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中文摘要  

 

 我們研究 f(R)重力理論，一個替代暗能量去解釋晚期宇宙加速膨脹的理論，這

之下的宇宙微擾演化。使用 GR 當作計算 f(R)重力下的宇宙微擾的早期近似是一個

常規的方法，對於晚期宇宙，則使用辻川(稱作 Tsu)提出的近似方程去計算物質密

度微擾。用 GR 加上 Tsu 去計算物質密度微擾及物質功率譜是常規的方法。在這篇

論文中我們提出一個新的近似，「雙重微擾」(稱作 DP)，去計算早期宇宙微擾，而

在晚期，我們使用 Tsu。對不同的 f(R)設計者模型和不同傅立葉模式下，我們研究

其在方法 I(GR 加上 Tsu)和方法 II(DP 加上 Tsu)之間物質密度微擾與物質功率譜之

差異。我們發現早期 f(R)重力的重力修正效應或許不可忽略。因此，我們的近似可

以改善常規的方法。 

 

 

 

 

 

 

 

 

關鍵字：重力修正理論、f(R)重力理論、f(R)設計者模型、大尺度結構、宇宙微擾 
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ABSTRACT 

 

 We investigate the evolution of the cosmological perturbations in f(R) gravity, an 

alternative to dark energy for explaining the late-time cosmic acceleration. It is 

conventional to use GR as the approximation to calculate cosmological perturbations in 

f(R) gravity at early times. For the late-time universe, it is to use the approximate 

formula proposed by Tsujikawa (termed Tsu) to calculate the matter density 

perturbation. The method with GR and Tsu is conventional to calculate the matter 

density perturbation and the matter power spectrum. In this thesis we propose a new 

approach, “double perturbation＂ (DP), to calculate cosmological perturbations at 

early times. For the late times, we use Tsu. For different designer f(R) models, we study 

the difference between Method I (GR+Tsu) and Method II (DP+Tsu) in matter density 

perturbations and matter power spectra for different Fourier modes. For the 

shorter-wavelength Fourier modes we find that the effect of the gravity modification at 

early times in f(R) gravity may not be negligible. We conclude that to be self-consistent, 

in the f(R) theory one should employ the approximation presented in this thesis instead 

of that of GR in the treatment of the early-time evolution. 

 

 

Keywords: modified gravity, f(R) theory, designer f(R), large scale structure, 

cosmological perturbations 
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Chapter 1

Introduction

1.1 The Accelerating Universe

In 1998 the observations of type Ia supernovae (SNIa) suggested that the expansion

of the Universe was decelerating at early times but accelerating since around the

redshift z=0.5 [1–3]. Subsequent observations, including more detailed studies of su-

pernovae and independent evidence from the cosmic microwave background (CMB)

radiation, large-scale structure, and clusters of galaxies, have confirmed and firmly

established this remarkable finding. Models attempting to explain the accelerating

expansion include some form of dark energy, modified gravity [5] and the large-

scale inhomogeneities [6]. In this chapter we will discuss dark energy [4] and f(R)

modified gravity [7], but not inhomogeneous cosmology.

The observations [8–12] suggest that our universe should be nearly flat and con-

sist of 73% dark energy (DE) [13], 23% dark matter, 4% ordinary matter, and

approximated 0.008% radiation. To explain the late-time cosmic acceleration, we

consider that the dark energy has a negative pressure. At large scales the dark energy

is “gravitationally repulsive” because of the negative pressure. So far, the ΛCDM

model is the best-fit dark energy model for the observations of the cosmological

evolution at the background level. However, the ΛCDM model still the coincidence
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and fine-tuning problems [14, 15]. To avoid these problem, people develop dynami-

cal dark energy models, such as quintessence [16] and phantom energy [18]. These

models involve the dynamical and potential energy of a scalar field. However, there

is no dark energy model which can avoid all the problems [19]. See [20, 21] for a

review.

1.2 f (R) Modified Gravity

Another possibility to explain the late-time cosmic acceleration is the modified grav-

ity. There are several models of modification to GR [22–25] (also see [5] for a review).

In this thesis, we focus on f(R) modified gravity (see [7] for a review). We mod-

ify the Einstein-Hilbert action of GR, a modification primarily manifesting only on

cosmologically large scales.

For the viability of the f(R) models the cosmological solutions therein should

have a late-time de Sitter attractor at R = R1(> 0). The following conditions need

to be satisfied [26]

• (i) fR > −1 for R ≥ R1 (> 0), where fR ≡ df/dR. This is required to avoid

anti-gravity from ordinary matter.

• (ii) fRR > 0 for R ≥ R1, fR ≡ df2/dR2. This is required for the stability of cos-

mological perturbations, for the presence of a matter era, and for consistency

with local gravity tests.

• (ii) f(R) → −2Λ for R ≫ R0, where R0 is the Ricci scalar today. This is

required for the consistency with local gravity tests and for the presence of the

radiation and matter eras.

• (iv) 0 < RfRR/(1 + fR)(r = −2) < 1, where r ≡ R(1 + fR)/(f − R). This is

required for the stability of the late-time de Sitter point.
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In [26], the authors provide a general form of f(R) models which can be consistent

with both cosmological and local gravity constraints.

f(R) = R− λRc f1(x) , x ≡ R/Rc , (1.1)

where Rc (> 0) defines a characteristic value of the Ricci scalar R and λ is some

positive free parameter.

The following models have been well studied:

• (A) f1(x) = xp (0 < p < 1) [28] ,

• (B) f1(x) = x2n/(x2n + 1) (n > 0) [29] ,

• (C) f1(x) = 1− (1 + x2)−n (n > 0) [30] ,

• (D) f1(x) = 1− e−x [31–33] ,

• (E) f1(x) = tanh(x) [34] .

