.708) (3.352) (3.925) (3.964) (4.130)
0.269** 0.402%** 0.354%** 0.333%** 0.320%**

Pan (2.491) (3.768) (2.953) (2.719) (2.700)
-0.022 0.036** 0.025%* 0.027** 0.028***

'Bjd (-0.686) (2.529) (2.029) (2.538) (2.799)
0.241%** 0.129* 0.070 0.025 -0.007

'BiW (4.310) (1.945) (1.021) (0.393) (-0.129)
0.093 0.097 0.130* 0.178%* 0.234%**

'Bjm (1.280) (1.356) (1.669) (2.279) (2.716)
-0.100%*** -0.051*** -0.046*** -0.043*** -0.032%**

Pro (-2.795) (-3.454) (-4.352) (-4.541) (-3.730)

-0.114%** -0.122%%* -0.050 -0.010 0.012

P (-2.340) (2.083) (-1.069) (-0.220) (0.292)
0.076 0.246 0.239* 0.237%* 0.213*

P (0.581) (1.638) (1.779) (1.989) (1.929)

R’ 0.388 0.592 0.605 0.599 0.579

RMSE 2.196 1.275 1.070 0.977 0.932

Notes:

a. OLS estimate for LHAR-TC]J regressions, estimated on 1day and 1- to 4 -week of the realized volatility.
b. The significant daily jumps are computed using a critical value of a = 99.9%.
c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 9 In-sample Results modeling In RV,,,,; of TAIEX using the LHAR-RV-TCJ Model

Horizons

Variables lday Iweek 2weeks 3weeks 4weeks
0.044 0.096* 0.134** 0.139** 0.127**

Py (0.978) (1.787) (2.277) (2.333) (2.069)
0.035 0.085%*** 0.062%** 0.068%** 0.077#**

P (0.594) (2.970) (2.713) (3.063) (3.454)
0.407*** 0.273%** 0.316%** 0.329%** 0.324%**

Pow (4.670) (3.681) (4.013) (4.283) (4.379)
0.285%** 0.378*** 0.356%** 0.322%%* 0.293%**

Pan (4.018) (5.179) (4.475) (3.818) (3.393)
-0.076* 0.056** 0.040* 0.043** 0.045%*

'Bjd (-1.648) (2.226) (1.789) (2.111) (2.359)

0.456%** 0.251%* 0.188 0.120 0.063

'BiW (4.185) (2.103) (1.526) (1.014) (0.554)
0.234%* 0.282%* 0.311** 0.380%** 0.464%**

'Bjm (1.781) (2.015) (2.116) (2.480) (2.688)
-0.116%** -0.070%** -0.061%** -0.056%** -0.042%**

Bra (-3.431) (-3.820) (-4.495) (-4.551) (-3.567)

-0.219%** -0.206*** -0.097 -0.038 0.001

B (-4.263) (-3.168) (-1.633) (-0.614) (0.026)
0.097 0.317* 0.317* 0.323** 0.286*

B (0.692) (1.787) (1.836) (1.993) (1.811)

R’ 0.466 0.674 0.687 0.681 0.662

RMSE 2.240 1.341 1.147 1.058 1.013

Notes:

a. OLS estimate for LHAR-TCIJ regressions, estimated on 1day and 1- to 4 -week of the realized volatility.
b. The significant daily jumps are computed using a critical value of a. = 99.9%.
c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 10

Comparing Forecasting Models: HAR-RV, HAR-RV-TCJ and LHAR-RV-TCJ

Horizons
lday Iweek 2weeks 3weeks 4weeks
Models R® RMSE R’ RMSE R* RMSE R’ RMSE R’ RMSE
Panel A:
HAR-RV ~ 0.168 2228 0263 1356 0261 1.165 0263 1064 0268 0.995
HAR-TCJ  0.194 2190 0351 1271 0393 1.055 0400 0958 0.389 0.908
LHAR-TCJ 0203 2175 0366 1254 0408 1040 0416 0945 0401 0.898
Panel B:

HAR-RV'? 0345 2235 0528 1329 0532 1136 0525 1042 0513 0984
HAR-TCJ'? 0363 2229 0.573 1293 0.592 1.084 0.589 0990 0.571 0.941
LHAR-TCJ"® 0388 2196 0592 1275 0605 1070 0599 0977 0579 0932
Panel C:

HAR-InRV 0432 2271 0640 1367 0662 1.169 0662 1077 0649 1.024
HAR-InTCJ] ~ 0.445 2275 0.656 1360 0.677 1.159 0674 1067 0.657 1.018
LHAR-InNTC] 0466 2240 0674 1324 0687 1147 0681 1058 0662 1.013

Notes:

a. The table presents the adjusted R* and root mean square error (RMSE) for 1-day and 1- to 4-week

in-sample predictions for TAIEX.

b. The dependent variable for all models and for all horizons is the standardized realized variance:

RVt;t+H/H-

c. Bold values denote the highest adjusted R*and the lowest RMSE.
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Table 11  In-sample daily regressions for the LHAR-RV-CJ" and HAR-RV-CJ" model
RV 1N In RV,
HAR-CJ" LHAR-CJ* HAR-CJ" LHAR-CJ HAR-CJ" LHAR-CJ"
0.158* 0.116 0.091** 0.100%* 0.146%** 0.055
By (1.957) (1.283) (2.460) (2.242) (3.126) (1.200)
0.036 -0.036 0.105 -0.012 0.107* 0.039
Bs (0.190) (-0.215) (1.103) (-0.131) (1.859) (0.694)
1.083%*%* 1.095%* 0.718%** 0.689%** 0.449% 0.411%%*
B (2.811) (2.277) (4.538) (3.679) (5.250) (4.646)
0.278 0.309 0.176% 0.260%* 0.218%** 0.281%**
B (1.317) (1.358) (1.660) (2.363) (2.993) (3.963)
“ -0.066 -0.055 -0.066%* -0.053* -0.152% % -0.117%*
id (-1.227) (-1.093) (-2.093) (-1.651) (-2.747) (-2.103)
o 0.269%* 0.231 0.112% 0.026 0.155%* -0.010
id (2.231) (1.618) (1.898) (0.450) (2.105) (-0.143)
0.145 0.151 0.232%** 0.239 0.485%*+* 0.456%**
B (1.361) (1.455) (4.360) (4.305) (4.612) (4.223)
-0.011 -0.001 0.090 0.099 0.189 0.239*
Bim (-0.116) (-0.017) (1.194) (1.384) (1.318) (1.808)
. -0.163 -0.076%** -0.094% %
rd (-1.278) (-2.793) (-2.999)
o -0.129 20.111** -0.217%%%
rw (-0.464) (-2.220) (-4.188)
o 0.363 0.086 0.107
rm (0.493) (0.635) (0.750)
R’ 0.215 0.216 0.378 0.389 0.455 0.467
RMSE 2.160 2.157 2.204 2.191 2.260 2.238
Notes:

a. OLS estimate for the LHAR-RV-CJ" and HAR-RV-CJ" model in which this separates daily jumps into

positive and negative value.

b. The significant daily jumps are computed using a critical value of a = 99.9%.

c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 12 In-sample weekly regressions for the LHAR-RV-CJ" and HAR-RV-CJ" model

RV, 1N In RV,

HAR-CJ" LHAR-CJ" HAR-CJ" LHAR-CJ' HAR-CJ" LHAR-CJ"

0.221%* 0.149 0.128%%* 0.113%* 0.155% 0.095%*
Py (2.272) (1.440) (2.940) (2.169) (2.792) (1.760)

0.228% 0.128 0.203 %%+ 0.107%* 0.143 %% 0.084%

Ps (2.421) (1.339) (4.405) (2.363) (4.719) (2.966)

0.731%%% 0.731%% 0.478%** 0.466%** 0.295% %% 0.273%%%

P (2.748) (2.407) (3.610) (3.350) (3.821) (3.673)

0.471%% 0.595% %% 0.308*** 0.401 %% 0.319%*%* 0.379%%%

P (2.400) (3.071) (2.778) (3.753) (4.175) (5.182)
“ 0.034 0.044 0.028%* 0.033%* 0.040 0.060*

id (1.191) (1.377) (1.866) (2.057) (1.406) (1.948)
O 0.125% % 0.087%# 0.100%%* 0.040% 0.177%%* 0.050

d (6.851) (2.808) (4.864) (1.718) (4.513) (1.221)
0.048 0.053 0.109* 0.128* 0.244%% 0.251%*

P (0.838) (0.811) (1.808) (1.939) (2.194) (2.101)
-0.053 -0.035 0.091 0.098 0.233 0.282%*

P (-0.611) (-0.415) (1.231) (1.361) (1.586) (2.013)

O -0.134 -0.049% -0.072% %

rd (-1.607) (-2.765) (-3.328)

O -0.408 -0.121%* -0.206%
w (-1.229) (-2.082) (-3.175)
o 1.087 0.247 0.316*
rm (1.321) (1.637) (1.776)
R 0.354 0.367 0.577 0.592 0.659 0.674
RMSE 1.267 1.253 1.288 1.274 1.356 1.341

Notes:

a. OLS estimate for the LHAR-RV-CJ" and HAR-RV-CJ" model in which this separates daily jumps into
positive and negative values.

b. The significant daily jumps are computed using a critical value of a = 99.9%.

c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 13 In-sample monthly regressions for the LHAR-RV-CJ" and HAR-RV-CJ" model

RV RV, In RV,

HAR-CJ" LHAR-CJ" HAR-CJ" LHAR-CJ" HAR-CJ" LHAR-CJ"

0.437%%* 0.386%** 0.245%*%* 0.215%** 0.125%* 0.126**
Py (4.499) (4.106) (5.400) (4.474) (2.053) (2.034)
0.153%** 0.111%* 0.143%** 0.111%%* 0.095%** 0.076%**
Bs (2.896) (2.026) (3.744) (2.996) (3.974) (3.405)
0.57 7% 0.668%#* 0.398%#* 0.462%#* 0.295%%* (0.323 %%
A (3.412) (3.573) (3.763) (4.127) (4.022) (4.371)
0.445%%* 0.474%%* 0.316%** 0.32] %% 0.2907%#* 0.293 %%
B (2.180) (2.243) (2.682) (2.710) (3.337) (3.397)
) 0.018 0.020 0.032%* 0.031** 0.050%** 0.049**
d (0.995) (0.998) (2.474) (2.334) (2.139) (1.989)
- 0.057%** 0.033** 0.047%** 0.024 0.082%** 0.038
d (4.468) (2.334) (3.238) (1.403) (2.751) (1.137)
-0.099%** -0.080* -0.035 -0.007 0.014 0.063
P w (-2.340) (-1.817) (-0.599) (-0.125) (0.126) (0.553)
0.129 0.137 0. 2881 +* (0.233 %% 0.457%:%% 0.463%#%*
'Bjm (1.240) (1.342) (2.718) (2.716) (2.640) (2.688)
O -0.125%** -0.034%*** -0.045%**
rd (-3.106) (-3.157) (-2.952)
O -0.002 0.012 0.001
m (-0.012) (0.285) (0.022)
. 0.912* 0.212%* 0.285%*
rm (1.942) (1.923) (1.805)
R’ 0.389 0.400 0.571 0.578 0.657 0.662
RMSE 0.907 0.898 0.940 0.932 1.018 1.013
Notes:

a. OLS estimate for the LHAR-RV-CJ" and HAR-RV-CJ" model in which this separates daily jumps into
positive and negative values.

b. The significant daily jumps are computed using a critical value of o= 99.9%.

c. The t-statistics based on Newey-West correction are given in parentheses.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 14 In-sample Results modeling RV,,,,; of TAIEX using the LHAR-TCJ-cum-Vol Model

Horizons
Variables lday Iweek 2weeks 3weeks 4weeks
-1.347** -1.822%** -2.223%*x* -2.485%** -2.529%**
By (-2.483) (-2.619) (-3.139) (-3.643) (-3.887)
-0.064 0.077 0.024 0.056 0.058
P (-0.416) (0.867) (0.405) (0.994) (1.256)
0.937** 0.637** 0.626%** 0.436%* 0.336%*
B (1.982) (2.061) (2.596) (2.264) (1.987)
0.435 0.748%** 0.806%** 0.898%** 0.896%**
Pan (1.642) (3.817) (3.159) (3.824) (4.051)
0.121 0.067** 0.038** 0.030%** 0.027#**
'Bjd (0.986) (2.316) (2.456) (2.653) (2.712)
0.156* 0.048 -0.017 -0.051 -0.083*
'BiW (1.780) (0.769) (-0.327) (-1.172) (-1.922)
-0.124 -0.172* -0.195%* -0.176 -0.095
'Bjm (-1.349) (-1.828) (-1.682) (-1.429) (-0.731)
-0.329%** -0.158** -0.130*** -0.130%** -0.090%**
Pro (-2.689) (-2.445) (-2.625) (-3.231) (-2.687)
-0.122 -0.391 -0.241 -0.159 -0.095
P (-0.342) (-1.458) (-1.219) (-0.874) (-0.565)
0.162 0.891 0.570 0.292 0.209
Prm (0.201) (1.040) (0.827) (0.531) (0.439)
0.002 0.008*** 0.002 0.004 0.005%*
P (0.231) (2.663) (0.817) (1.508) (2.035)
-0.005 -0.014 -9.38E-4 0.004 0.003
P (-0.449) (-1.265) (-0.101) (0.604) (0.516)
0.012 0.019 0.015 0.010 0.011
P 0.917) (1.452) (1.294) (1.105) (1.462)
RMSE 2.167 1.225 0.994 0.879 0.822
Notes:

a. OLS estimate for LHAR-RV-CJ-cum-Vol regressions.

b. The t-statistics based on Newey-West correction are given in parentheses.

c. The significant daily jumps are computed using a critical value of o = 99.9%.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 15 In-sample Results modeling Rtht/ 2, of TAIEX using the LHAR-TCJ-cum-Vol Model

Horizons
Variables lday Iweek 2weeks 3weeks 4weeks
-0.223* -0.307* -0.401** -0.464*** -0.481%**
By (-1.769) (-1.946) (-2.350) (-2.704) (-2.823)
-0.080 0.068 0.054 0.070%* 0.068**
P (-0.946) (1.534) (1.457) (2.006) (2.083)
0.655%** 0.420%** 0.390%** 0.292%* 0.245%%*
P (3.342) (2.918) (2.891) (2.429) (2.235)
0.360*** 0.496*** 0.540%** 0.597*** 0.602%**
Pan (2.685) (4.360) (4.123) (4.669) (4.963)
-0.032 0.028* 0.023* 0.024** 0.023**
'Bjd (-0.838) (1.909) (1.874) (2.331) (2.432)
0.232%%* 0.115% 0.049 -1.81E-4 -0.034
'BiW (4.015) (1.795) (0.753) (-0.003) (-0.617)
0.021 0.009 0.002 0.020 0.063
'Bjm (0.286) (0.121) (0.031) (0.220) (0.645)
-0.102%** -0.052*** -0.038*** -0.033%** -0.023%**
Pro (-2.940) (-3.515) (-3.711) (-3.632) (-2.777)
-0.123* -0.120%** -0.059 -0.035 -0.015
P (-1.845) (-2.292) (-1.338) (-0.809) (-0.372)
0.021 0.194 0.119 0.062 0.026
Prm (0.149) (1.248) (0.856) (0.506) (0.223)
0.002 0.001** 5.5E-4 9.4E-4 0.001*
B (1.087) (2.024) (0.694) (1.186) (1.854)
-0.002 -0.002 4.4E-4 0.001 0.001
P (-0.911) (-1.245) (0.220) (0.965) (0.860)
0.002 0.003 0.003 0.001 0.002
P (0.887) (1.585) (1.259) (0.962) (1.183)
RMSE 2.191 1.254 1.037 0.931 0.878
Notes:

a. OLS estimate for LHAR-RV-CJ-cum-Vol regressions.
b. The t-statistics based on Newey-West correction are given in parentheses.
c. The significant daily jumps are computed using a critical value of o= 99.9%.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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Table 16 In-sample Results modelingIn RV, ,,,; of TAIEX using the LHAR-TCJ-cum-Vol Model