The models in [29, 30, 34, 35] can satisfy both the cosmological and the local

gravity constraints by using so-called chameleon mechanism [36]. The models in

[29, 30] are cosmologically and locally viable and are more distinguishable from

ΛCDM. The model in [29] is popular and has been discussed and constrained by

many works. For the models in [31, 37, 38], both the inflation in the early universe

and the onset of the recent accelerated expansion arise in these models in a natural,

unified way. These three models [31, 37, 38] easily can pass local tests, such as

the Newton law, the stability of the Earth-like gravitational solution and the very

heavy mass for an additional scalar degree of freedom. By the cosmological and

solar-system tests, [39] gives new constraints of f(R) gravity.
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1.3 Our work on f(R) Theories

In our work we focus on the cosmological perturbations in the f(R) theory. The

background information from the observations, such as type Ia supernova, large-

scale structure and CMB, is treated as the inputs, but not the output in the f(R)

theory test.

In practice, each of the f(R) models should be close to ΛCDM at the background

level. Consequently, measurements of cosmic expansion alone cannot distinguish

f(R) gravity from dark energy, and additional independent measurements such as

the cosmic structures are indispensable.

In this thesis we focus on the designer f(R) model [27, 40]. Once we know the

expansion history of the universe, we can design a f(R) model which can mimic the

required cosmic expansion at the background level.

To calculate the cosmological perturbations in f(R) gravity, it is conventional

to take GR as the approximation at early times. At late times, [41, 42] use matter-

dominated and sub-horizon approximations to calculate the matter density pertur-

bation. In our works, we calculate the cosmological perturbations in f(R) gravity

from the early universe to now. For the early times , we calculate the cosmological

perturbations by two methods: 1. We use GR as an approximation to calculate

the cosmological perturbations via CMBFAST, a code, written by U. Seljak and

M. Zaldarriaga [43], for calculating the linear CMB anisotropy spectra based on

integration over the sources along the photon past light cone. 2. We develop our

numerical tool based on CMBFAST, which can solve the f(R) field equations and

the Boltzmann equations with our early-time approximation. For the late times,

we use the matter-dominated and subhorizon approximations [41] to calculate the

matter density perturbation. We also obtain the prediction of the matter power

spectrum at z=0. Then we compare both the matter density perturbations and the

matter power spectra from different approximations. And we discuss that if the

conventional method is a good approximation or not. A part of our work is based
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on the master thesis [40] by Wei-Ting Lin.
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Chapter 2

Background Expansion

2.1 Dark Energy

In general relativity (GR), the Einstein-Hilbert action is1

S =
1

16πGN

∫
d4x

√
−g R +

∑
fluid

Sfluid , (2.1)

and taking the variation respect to gµν ,

δS =
1

16πGN

∫
d4x

{
δ
(√

−g
)
R +

√
−g δR

}
+
∑
fluid

δSfluid , (2.2)

we use the least action principle to derive the field equation for GR, i.e.,

1√
−g

δS

δgµν
= 0 . (2.3)

Then we define the energy-momentum tensor for cosmic fluids as

Tµν(fluid) ≡
−2√
−g

δS(fluid)

δgµν
, (2.4)

1The speed of light c is set to unity.
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and the Einstein field equations are

Gµν ≡ Rµν −
1

2
gµνR = 8πGN

∑
a

Tµν(a) , (2.5)

where the index a runs over the particle species. According to Eq. (2.5), the expan-

sion should be decelerating if the subscript a only include the baryons, cold dark

matter (CDM) and radiation. Since we find the early universe can be described well

by GR. It implies us that there might be some modifications to GR (ie. modified

gravity) or a new substance (ie. dark energy) in the subscript a.

For the background expansion of the universe we consider a homogeneous and

isotropic space-time described by the flat Robertson-Walker metric

ds2 = a2(τ){−dτ 2 + dx⃗2}, (2.6)

where the conformal time τ = t/a(τ).

Dark energy posit a form of “gravitationally repulsive” stress-energy Tµν(DE) in

the universe. Eq. (2.5) becomes

Gµν = 8πGN

(
Tµν(fluid) + Tµν(DE)

)
. (2.7)

For perfect fluid,

T µ
ν = diag (−ρ, P, P, P ) . (2.8)

Taking the trace part of Eq. (2.7), we obtain

d2a
dt2

a
=

−4πGN

3
(ρm + 3Pm + ρr + 3Pr + ρDE + 3PDE) , (2.9)

where the subscript m means the matter part, and r means the radiation part. The

L.H.S. of Eq. (2.9) describes the acceleration of the universe. In the R.H.S., if the

the DE term (ρDE + 3PDE) negative enough at late time, this kind of dark energy

8



model could explain the late-time acceleration.

2.2 f (R) Theory

Starting from the modified Einstein-Hilbert action,

S =
1

16πGN

∫
d4x

√
−g [R + f(R)] +

∑
fluid

Sfluid . (2.10)

Following the steps as what we had done in Eq. (2.2-2.4), we obtain the modified

Einstein field equations in the f(R) theory,

(1 + fR)Rµν −
1

2
(R + f) gµν + (gµν2−∇µ∇ν) fR = 8πGN

∑
a

Tµν(a) , (2.11)

where fR ≡ df/dR, and fRR ≡ dfR/dR. To simplify the field equation, we define

an effective energy-momentum tensor contributed from the deviation of GR. The

effective energy-momentum relates to the effective dark energy. It originates from

the modification to the geometry,

Tµν(eff) ≡
1

8πGN

[
1

2
fgµν − (Rµν + gµν2−∇µ∇ν) fR

]
. (2.12)

Then the Einstein’s field equations in the f(R) theory is similar to that in GR,

Gµν = 8πGN

(
Tµν + Tµν(eff)

)
. (2.13)

The effective energy density is

ρeff ≡ 1

8πGN

(
1

2
RfR − 3H2fR − f

2
− 3H

a
ḟR

)
. (2.14)

9



Dots denote derivatives with respect to τ , here ḟR ≡ ∂fR/∂τ . The effective pressure

is

Peff ≡ 1

8πGN

(
1

a2
f̈R +

H

a
ḟR − 1

6
RfR −H2fR +

f

2

)
. (2.15)

We define the effective equation of state,

weff ≡ Peff

ρeff
= −1

3
− 2

3

− 1
2a2

f̈R − 1
6
f +H2fR

−H
a
ḟR −H2fR + 1

6
RfR − 1

6
f

. (2.16)

Taking the 00 part of Eq. (2.13), then we obtain the first effective Friedmann equa-

tion,

H2 +H2fR +
f

6
+

H

a
ḟR − 1

6
RfR =

8πGN

3
(ρm + ρr) . (2.17)

Taking the ii part of (2.13), then we obtain

(
H2 − R

3

)
+ fR

(
R

6
+H2

)
− f

2
− 1

a2
f̈R − H

a
ḟR = 8πGN (Pm + Pr) . (2.18)

After the linear combination of the above two equations, we obtain the second

effective Friedmann equation,

d2a
dt2

a
+

f

6
+

1

2a2
f̈R −H2fR =

−4πGN

3
(ρm + 3Pm + ρr + 3Pr) . (2.19)

which describes the acceleration in the FLRW cosmology. Thus, if the part

f

6
+

1

2a2
f̈R −H2fR +

4πGN

3
(ρm + 3Pm + ρr + 3Pr)

is negative at the present epoch, the f(R) theory may explain the late-time accel-

eration.
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2.3 Designer f (R)

In this thesis, we only test the designer f(R) models. Here we give the following

informations [27,40]:

• differential equation:

f ′′

H2
0

−
(
1 +

E ′

2E
+

R′′

R′

)
f ′

H2
0

+

(
12E ′

E
+

3E ′′

E

)(
f

6H2
0

+ Eeff

)
= 0 . (2.20)

E ≡ H2

H2
0

= Ωm0a
−3 + Ωr0a

−4 + Eeff , Ωm0 ≡
ρm
ρcr0

, Ωr0 ≡
ρr
ρcr0

, Eeff ≡ ρeff
ρcr0

.

The subscript zero means today’s quantities, and the subscript i means the

initial ones. The prime means d/d lna.

• initial conditions:

f(ai)

H2
0

≃ fh(ai)

H2
0

+
fp(ai)

H2
0

= A+a
p+
i + ApEeff (ai)

f ′(ai)

H2
0

≃ p+A+a
p+
i − 3 [1 + weff (ai)]ApEeff (ai)

p+ =
−b+

√
b2 − 4c

2
, Eeff (ai) ≡

ρeff (ai)

ρcr0

Ap =
−6c

−3w′
eff (ai) + 9w2

eff (ai) + (18− 3b)weff (ai) + 9− 3b+ c

b ≡ 7 + 8r

2 (1 + r)
, c ≡ −3

2 (1 + r)
, r ≡ 1

ai

Ωr0

Ωm0

.

With given Ωm0, Ωr0, weff (a), and fRi, A+ is the only degree of freedom that should

be fixed to obtain f . Here we do not consider the decaying mode solution of the

differential equation, because that mode decays with time which means it grows

backward in time. We should set the decaying mode to be close to zero in order

to avoid large deviation from GR at early times. However, to consider full f(R)

solutions, we need to consider the growing mode. From the numerical solution, we

11



find that the background evolution grows backward in time, which is not consistent

with the background evolution that grows forward in time.
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Chapter 3

Perturbed f (R) Evolution

Equations

Recall that we have chosen FLRW metric and flat spacetime as our background met-

ric. We consider the scalar metric perturbations in the synchronous gauge. Because

we develop the numerical tool base on CMBFAST. In CMBFAST, all quantities are

calculated in the synchronous gauge. The line element is given by

ds2 = a2(τ){−dτ 2 + (δij + hij)dx
idxj} . (3.1)

Notice that, in every gauge the scalar modes only have two degrees of freedom. Here

we introduce two fields h(k⃗, τ) and η(k⃗, τ) in k-space and write the scalar modes of

hij as a Fourier integral

hij(x⃗, τ) =

∫
d3keik⃗·x⃗

{
k̂ik̂jh(k⃗, τ) + (k̂ik̂j −

1

3
δij) 6η(k⃗, τ)

}
, k⃗ = kk̂ . (3.2)

Let
∑

a ρaδa ≡
∑

a δρa = −δT 0
0. The variables θa and σa are defined as

∑
a

(ρa + Pa)θa ≡ ikjδT 0
j ,

∑
a

(ρa + Pa)σa ≡ −(k̂ik̂j −
1

3
δij)Σ

i
j , (3.3)
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and Σi
j ≡ T i

j − δijT
k
k/3 denotes the traceless component of T i

j. δa are the energy

density perturbations. θa are the peculiar velocity divergences. σa are the shear

perturbations. Each δa, θa and σa obeys the Boltzmann equations in the synchronous

gauge [44].

3.1 Boltzmann Equations

This section shows the Boltzmann equations in the synchronous gauge [44], here

we do not consider massive neutrino. The calculation of massive neutrino is so

complicated that it is viewed as our future work. In numerical calculation, we only

consider cold dark matter, baryon, photon and massless neutrino. Each equation

is wring in Fourier space. These part is the same with the Boltzmann equations in

GR.

3.1.1 Cold Dark Matter

δ̇c = −1

2
ḣ . (3.4)

θc = 0, σc = 0 .

3.1.2 Baryon

δ̇b = −θb −
1

2
ḣ ,

θ̇b = − ȧ

a
θb + c2sk

2δb +
4ρ̄γ
3ρ̄b

aneσT (θγ − θb) , (3.5)

σb = 0 .
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3.1.3 Photon

δ̇γ = −4

3
θγ −

2

3
ḣ ,

θ̇γ = k2

(
1

4
δγ − σγ

)
+ aneσT (θb − θγ) ,

Ḟγ 2 = 2σ̇γ =
8

15
θγ −

3

5
kFγ 3 +

4

15
ḣ+

8

5
η̇ − 9

5
aneσTσγ +

1

10
aneσT (Gγ 0 +Gγ 2) ,

Ḟγ l =
k

2l + 1

[
lFγ (l−1) − (l + 1)Fγ (l+1)

]
− aneσTFγ l , l ≥ 3 ,

Ġγ l =
k

2l + 1

[
lGγ (l−1) − (l + 1)Gγ (l+1)

]
+ aneσT

[
−Gγ l +

1

2
(Fγ 2 +Gγ 0 +Gγ 2)

(
δl0 +

δl2
5

)]
,

(3.6)

3.1.4 Massless Neutrino

δ̇ν = −4

3
θν −

2

3
ḣ ,

θ̇ν = k2

(
1

4
δν − σν

)
,

Ḟν 2 = 2σ̇ν =
8

15
θν −

3

5
kFν 3 +

4

15
ḣ+

8

5
η̇ ,

Ḟν l =
k

2l + 1

[
lFν (l−1) − (l + 1)Fν (l+1)

]
, l ≥ 3 . (3.7)

3.2 Metric Perturbations

We write down the field equations Eq. (2.11) in the synchronous gauge, where the

perturbation quantities δQ = δQ(k⃗, τ).