Horizons
Variables lday Iweek 2weeks 3weeks 4weeks
-0.558%** -0.632%** -0.767%** -0.870%** -0.952%**
By (-3.222) (-3.1006) (-3.469) (-3.840) (-4.085)
-0.017 0.050* 0.039* 0.036* 0.0.38*
P (-0.289) (1.719) (1.711) (1.697) (1.774)
0.368*** 0.206%** 0.180** 0.168%* 0.162%*
P (3.775) (2.718) (2.311) (2.225) (2.182)
0.391%*** 0.497%** 0.539%** 0.542%** 0.522%%*
Pan (4.738) (6.425) (6.521) (6.272) (6.015)
-0.101** 0.041%* 0.035 0.036* 0.035*
'Bjd (-2.066) (1.686) (1.641) (1.926) (1.945)
0.418%** 0.203* 0.118 0.039 -0.020
'BiW (3.766) (1.753) (1.000) (0.348) (-0.190)
0.066 0.083 0.051 0.083 0.148
'Bjm (0.513) (0.595) (0.332) (0.484) (0.773)
-0.118*** -0.066*** -0.047*** -0.040%** -0.028**
Pro (-3.361) (-3.562) (-3.522) (-3.411) (-2.440)
-0.243%** -0.217%** -0.122%* -0.075 -0.037
P (-3.923) (-3.495) (-2.190) (-1.349) (-0.698)
-0.054 0.151 0.054 0.005 -0.044
P (-0.367) (0.857) (0.309) (0.034) (-0.267)
0.004** 0.003** 0.001 0.001* 0.002%*
B (2.036) (2.258) (1.261) (1.796) (2.389)
-0.002 -0.001 0.003 0.004 0.003
P (-0.678) (-0.458) (1.114) (1.483) (1.264)
0.002 0.003 0.002 0.001 0.001
P (0.782) (1.211) (0.726) (0.519) (0.723)
RMSE 2.231 1.319 1.114 1.013 0.964
Notes:

a. OLS estimate for LHAR-RV-CJ-cum-Vol regressions.
b. The t-statistics based on Newey-West correction are given in parentheses.
c. The significant daily jumps are computed using a critical value of o= 99.9%.

d. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.

77



Table 17 Comparison for the In-sample Performance of LHAR-RV-TCJ and

HAR-RV-TCJ-cum-Vol Models

Horizons
1day 1week 2weeks 3weeks 4weeks
Models R® RMSE R* RMSE R* RMSE R’ RMSE R* RMSE
Panel A: LHAR-RV
TCJ 0.203 2175 0366 1254 0408 1.040 0.416 0.945 0.401 0.898
TCJ-cum-Vol 0207 2167 0394 1225 0459 0994 0493 0879 049% 0.822
Panel B: LHAR-RV'?

TCJ" 0388 2.196 0.592 1.275 0.605 1.070 0.599 0.977 0.579 0.932
TCJ"-cum-Vol 0393 2191 0610 1254 0637 1037 0647 0931 0639 0.878
Panel C: LHAR-InRV

InTCJ 0.466 2240 0.674 1324 0.687 1.147 0.681 1.058 0.662 1.013
InTCJ-cum-Vol 0475 2231 0694 1319 0720 1114 0.727 1013 0717 0964

Notes:

a. The table presents the adjusted R? and root mean square error (RMSE) for 1-day and 1- to 4-week
in-sample predictions for TAIEX.

b. The dependent variable for all models and for all horizons is the standardized realized variance: RV .y/H,

¢. Bold values denote the highest adjusted R” and the lowest RMSE.
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Table 18 In-sample Results for Five Measures of Trading Volume using the
HAR-RV-TCJ-cum-Vol Model

Horizons

1 day 1 week 2 weeks 3 weeks 4 weeks

R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE

Panel A : LHAR-RV-TCJ-cum-Vol

VOL 0.207 2.167 0.394 1.225 0.459 0.994 0.493 0.879 0.496 0.822
™NV 0.209 2.165 0.398 1221 0.468 0.985 0.506 0.868 0.514 0.808
TSV 0.203 2.172 0.373 1.246 0.417 1.031 0.430 0.933 0.416 0.885
TNR 0.208 2.165 0.380 1.239 0.426 1.024 0.432 0.930 0.418 0.884
TVR 0.205 2.171 0.376 1.243 0.428 1.021 0.446 0.919 0.438 0.868

Panel B: LHAR-RV"2-TCJ"%-cum-Vol

VOL 0.393 0.443 0.610 0.264 0.637 0.234 0.647 0.220 0.639 0.215
NV 0.393 0.442 0.613 0.263 0.644 0.232 0.657 0.217 0.652 0211
TSV 0.389 0.444 0.597 0.268 0.610 0.243 0.607 0.232 0.589 0.229
TNR 0.390 0.444 0.598 0.268 0.613 0.242 0.606 0.232 0.586 0.230
TVR 0.389 0.444 0.600 0.267 0.618 0.240 0.618 0.229 0.602 0.226

Panel C : LHAR-InRV-In TCJ-cum-Vol

VOL 0.475 0.634 0.694 0.378 0.720 0.339 0.727 0.324 0.717 0.323
NV 0.476 0.633 0.698 0.376 0.727 0.335 0.737 0.319 0.729 0.316
TSV 0.467 0.639 0.677 0.388 0.691 0.357 0.687 0.347 0.670 0.349
TNR 0.466 0.640 0.676 0.389 0.689 0.358 0.683 0.349 0.664 0.352
TVR 0.468 0.638 0.682 0.386 0.699 0.352 0.699 0.341 0.682 0.342

Notes:

a. Entries to the table represent Adjusted R? and RMSE for one day, one week through four weeks in-sample
predictions of the RV in the TAIEX with five measures of trading volume.

b. These different regressors are employed in use of the LHAR-RV-cum-Vol model.

c. The dependent variable for all horizons is the standardized realized.

d. VOL denotes trading volume value; TNV denotes number of transactions (trading frequency); TSV denotes
average trade size; TNRdenotes bid-ask frequency; TVR denotes bid-ask volume.

e. Bold values denote the highest adjusted R*and the lowest RMSE.
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Table 19 In-sample Forecasts Evaluation modeling RV, ., using Different HAR-RV Models

Horizons

1 day 1 week 2 weeks 3 weeks 4 weeks

R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE

Panel A : HAR-RV-X Model
RV 0.168 2.228 0.263 1.356 0.261 1.165 0.263 1.064 0.268 0.995
BPV  0.161 2.237 0.327 1.295 0.375 1.071 0.387 0.970 0.378 0.917
CTBPV  0.163 2.235 0.325 1.297 0.378 1.069 0.388 0.970 0.379 0916
RPV  0.175 2.218 0.359 1.265 0411 1.040 0.423 0.942 0.410 0.893
C 0.145 2..259 0.290 1.330 0.331 1.109 0.341 1.006 0.337 0.947
CJ] 0199 2.183 0.313 1.308 0.342 1.098 0.350 0.998 0.343 0.941
TC 0.161 2.237 0.330 1.292 0.385 1.063 0.395 0.964 0.382 0914
TC]  0.194 2.190 0.351 1.271 0.393 1.055 0.400 0.958 0.389 0.908

Panel B: LHAR-RV-X Model
RV  0.186 2.206 0.294 1.326 0.290 1.141 0.289 1.044 0.284 0.983
BPV  0.185 2.202 0.351 109471 0.394 1.054 0.405 0.955 0.391 0.906
CTBPV  0.183 2.205 0.347 1.274 0.397 1.052 0.406 0.954 0.393 0.905
RPV  0.194 2.190 0.373 1.249 0.423 1.029 0.433 0.932 0.417 0.887
Cc 0.176 2215 0.325 1.295 0.359 1.084 0.365 0.986 0.352 0.935
CJ]  0.205 2173 0.332 1.287 0.361 1.081 0.366 0.984 0.353 0.933
TC 0.184 2.204 0.356 1.266 0.406 1.043 0.415 0.947 0.397 0.902
TCJ  0.203 2.175 0.366 1.254 0.408 1.040 0.416 0.945 0.401 0.898

Panel C : LHAR-RV-X-cum-Vol Model
RV 0.185 2.199 0.312 1.307 0.331 1.107 0.353 0.994 0.366 0.923
BPV  0.191 2.191 0.377 1.243 0.439 1.013 0.473 0.898 0.480 0.836
CTBPV  0.189 2.194 0.375 1.246 0.442 1.011 0.474 0.896 0.483 0.834
RPV  0.199 2.181 0.396 1224 0.459 0.995 0.487 0.886 0.492 0.827
C 0.186 2.198 0.363 1.257 0.421 1.029 0.457 0.911 0.469 0.845
CJ] 0.216 2.155 0.377 1.242 0.440 1.011 0.482 0.889 0.490 0.827
TC 0.191 2.192 0.385 1.236 0.452 1.001 0.484 0.888 0.488 0.830
TCJ  0.207 2.167 0.394 1.225 0.459 0.994 0.493 0.879 0.496 0.822

Notes:

a. Entries to the table represent Adjusted R* and RMSE for one-day, and one- to four-week in-sample predictions of the
RV of TAIEX using the HAR-RV, LHAR-RV, and LHAR-RV-cum-Vol models.

b. Bold values denote the highest adjusted R* and the lowest RMSE.
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Table 20 In-sample Forecasts Evaluation modeling Rtht/ 2, using Different HAR-RV Models

Horizons

1 day 1 week 2 weeks 3 weeks 4 weeks

R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE

Panel A : HAR-RV"2-X Model
RV'? 0345 2235  0.528 1329 0.532 1.136  0.525 1.042 0513 0.984
BPV'? 0346 2254 0559 1319  0.583 1.099 0576  1.002 0560  0.951
CTBPV'? 0347 2255 0546 1325 0577 1102 0575  1.005 0557  0.954
RPV 0365 2232 0572 1296 0593 1085 0587 0994 0567  0.946
Cc" 0327 2270 0522 1344 0549 1125 0549 1.026 0532 0972
CJ'" 0349 2229  0.539 1324 0.558 1.115  0.555 1.019 0539  0.966
TC™ 0341 2259  0.543 1325 0574 1100 0572  1.003 0552  0.955
TCI'"> 0363 2229 0573 1293 0592 108 0589 0990 0571 0941