For the zero-zero component, we let µ and ν equal to zero in Eq. (2.11). After a

Fourier transformation,

−24πGN

H2

∑
a

ρaδa =

[
3

(
1 +

Ḣ

aH2

)
− k2

a2H2

]
χ− 3

aH
χ̇+ (1 + fR)

2k2

a2H2
η

15



+

[
3ḟR
2k2

(
1− Ḣ

aH2

)
− 3

fRḢ

k2H
− 12πGNa

k2H
ρeff (1 + weff )−

1 + fR
aH

]
q

+

(
6
1 + fR
aH

+
3ḟR
a2H2

)
η̇ +

3ḟR
2k2aH

q̇ . (3.8)

For the zero-j component, we let µ equal to zero and ν equal to j respectively

in Eq. (2.11). After a Fourier transformation,

8πGNa

H

∑
a

ρaθa (1 + wa) = k2χ− k2χ̇

aH
+

[
ḟR
2

− fR
Ḣ

H
+

4πGNa

H
ρeff (1 + weff )

]
q

+(1 + fR)
2k2

aH
η̇ +

ḟR
2aH

q̇ . (3.9)

For the i ̸= j component, we let µ equal to i and ν equal to j respectively in

Eq. (2.11). After a Fourier transformation,

− 12πGNa
2

2k2 (1 + fR)

∑
a

ρaσa (1 + wa) =
1

2k2
q̇ +

aH

k2
q − η +

χ

1 + fR
. (3.10)

Where q ≡ ḣ+ 6η̇, and

χ ≡ fRRδRN , (3.11)

where δRN is defined as the perturbation of the Ricci scalar in the conformal New-

tonian gauge,

δRN ≡ (gµνδRµν)N . (3.12)

In the synchronous gauge,

δRN =− 6

a2

[
η̈ − 1

2k2

(
3a2HḢ + aḦ

)
q

]
− 18H

a
η̇ +

2k2

a2

[
1

2k2
(q̇ + 3aHq)− 2η

]
.

(3.13)

In principle to solve the two scalar modes q and η, we only need two field equations.

Here we introduce a new dynamical variable χ, it is just for convenient, or we need
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to solve the higher order derivative equations. In fact, there are some intractable

terms such as η̈ and q̈ in χ. For solving the three scalar modes, q, η and χ, we need

three field equations, Eq. (3.8), Eq. (3.9) and Eq. (3.10).

3.3 Rearranged Formulae

To solve the scalar modes by numerical, we need to rearrange the field equations.

For solving the evolutions of η ,q and χ, we need three equations only has η̇ or q̇

or χ̇ in the L.H.S.. After some linear combinations of the equations in the previous

section, we derive the rearranged field equations

q̇ = −2aHq + 2k2η − 2k2χ

1 + fR
− 12πGNa

2

1 + fR

∑
a

ρaσa (1 + wa) , (3.14)

η̇ =

(
a2H2

ḟRk2

){[
k2

3aH
(1 + fR) +

ḟRḢ

2aH2

]
q−(1 + fR)

2k4

3a2H2
η+

(
k4

3a2H2
− k2Ḣ

aH2

)
χ

− 8πGNa

H

∑
a

ρaθa (1 + wa)−
8πGNk

2

3H2

∑
a

ρaδa

}
, (3.15)

χ̇ = −aH

k2

[
ḟR
2

+ fR
Ḣ

H
− 4πGNa

H
ρeff (1 + weff )

]
q + 2 (1 + fR) η̇ + ḟRη

+

(
aH − ḟR

1 + fR

)
χ−8πGNa

2

k2

∑
a

ρaθa (1 + wa)−
12πGNa

2ḟR
k2 (1 + fR)

∑
a

ρaσa (1 + wa) .

(3.16)

These are the full f(R) field equations in the synchronous gauge.
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Chapter 4

Approximations

4.1 Two-Scale Problem

The “two-scale problem” might happens when we numerically solve the differential

equation (3.15).

Here we define “f -terms” which proportional to the derivatives of f . And we

also call the other “GR-terms” which do not proportional to the derivatives of f .

Each of the scale of f -terms should be much smaller then the scale of GR-terms

when the f(R) theory very similar to GR.

Let us observe the structure of Eq. (3.15),

η̇ =(f -term)−1 [GR-terms + f -terms] . (4.1)

In the case of GR, both the summations of the GR-terms and the f -terms in the

square bracket of Eq. (3.15) should be zero. When the f(R) theory is very close to

GR, the summations should be tiny and non-zero values. However, in the square

bracket the order of the numerical error of the summation of the GR-terms may be

close to or greater than the order of the f -terms . Furthermore, the f -term in the

parentheses would enlarge this numerical error very much. This enlarged numerical

error would make the calculation wrong. Here we call this situation “two-scale
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problem”.

GR can describe the cosmic microwave background (CMB) anisotropies very

well before the CMB decoupling. Thus, the f(R) effect was very small, and the two

scales of f -terms and GR-terms are very different at early times. In other words,

the two-scale problem would happen at early times.

4.2 Our Approximation (a solution to the two-

scale problem)

For solving the two-scale problem at early times, we provide our approximation. We

decompose η into two parts, η(0) and η(1) by two different orders,

η = η(0) + η(1) (4.2)

Where η(0) corresponds to the order of GR-terms, and η(1) corresponds to the order of

f -terms. We obtain the evolution equations respectively of η(0) and η(1) via dividing

Eq. (3.16) by the two orders with Eq. (4.2),

η̇(0) ≡ 4πGNa
2

k2

∑
a

ρaθa (1 + wa)−
2πGNa

2

(1 + fR) k2
ρeff (1 + weff ) q , (4.3)

η̇(1) =
1

1 + fR

[
1

2
χ̇+

(
aH

4k2
ḟR +

aḢ

2k2
fR

)
q − fRη̇

(0) − 1

2
ḟR
(
η(0) + η(1)

)
−1

2

(
aH − ḟR

1 + fR

)
χ+

6πGNa
2ḟR

k2(1 + fR)

∑
a

ρaσa (1 + wa)

]
.

(4.4)

At early times, we neglect the f -terms in δRN . Therefore, we have an approxi-

mation form for δRN from Eqs. (2.11),(3.12),

δRN = 3�χ+Rχ− fRδRN − 8πGNδTN ≈ −8πGNδTN , (4.5)
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where δTN is defined as the perturbation of the trace of the stress-energy tensor in

the conformal Newtonian gauge,

δTN ≡ (gµνδTµν)N . (4.6)

Thus, in the early universe, we have

χ ≈ χ(approx) ≡ −8πGNfRRδTN = 8πGNfRR

∑
a

ρa(1− 3wa)δN,a , (4.7)

where δN,a is the density perturbation of fluid a in the conformal Newtonian gauge.

The second approximation is to neglect the terms related to η̇(1) in the relation

of χ̇ which is obtained from the derivative of Eq. (4.7),

χ̇ ≈ d

dτ
χ(approx) ≈ χ̇(approx) ≡ 8πGN

∑
a

ρa

[
ḟRR − 3aH(1 + wa)fRR

]
(1− 3wa)δN,a

+ 8πGNfRR

∑
a

ρa(1− 3wa)δ̇
(0)
N,a ,

(4.8)

where

δ̇
(0)
N,a ≡ (1 + wa)

(
−θa −

q

2
+ 3η̇(0) − 3aH

2k2
q̇ − 3a2H2 + 3aḢ

2k2
q

)
. (4.9)

To calculate the evolution of the perturbations in the f(R) theory, we need

Eqs. (3.14),(4.2),(4.3),(4.4),(4.7),(4.8) and the Boltzmann equations. We provide

our approximation to obtain Eqs. (4.2),(4.3),(4.4),(4.7),(4.8) which have no two-

scale problem.

However, we expect that the approximation could not be satisfied at late times.

In principle, we need to solve the perturbations by the original f(R) equations at

late time. Unfortunately, even when the f -term in the parentheses in Eq. 4.1 at late

times is much bigger than it at the early times, the two-scale problem still exist.

Maybe the designer f(R) model is so close to ΛCDM that the the f -term in the

21



parentheses in Eq. 4.1 is still not big enough at late times. One possible solution is

choose other conventional f(R) models. Another safe is using other approximations

to calculate the late-time perturbations. Because we take the order of f -terms as

new perturbations quantities to divided Eq. (3.16) by two orders. For convenient,

we call our early-time approximations “double perturbation” (DP ).

4.3 GR Approximation

In numerical one takes the evolution of the perturbations in the ΛCDM as an con-

ventional approximation of solving the perturbations of the f(R) theory at early

times. We call this approximation “GR approximation”. Because in GR approx-

imation one neglects the effect of the modification of the f(R) theory to GR, the

validity of this approximation might need to be examined.

Our approximate equations in Sec.4.2 are the same as the evolution equations of

the perturbations in GR, when we neglect the f -terms. Therefore, in GR approxi-

mation one does not consider the effect of the f -terms which are very small at early

times. Therefore, we claim that our approximation contains more f(R) effect than

GR approximation at early time.

4.4 Late-Time and Subhorizon Approximations

In this section, we use the approximate formula derived by Tsujikawa [41] . At

late times, our universe is matter dominated, so we can approximately neglect the

contribution from radiation. For the subhorizon approximation, we only consider

the modes which are much smaller than the comoving hubble radius, k ≫ aH.

Consider the conformal Newtonian gauge,

ds2 = a2(τ)
{
− [1 + 2Ψ(x⃗, τ)] dτ 2 + [1− 2Φ(x⃗, τ)] dx⃗2

}
. (4.10)
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The following perturbed quantities are defined in conformal Newtonian gauge,

δ′′m(New) ≃ −
(
2 +

H ′

H

)
δ′m(New) +

4πGeffρm
H2

δm(New) , (4.11)

where

Geff ≡ GN

1 + fR

1 + 4k2

a2
fRR

1+fR

1 + 3k2

a2
fRR

1+fR

. (4.12)

For convenient, we call the approximations Tsu.
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Chapter 5

Comparison of the

Approximations

5.1 Early-time Approximations GR and Ours(DP )

In order to compare the results obtained from the different early-time approxima-

tions, we utilize the designer f(R) model [27]. The designer f(R) model is one of

the f(R) models. It can generate any required expansion history of the universe.

Our numerical tool to solve the cosmological perturbations is based on CMB-

FAST public code. We choose the cosmological parameters from Seven-Year Wilkin-

son Microwave Anisotropy Probe (WMAP) observations [12], namely, the effective

number of neutrino species, Neff = 4.34; the mass fraction of helium, YHe = 3.26; the

hubble constant, H0 = 73.8(Mpc−1·km/s); the abundance of baryon Ωb0 = 0.0455;

the abundance of cold dark matter Ωc0 = 0.226; the abundance of effective dark

energy Ωeff0 = 0.728; the matter-radiation equality time, zeq = 4828.

On the other hand, our numerical tool to solve the background evolution is the

designer f(R) code developed by Wei-Ting Lin. We choose the initial conditions to

design a certain f(R) model. The initial time, ai = 10−8; the initial value of fR,

fRi ≡ fR(ai) = −1.3923016 x 10−39; the constant equation of state, weff = −1.
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Figure 5.1: The background evolutions of the designer f(R) model. The initial
conditions for designer f(R) model ai = 10−8, fRi = −1.3923016 x 10−39, weff = −1.
m is defined by RfRR/(1+fR), some workers may utilize it to analyze the deviation
between a f(R) model and ΛCDM. The CMB decoupling time is z=1090.