Panel B: LHAR-RV"%-X Model
RV'? 0373 2206 0556 1308  0.551 1.120 0540  1.029 0522 0.970
BPV'? 0376 2216  0.576 1297  0.594 1.084 0589 0989  0.567  0.943
CTBPV'? 0373 2223 0570 1304 0590 1087 0585 0993 0564  0.946
RPV 038 2196 0590 1280 0604 1.072 0595 0982 0573  0.939
C" 0365 2224  0.556 1314 0,570 1.105  0.563 1.010  0.541 0.963
cI'» 0373 2205 0564 1303 0573 1.101 0566  1.028 0547  0.958
TC? 0370 2223 0569 1301 0589 1084 0584 0989 0560  0.946
TCJ'? 0388 2196 0592 1275 0605 1070 0599 0977 0579 0932

Panel C : LHAR-RV"-X-cum-Vol Model
RV'? 0375 2204  0.567 1205 g 1.095 0579 0994  0.571 0.934
BPV'? 0387 2204  0.603 1268  0.634 1.044 0647 0935  0.640  0.881
CTBPV'? 0384 2211 0599 1274 0634 1045 0647 0936 0641  0.880
RPV 0392 2195 0608 1258  0.633 1.042  0.639 0941  0.630  0.888
c" 0380 2208  0.591 1278  0.622 1.055 0.636 0945  0.631 0.889
CJ'" 0384 2196  0.595 1272 0.624 1.052  0.639  0.941 0.633  0.885
TC™ 0382 2210  0.600 1269  0.634 1041  0.646 0932  0.638 0879
TCJ'> 0393 2191 0610 1254 0637 1037 0647 0931 0639 0878

Notes:

a. Entries to the table represent Adjusted R?and RMSE for one-day, and one- to four-week in-sample predictions of the
RV of TAIEX using the HAR-RV, LHAR-RV, and LHAR-RV-cum-Vol models.

b. Bold values denote the highest adjusted R? and the lowest RMSE.
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Table 21

In-sample Forecasts Evaluation modeling In RV,,,,; using Different HAR-RV Models

Horizons
1 day 1 week 2 weeks 3 weeks 4 weeks
R’ RMSE R’ RMSE R? RMSE R’ RMSE R? RMSE
Panel A : HAR-In RV-X Model
In RV 0.432 2.271 0.640 1.367 0.662 1.169 0.662 1.077 0.649 1.024
In BPV 0.436 2.293 0.648 1.379 0.675 1.166 0.675 1.070 0.658 1.019
In CTBPV 0.432 2.301 0.636 1.393 0.664 1.176 0.663 1.079 0.646 1.028
In RPV 0.449 2.274 0.660 1.364 0.683 1.158 0.680 1.066 0.664 1.017
InC 0.424 2.305 0.632 1.394 0.660 1.181 0.659 1.084 0.644 1.032
InCJ 0.435 2.278 0.644 1.374 0.666 1.172 0.664 1.277 0.648 1.027
InTC 0.426 2.306 0.629 1.396 0.658 1.179 0.657 1.082 0.639 1.032
In TCJ 0.445 2.275 0.656 1.360 0.677 1.159 0.674 1.067 0.657 1.018
Panel B: LHAR-In RV-X Model
In RV 0.459 2.228 0.667 1.342 0.677 1.154 0.673 1.064 0.657 1.017
In BPV 0.460 2.254 0.669 1.355 0.686 1.153 0.682 1.058 0.662 1.015
In CTBPV 0.455 2.266 0.658 1.368 0.674 1.162 0.669 1.070 0.649 1.024
In RPV 0.468 2.237 0.677 1.345 0.691 1.147 0.685 1.058 0.667 1.013
InC 0.452 2.259 0.659 1.366 0.674 1.164 0.668 1.073 0.648 1.026
InCJ 0.456 2.245 0.665 1.354 0.677 1.160 0.672 1.070 0.653 1.027
InTC 0.452 2.268 0.653 1.369 0.669 1.164 0.664 1.072 0.643 1.027
In TCJ 0.466 2.240 0.674 1.341 0.687 1.147 0.681 1.058 0.662 1.013
Panel C : LHAR-In RV-X-cum-Vol Model
In RV 0.463 2232 0.675 1.332 0.695 1.136 0.700 1.038 0.692 0.985
In BPV 0.473 2.239 0.696 1.325 0.726 1.113 0.734 1.010 0.725 0.959
In CTBPV 0.470 2.248 0.690 1.334 0.720 1.118 0.729 1.013 0.719 0.962
In RPV 0.475 2231 0.694 1.324 0.720 1.118 0.725 1.019 0.716 0.969
InC 0.469 2.242 0.691 1.330 0.721 1.118 0.730 1.014 0.721 0.963
InCJ 0.469 2.237 0.692 1.324 0.722 1.115 0.731 1.011 0.722 0.961
In TC 0.467 2.249 0.687 1.334 0.717 1.119 0.726 1.014 0.716 0.964
In TCJ 0.475 2231 0.694 1.319 0.720 1.114 0.727 1.013 0.717 0.964
Notes:

a. Entries to the table represent Adjusted R and RMSE for one-day, and one- to four-week in-sample predictions o
the RV of TAIEX using the HAR-RV, LHAR-RYV, and LHAR-RV-cum-Vol models.
b. Bold values denote the highest adjusted R* and the lowest RMSE.
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Table 22 In-sample Forecast Evaluation and Market Conditions: Up- vs. Down- Market Days