This f(R) model has passed the large scale structure tests [39].

Fig. 5.1 shows the background evolutions of the designer f(R) model. Because

the derivatives of f are small, f/H2
0 is almost a constant, where f ≈ −2Λ. fRi should

be a very small value, such that fR is small enough at early times. The parameter

m is defined by RfRR/(1 + fR) [28]. Some workers may utilize it to analyze the

deviation between a f(R) model and ΛCDM [26,41,42]. We can see that m is close

to order one at late times, and fR may not be viewed as a small quantity.

Most of the late-time approximations of the evolution equations of the perturba-

tions in f(R) are built in the conformal Newtonian gauge [26,41,42]. Therefore, for

the future works we show the following results in the conformal Newtonian gauge.

5.1.1 Results
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Figure 5.2: The comparison of the matter density perturbations calculated by our
approximation and GR approximation. The upper figure is for the case k=0.1Mpc−1,
and the lower figure is for the case k=0.01Mpc−1. δ(ours) is the matter perturba-
tion in the conformal Newtonian gauge calculated by our approximation. δ(GR) is
the matter perturbation in the conformal Newtonian gauge calculated by GR ap-
proximation. The fractional difference is defined by |δ(ours) − δ(GR)|/(|δ(ours)| +
|δ(GR)|). cχ is defined by |χ(approx) − χ|/(|χ(approx)| + |χ|), it is the criterion of the
validity of our approximation. cm is defined by (aH/k)2RfRR/(1 + fR), some work-
ers may utilize it as a criterion of the validity of the GR approximation. The CMB
decoupling time is z=1090.
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Figure 5.3: The comparison of the Ψ/Φ calculated by our approximation and GR
approximation. The upper figure is for the case k=0.1Mpc−1, and the lower figure
is for the case k=0.01Mpc−1. Ψ/Φ(ours) is Ψ/Φ calculated by our approximation.
Ψ/Φ(GR) is Ψ/Φ calculated by GR approximation. The fractional difference is
defined by |Ψ/Φ(ours) − Ψ/Φ(GR)|/(|Ψ/Φ(ours)| + |Ψ/Φ(GR)|). cχ is defined by
|χ(approx)−χ|/(|χ(approx)|+|χ|), it is the criterion of the validity of our approximation.
cm is defined by (aH/k)2RfRR/(1 + fR), some workers may utilize it as a criterion
of the validity of the GR approximation. The CMB decoupling time is z=1090.
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Figure 5.4: The comparison of the CMB photons density perturbations calculated
by our approximation and GR approximation. The upper figure is for the case
k=0.1Mpc−1, and the lower figure is for the case k=0.01Mpc−1. Θ0(ours) is the
CMB photons density perturbations calculated by our approximation. Θ0(GR) is
the CMB photons density perturbations calculated by GR approximation. The
fractional difference is defined by |Θ0(ours)−Θ0(GR)|/(|Θ0(ours)|+ |Θ0(GR)|). cχ
is defined by |χ(approx) −χ|/(|χ(approx)|+ |χ|), it is the criterion of the validity of our
approximation. cm is defined by (aH/k)2RfRR/(1 + fR), some workers may utilize
it as a criterion of the validity of the GR approximation. The CMB decoupling time
is z=1090.



In Fig. 5.2-5.4, we calculate the cosmological perturbations for comoving wave

number k=0.1Mpc−1 and k=0.01Mpc−1. The fractional difference cχ is defined by

|χ(approx)−χ|/(|χ(approx)|+|χ|), it is the criterion of the validity of our approximation.

When cχ is close to order one, Eqs. (4.7),(4.8) may not be good approximations.

Thus, we show the calculations from our approximation until cχ = 0.1. cm is defined

by (aH/k)2m, some workers may utilize it as a criterion of the validity of the GR

approximation when they also consider the subhorizon approximation at late times.

The CMB decoupling time is z=1090.

In Fig. 5.2, we present the matter perturbation in the conformal Newtonian gauge

calculated by our approximation, δ(ours),and that calculated by GR approximation,

δ(GR). The fractional difference between δ(ours) and δ(GR) is defined by |δ(ours)−

δ(GR)|/(|δ(ours)|+ |δ(GR)|).

In Fig. 5.3, we present Ψ/Φ calculated by our approximation, Ψ/Φ(ours), and

that calculated by GR approximation, Ψ/Φ(GR). The fractional difference between

Ψ/Φ(ours) and Ψ/Φ(GR) is defined by |Ψ/Φ(ours) − Ψ/Φ(GR)|/(|Ψ/Φ(ours)| +

|Ψ/Φ(GR)|).

In Fig. 5.4, we present the CMB photons density perturbation calculated by

our approximation, Θ0(ours), and that calculated by GR approximation, Θ0(GR).

The fractional difference between Θ0(ours) and Θ0(GR) is defined by |Θ0(ours) −

Θ0(GR)|/(|Θ0(ours)|+ |Θ0(GR)|).

Figure 5.4 shows that for the Fourier mode with k = 0.1Mpc−1 the fractional

difference in the CMB photon density perturbation is about 1% around the photon-

baryon decoupling time, zdec = 1090 (a ∼ 10−3), and reaches as large as 10%

around a = 10−2. For k = 0.1Mpc−1 the fractional difference is about one order

of magnitude smaller: . 0.1% around the decoupling time; ∼ 1% around a =

10−1.5 ≃ 0.03. This result indicates that the effect of the gravity modification at

early times in the f(R) theory may not be negligible compared to the accuracy of

the CMB observations. With regard to the matter density perturbation in Fig. 5.2,
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for k = 0.1Mpc−1 the fractional difference is about 1% around a = 10−2, which is

marginally negligible when compared to the current observational accuracy, while

for k = 0.01Mpc−1 it is smaller: . 10−3 before a = 10−1.5 ≃ 0.03.

5.2 Two Methods of Solving Cosmological Per-

turbations

There are two methods to calculate the cosmological perturbations from early times

to now. Method I is the conventional method, and Method II is our new method in

this thesis.

• Method I : GR→ Tsu:

We use the field equations in GR to solve the perturbations until some time

for some k. On this timing we still think DP are good approximations. How-

ever, the late-time and subhorizon approximations can be applied. Then we

calculate matter density perturbation by Tsu.

• Method II : DP→ Tsu:

We use DP to solve the perturbations until some time for some k. Similarly,

we calculate the matter density perturbation by Tsu.

We will compare the matter density perturbations δm and the matter power spectra

Pm predicted by these two methods.
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5.2.1 Criteria

Most of the other people use GR to solve the early-time perturbations and solve

the late-time and subhorizon matter density perturbation by Tsu. To reproduce

their work, we need to make sure that in the traslation point, both GR and Tsu are

viable. Then we choose a criterion to decide the timing ac to switch from GR to

Tsu. The parameterm ≡ RfRR/(1+fR) was first introduced in [28]. It characterizes

the deviation from the ΛCDM model (f(R) = R/8kG − Λ). If m < (aH/k)2, the

deviation is small. This regime is called “GR regime”. Some other workers solve

perturbations by GR in the GR regime. If m > (aH/k)2, the deviation is big. This

regime is called “scalar-tensor regime”. The other workers solve the matter density

perturbation by Tsu in the scalar-tensor regime. Of course, they need to check

if both subhorizon and matter-dominated are satisfied. We take the subhorizon

criterion as k/aH = ck. For subhorizon case, we need to care about that if the

model is in the GR regime (m < (aH/k)2) and matter-dominated. We think it

is much better to switch from GR to Tsu in the GR regime when subhorizon and

matter-dominated are satisfied. So we take ac to judge when we switch from GR to

Tsu.

In our work, we also use DP to solve the perturbations in the GR regime. Then

we use ac to judge when we switch from DP to Tsu. However, we know DP is an

early-time approximation and it is invalid at late times. At ac, both DP and Tsu

are viable. We use η(1)/η(0) = cη to judge if DP is viable. Unfortunately, these two

periods can not overlap when we use the criterion cη < 0.01. We choose another

criterion cη which is not too rigorous to find the overlap. Even though the calculation

by DP is not so accurate near some aη, where η(1)(aη)/η
(0)(aη) ≈ 1, we still believe

Method II is better Method I. Because we have considered the f(R) corrections to

GR, even though the f -terms cannot be viewed as new perturbation quantities, the

calculation by DP is still closer to the exact solution than the calculation by GR

at late times. It is to say, if Method II is not good, then Method I is worse. If the
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result from Method II is very different to the result from Method I, Method I may

not be a good approximation. We use m/(aH/k)2 = cm as our criterion. However,

we give the priority to cm. So ac = (k/H)(m/cm)
1/2

5.2.2 Results

In our work, we choose the designer f(R) model in Sec.5.1 : fRi = −1.3923016 x

10−30, w = −1.0. This model is cosmological viable [39,40].

In the following works, we take the criteria, ck < 10, cη < 3.0. The k we choose

here satisfy aη > ac. Recall that cm = 0.01 determine if the calculations translate

from GR (or DP ) to Tsu.
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Figure 5.7: The matter density perturbation δm(a) in the conformal Newtonian
gauge for k = 0.11Mpc−1. The designer f(R) model fRi = −1.3923016 x 10−30,
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Figure 5.8: The matter density perturbation δm(a) in the conformal Newtonian
gauge for k = 0.02Mpc−1. The designer f(R) model fRi = −1.3923016 x 10−30,
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In Fig. 5.6-Fig. 5.8 are for different comoving wave number k. Notice that, in

this model, the deviation from GR is not small at late times. Therefore, aη are too

small to find small k (when k is smaller, ac is bigger) which can satisfy aη > ac.

We calculate the matter density perturbations δm(a, k) for Method I, Method II and

GR.

We can see that,. The fractional difference of matter power spectrum between

these two methods is bigger than 10%. In this case, we believe that Method II is

better than Method I, because Method II have considered the 1st order f -terms

(ie. fR, ḟR, fRR and ḟR). The only deficiency of Method II is that it does not con-

sider higher order f -terms (ie. f 2
R, ḟ

2
R, f

2
RR, ḟ

2
RR and so on). Even though Method

II is not accurate at late times because of the higher order f -terms. We can still

say that calculations by Method II is closer to the calculations by the exact f(R)

field equations Eq. (3.14), Eq. (3.15) and Eq. (3.16) than Method I. The difference

between Method I and Method II is not the only inaccuracy source. However, we

can tell the lower bound of the inaccuracy. So under these criteria ck > 10, cη < 3.0

and cm = 0.01, we may say that Method I is not a good approximation. To see more

results, we try to change the criterion ck > 10 to ck > 100. We choose a big cη < 3.0

here. Here cm is not our prior criterion to determine ac. Instead, we choose ck as

our criterion to translate to Tsu. So ac = (m/cm)
1/2k/H, and ck > 10 and cη < 3.0

also need to be satisfied. We use the same designer f(R) model as before. For the

criteria ck = 100 and cm < 0.01, we obtain the corresponding ac. At ac, it should

be matter-dominated.
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Figure 5.10: The matter density perturbation δm(a) in the conformal Newtonian
gauge for k = 0.20Mpc−1. The designer f(R) model fRi = −1.3923016 x 10−30,
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Figure 5.11: The matter density perturbation δm(a) in the conformal Newtonian
gauge for k = 0.18Mpc−1. The designer f(R) model fRi = −1.3923016 x 10−30,
weff = −1.0. The criterions ac = 0.0052803, ck = 100, cη < 0.1, cm < 0.01.
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Figure 5.12: The matter density perturbation δm(a) in the conformal Newtonian
gauge for k = 0.16Mpc−1. The designer f(R) model fRi = −1.3923016 x 10−30,
weff = −1.0. The criterions ac = 0.0065091, ck = 100, cη < 0.1, cm < 0.01.
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In Fig. 5.10-Fig. 5.12 are also for the same designer f(R) model, and we take

different k(Mpc−1). Again, in this model the deviation from GR is not small at late

times. Therefore, aη are too small to find small k (when k is smaller, ac is bigger)

which can satisfy aη > ac. We calculate the matter density perturbations δm(a, k)

for Method I, Method II and GR. In Fig. 5.10-Fig. 5.12, we calculate the matter

density perturbations δm(a, k) for Method I, Method II and GR. Then we can use

them to calculate the matter power spectrum Pm(a0, k) at a0=1.