Panel A : HAR-RV-X Model
RV BPV CTBPV RPV TC TCJ

up down up down up down up down up down  up down

R’ 0.169 0478 0205 0422 0.205 0425 0.179 0430 0.212 0417 0211 0.507

Hday RMSE 1.823 1.265 1.783 1331 1.783 1328 1.811 1322 1775 1337 1774 1228
1 week R? 0426 0.535 0483 0.591 0485 0.590 0441 0.605 0490 0.591 0495 0.620
RMSE 0993 0933 0942 0875 0940 0.876 0.980 0.859 0.935 0.875 0.930 0.842
5 weeks R? 0466 0.564 0.547 0.675 0.557 0.677 0.524 0.682 0.563 0.679 0566 0.688
RMSE 0.869 0.813 0.800 0.701 0.791 0.699 0.821 0.694 0.786 0.697 0.782 0.687
3 weeks R? 0.504 0.578 0.571 0.709 0.573 0.713 0.564 0.714 0.581 0.711 0586 0.718
RMSE 0.795 0.755 0.739 0.626 0.737 0.622 0.745 0.621 0.730 0.624 0.725 0.616
4 weeks R? 0.504 0.608 0.555 0.739 0.555 0.744 0.567 0.741 0.558 0.740 0568 0.744
RMSE 0.771 0.696 0.730 0.568 0.730 0.563 0.720 0.566 0.727 0.568 0.718 0.562
Panel B: HAR-RV'’-X Model
RV'? BPV'? CTBPV'"? RPV TC" TCJ'"?
up down  up down  up down  up down  up down  up down
I day R’ 0.715 0.798 0.722 0.795 0.721 0.796 0.724 0.805 0.720 0.793 0.725 0.805
RMSE 2.628 2489 2.628 2.518 2.631 2518 2.623 2502 2.628 2522 2621 2498
1 week R’ 0.873 0.892 0.877 0.903 0.873 0902 0.879 0909 0.872 0901 0.883 0.909
RMSE 1.830 1.758 1.830 1.753 1.833 1.755 1.821 1.743 1.832 1.755 1817 1741
5 weeks R’ 0.890 0901 0.897 0.920 0.893 0920 0.897 0924 0.892 0920 0.901 0.923
RMSE 1.650 1.612 1.642 1.591 1.643 1.591 1.637 1585 1.642 1591 1633 1.586
3 weeks R? 0.895 0906 0.898 0.928 0.894 0929 0.897 0931 0.893 0.928 0.904 0.930
RMSE 1.557 1.547 1552 1.521 1554 1.520 1.549 1.518 1.553 1521 1542 1516
4 weeks R? 0.885 0915 0.887 0.937 0.883 0938 0.886 0939 0.882 0936 0.894 0.938
RMSE 1.507 1503 1.505 1477 1508 1476 1504 1475 1508 1503 1495 1475
Notes:

a. The up- and down-market classification are based on the moving average of daily return over the most recent 20-day
window to forecast RV, u.

b. Entries to the table represent Adjusted R? and RMSE for one day, and one week through four weeks in-sample predictions
of the RV in the TAIEX.

c. For all models, the dependent variable is the standardized realized variance i.e. RV .y/H for all the horizons.

d. Bold values denote the highest adjusted R? and the lowest RMSE.
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Table 22 In-sample Forecast Evaluation and Market Conditions: Up- vs. Down- Market Days (cont.)

Panel A : HAR-In RV-X Model

In RV In BPV In CTBPV In RPV In TC In TCJ
up down up down up down up down up down  up down
| day R’ 0384 0471 0355 0384 0333 0321 0351 0400 0342 0348 0396 0478
RMSE 2427 2335 2438 2396 2445 2419 2438 2384 2443 2411 2424 2349
| week R’ 0.627 0.649 0.556 0.556 0.508 0.469 0.548 0.568 0.526 0.510 0.633 0.664
RMSE 1545 1483 1569 1.535 1.581 1564 1.570 1.530 1.578 1.552 1530 1.492
> weeks R’ 0662 0.662 0.576 0.597 0.522 0.514 0.567 0.600 0.541 0.558 0.661 0.688
RMSE 1333 1284 1354 1322 1367 1348 1356 1321 1363 1.335 1329 1.288
3 weeks R’ 0659 0.670 0.565 0.618 0.511 0.537 0.556 0.617 0.529 0.582 0.655 0.701
RMSE 1224 1188 1.248 1216 1261 1240 1250 1217 1257 1.228 1222 1.189
4 weeks R’ 0616 0.692 0.527 0.642 0478 0.559 0.520 0.641 0.493 0.604 0.609 0.725
RMSE 1.168 1122 1.189 1.145 1.201 1.168 1.191 1.148 1.198 1.157 1167 1.122
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Table 23  Out-of-Sample Forecasts of the TAIEX 2007-2008