We can see that, the differences between Method I, Method II are so small. For

this model, the deviation from GR is not big at late times. Because aη are big

enough, both GR and DP are good approximations before ac. Where the criterion

ck = 100, cη < 0.1 and cm < 0.01.
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Chapter 6

Discussion

6.1 Conclusion

In Chapter 3, we showed the f(R) field equations. In Sec.3.3, we present the equa-

tions we need to solve the cosmological perturbations. In Chapter 4, we found the

two-scale numerical problem at early times due to the smaller f -terms and bigger

GR-terms. Then we propose our approximation “double perturbation”(DP ) to deal

with the two-scale problem at early times. However, the two-scale problem still

exist at late times. We also present the approximations where some other workers

may take them to solve the two-scale problem. There are the GR approximation as

an early-time approximation, and the late-time and approximation with subhorizon

presented by Tsujikawa.

In Sec.5.1, we compared the two early-time approximtaions. We use double per-

turbation as the early-time approximation to calculate the early-time matter density

perturbation. For the conventional method, we used GR early-time approximation

with Tsujikawa’s approximation to calculate the early-time matter density pertur-

bation and compare it to the result from our method. We found our approximation

can improve the conventional methods and provide a new way to constrain the f(R)

models.
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In Sec.5.2, we proposed two methods to solve the full time cosmological perturba-

tions. We use double perturbation as the early-time approximation and Tsujikawa’s

late-time approximation. This is our new method to calculate the full-time mat-

ter density perturbation and the matter power spectrum without fitting. For the

conventional method, we used GR early-time approximation with Tsujikawa’s ap-

proximation to calculate the full-time matter density perturbation and the matter

power spectrum without fitting. Then we compared to the results from these two

method. We finally found that the conventional Method (ie. Method I) might not be

a good approximation under certain criteria ck, cm and cη. Because of the prediction

of the observational matter power spectrum might be accurate at 10% level [45].

The fractional difference of matter power spectrum from these two methods might

be smaller than 10%. When ck > 10, cη = 3.0 and cm = 0.01. The fractional differ-

ences are more than 10%. It seems that calculate early-time perturbations by GR

might not be a good choice. We think “double perturbation” is the better choice to

calculate early-time perturbations.

Thus for self-consistency’s sake, the GR approximation is problematic, and a

better treatment for the early-time evolution is necessary, which our approximation

may provide.

6.2 The Future Works

The tested model is generated by designer f(R). However, we need to use the other

conventional f(R) models which are exact functions of the Ricci scalar. To compare

other people’s works, we should use their models, not only the designer f(R) models.

In [29], there are some useful rearranged equations to solve f(R) evolution in the

background level. However, we have found that it is difficult to handle an exact

f(R) model by numerical. Even though in background level, the two-scale problem

emerges at early times again! Because some higher order derivative terms in f(R)
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theory do not appear in general relativity. So these terms must be f -terms. At

early times, each f -terms are smaller than the inaccuracies of the summation of

GR-terms. To solve this two-scale problem, we should use some approximation. In

principle, we need to use iteration to solve this problem.

So far, our works can only tell that if other people used good or bad approxima-

tions. We have not given the new constraint for f(R) gravity yet. In principle, we

need to solve the f(R) field equations at all times. Because the two-scale problem,

we use DP to solve perturbations at early times. We have developed a numerical

code base on CMBFAST to solve the f(R) perturbations by DP . We call it “CODE

I”. On the other hand, we also developed a numerical code base on CMBFAST to

solve the f(R) perturbations by the exact f(R) field equations. We call it “CODE

II”

We have tried to solve the late-time perturbations by the exact f(R) field equa-

tions (ie. CODE II) . However, the first derivative of the metric perturbation η (ie.

η̇) is very discontinuous at the translating point ac. The late-time cosmological per-

turbations will fiercely oscillate as time goes by. This can not be thought as a correct

result. We have tried different designer f(R) models, ac and k. But the problem is

still there. It is because that the two-scale problem still exist at late times. Maybe

the other conventional f(R) models could solve this numerical problem.

We have tried to prolong the viable period of CODE I. We use iteration to let the

calculation of χ be more close to Eq. 3.11. However, this method does not prolong

the viable period of CODE I because of the big cχ at early times.

Tsu can only calculate subhorizon and matter-dominated cases. We need to

choose another method to solve the late-time perturbations. The hopeful candidate

is in [42]. Even though in this paper the authors also use matter-dominated and

subhorizon approximations, they claim that they have considered some higher order

corrections for the subhorizon approximation. It seems their work may give more

precisely calculations than Tsu. And we do not need to consider wave length so
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much smaller than the horizon. We can consider a smaller ac. At the smaller

ac, DP is more possible a good approximation. Notice that in [26], the authors

did not use Eq. (4.11) to calculate matter density perturbations. Instead, they use

only matter-dominated approximation but no subhorizon approximation. Their new

formula is more general than Eq. (4.11). Because their formula will be reduced to

Eq. (4.11) when considering subhorizon approximation.

In [26], the authors also only consider matter-dominated approximation. So

far, we believe DP can be adapted to the early matter-dominated period. Thus, it

might also be a hopeful candidate to calculate late-time matter density perturbation

without numerical problems.

It is another save to consider higher order perturbations in f(R) gravity. We

might consider “triple perturbations” or something we haven’t thought. If we could

the higher order perturbations or [42] to calculate perturbations to develop a new

approximation to solve the perturbations at late times (ie. to develop CODE 1.5).

We hope when CODE 1.5 is viable, we can find a timing a1.5 when CODE 1.5 can

connect to CODE II safely. Then we could calculate matter power spectrum by

CODE II and obtain our new constraint for f(R) gravity. And we can constrain the

f(R) models by the matter density power spectrum.
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