Panel A: RV BPV CTBPV RPV TC TCJ
Model 1 3.158 2.978 2.980 2.951 2.995 3.145
lday  Model 2 3.129 2.978 2.987 2.956 2.995 3.134
Model 3 3.123 2.952 2.961 2.947 2.968 3.115
Model 1 1.708 1.620 1.633 1.561 1.638 1.639
1week  Model 2 1.707 1.627 1.644 1.588 1.636 1.651
Model 3 1.665 1.556 1.569 1.525 1.559 1.576
Model 1 1.409 1.307 1313 1.278 1317 1312
4 weeks  Model 2 1.397 1.291 1.295 1.271 1.298 1.296
Model 3 1312 1.147 1.131 1.142 1.128 1.149

Panel B : RV'? BPV'? CTBPV'” RPV TC" (TCIH"?
Model 1 3.038 3.042 3.049 3.004 3.064 3.028
lday  Model 2 3.009 3.011 3.023 2.987 3.033 3.003
Model 3 2.997 2.977 2.995 2975 3.001 2.981
Model 1 1.688 1.725 1.748 1.675 1.760 1713
1week  Model 2 1.682 1714 1.739 1.680 1.744 1.706
Model 3 1.636 1.643 1.669 1.632 1.673 1.644
Model 1 1.429 1.432 1.449 1.415 1.458 1.409
4 weeks  Model 2 1.417 3.400 1.439 1.406 1.447 1.397
Model 3 1.326 1.269 1.283 1.284 1.293 1.276

Panel C : InRV InBPV InCTBPV InRPV InTC In (TCJ)
Model 1 3.067 3.115 3.130 3.088 3.142 3.094
lday  Model 2 3.027 3.064 3.077 3.047 3.087 3.044
Model 3 2.993 3.011 3.029 3.021 3.034 3.000
Model 1 1..765 1.840 1.872 1.812 1.886 1.832
1 week  Model 2 1.744 1.810 1.840 1.794 1.851 1.804
Model 3 1.689 1.722 1.753 1.735 1.762 1.726
Model 1 1.491 1.547 1.573 1.536 1.583 1.524
4 weeks  Model 2 1.477 1.539 1.567 1.530 1.576 1513
Model 3 1.372 1.387 1.414 1.410 1.425 1.388

Notes:

a. The table presents the out-of-sample results for TAIEX from 2 January 2007 to 30 June 2008. The dependent variable
is RV. Data from 2 January 2003 to 29 December 2006 is used to estimate the parameters of the models

b. Entries to the table represent RMSE for the out-of-sample predictions, based upon one-say and one- to four-week
out-of-sample RV prediction horizons.

¢. Model 1 denotes the HAR-RV model; Model 2 denotes the LHAR-RV model; Model 3 denotes the LHAR-RV-cum-Vol
model.

d. Bold values denote the highest adjusted R? and the lowest RMSE.

85



—RY
2
04
2
-4 T T T T T T T T T T T T T
4 100 200 300 400 a0a &0 oo a00 g00 1000 1100 1200 1300
— T
o
|:| -
2
-4 T T T T T T T T T T T T
100 200 300 400 =00 [=11]H] Foo 200 Q0o 1000 1100 1200 1300
—Td
3

1o T e L s L R ||II
100 200 300 400 S00 GO0 oo 00 a00 1000 1100 1200 1300

| | | 11 Al | | L) | 1l
100 200 300 400 00 GO0 Foo 800 900 1000 1100 1200 1300

Figure 1 Time Series Plot for Log Realized Volatility of the TAIEX 2003-2008

Notes:

a. The top panel shows daily realized volatility in log form, or InRVt .

b. The second panel graphs the threshold continuous component defined in Equation (22), TC;,

c. The third panel graphs the significant threshold jumps corresponding to a = 99.9% defined in
Equation (20), TJ,.

d. The bottom panel graphs the significant jumps defined in Equation (16), J;.

e. The sample period covers from 2 January 2003 to 30 June 2008.
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Figure 2 Jump Contribution to Total Variance

Notes:
a. Percentage contribution of daily jump estimated by Equation (20) to total quadratic variation
measured over a moving average window of 1-month for the TAIEX.
b. The C-Tz statistic in Equation (20) is computed with confidence interval a=99.9% .
c. The sample period covers from 2 January 2003 to 30 June 2008.
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Figure 3  Sample Autocorrelation Function for the TAIEX Volatility Measures and
Decompositions

Notes:

a. The figure shows the SACF for RV, RPV, CTBPV, RPV, TC, TJ, and Jumps for the period.
b. The significance level of the threshold bipower test and bipower test is 0.999.
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Figure 4 Daily Trading Volumes in the TAIEX
Notes: a. The top three panels graph trading volume value (Vol) , number of transactions (TNV}),
and average trade size (TSV;), respectively.
b. The bottom two panels graph bid-ask frequency and bid-ask volume, respectively.
c. The sample period covers from 2 January 2003 to 30 June 2008.

89



B oo S
] I

450 4

400 4

<] —

11—

250 :
093 0.991

0992 09935 0994 0995 099 00597 00995 0999
Figure 5 Number of Jump Days

Notes:

a. Number of days which contain jumps in the TAIEX sample obtained with the C-Tz statistics (21)

and z statistics (17) , as a function of the confidence level d.

b. The sample period covers from 2 January 2003 to 30 June 2008 for a total of 1361 days.
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