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ABSTRACT

We investigate the evolution of the cosmological perturbations in /%) gravity, an

alternative to dark energy for explaining the late-time cosmic acceleration. It is
conventional to use GR as the approximation to calculate cosmological perturbations in

AR gravity at early times. For the late-time universe, it is to use the approximate
formula proposed by Tsujikawa (termed 7suz) to calculate the matter density
perturbation. The method with GR and 7su is conventional to calculate the matter

density perturbation and the matter power spectrum. In this thesis we propose a new

approach, “double perturbation” (2P, to calculate cosmological perturbations at
early times. For the late times, weluse Zs.. For.different designer /{£) models, we study
the difference between Method I (GR+#s7) and Method Il (DP+ 7su) in matter density

perturbations and matter ~power “spectra for “different Fourier modes. For the
shorter-wavelength Fourier modes we fi‘nq_‘th‘at the effect of the gravity modification at

early times in /(%) gravity may not be neg]Tgi'bIe. We conclude that to be self-consistent,
. | WK " .
in the A/) theory one should employ the approximation presented in this thesis instead

of that of GR in the treatment-of the garly-time evolution:

Keywords: modified gravity, A#) theory, designer A&, large scale structure,

cosmological perturbations
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Chapter 1

Introduction

1.1 The Accelerating Universe

In 1998 the observations of type la supernovae (SNIa) suggested that the expansion
of the Universe was decelerating atﬁeag‘z ‘:ci__m;es but acéélerating since around the
redshift z=0.5 [1-3]. Subsequent obséri;;f-?};;é, ir%cluding more detailed studies of su-
pernovae and independent, evidenCF romgﬁi_le C(E?Smic microwave background (CMB)
radiation, large-scale structli'fé, Vanidiclusters of‘iggfatl_axiesi, have confirmed and firmly
established this remarkable ﬁndiﬁg. Models atterrii)ting to explain the accelerating
expansion include some form of dark energy, modified gravity [5] and the large-

scale inhomogeneities [6]. In this chapter we will discuss dark energy [4] and f(R)

modified gravity [7], but not inhomogeneous cosmology.

The observations [8-12] suggest that our universe should be nearly flat and con-
sist of 73% dark energy (DE) [13], 23% dark matter, 4% ordinary matter, and
approximated 0.008% radiation. To explain the late-time cosmic acceleration, we
consider that the dark energy has a negative pressure. At large scales the dark energy
is “gravitationally repulsive” because of the negative pressure. So far, the ACDM
model is the best-fit dark energy model for the observations of the cosmological

evolution at the background level. However, the ACDM model still the coincidence
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and fine-tuning problems [14,15]. To avoid these problem, people develop dynami-
cal dark energy models, such as quintessence [16] and phantom energy [18]. These
models involve the dynamical and potential energy of a scalar field. However, there
is no dark energy model which can avoid all the problems [19]. See [20,21] for a

review.

1.2 f(R) Modified Gravity

Another possibility to explain the late-time cosmic acceleration is the modified grav-
ity. There are several models of modification to GR [22-25] (also see [5] for a review).
In this thesis, we focus on f(R) modified gravity (see [7] for a review). We mod-
ify the Einstein-Hilbert actioni of GR;a mod-i,ﬁcatiqn primarily manifesting only on
cosmologically large scales. V 7-

For the viability of th’exif(R) miodels thl.@ cosmological solutions therein should
have a late-time de Sitter,attractor at E.i:; }i%l"(} 0). Thesfollowing conditions need

, l
to be satisfied [26] | ;‘L | |

18e-g

it N | .
e (i) fr > —1for R =R (> 0){, where fRIE:-_Qlf/dR. This is required to avoid

anti-gravity from ordinary matter.

e (ii) frr > Ofor R > Ry, fr = df?/dR?. This is required for the stability of cos-
mological perturbations, for the presence of a matter era, and for consistency

with local gravity tests.

e (ii) f(R) — —2A for R > Ry, where Ry is the Ricci scalar today. This is
required for the consistency with local gravity tests and for the presence of the

radiation and matter eras.

o (iv) 0 < Rfrr/(1+ fr)(r = —2) < 1, where r = R(1 + fr)/(f — R). This is

required for the stability of the late-time de Sitter point.

2



In [26], the authors provide a general form of f(R) models which can be consistent

with both cosmological and local gravity constraints.

f(R) =R — AR, fi(x), r = R/R., (1.1)

where R, (> 0) defines a characteristic value of the Ricci scalar R and A is some

positive free parameter.

The following models have been well studied:

(A) filz) =2 (0 <p<1)[28],

o (B) filz) =a™/(=*" + )i (u >-j.0) 291,

=

(C) filz) =1 — @4z} g_> 0) 30]

IL .E—

! \_7

L,f

(D) fi(z) =1 —e [31%33],

Y
1

(E) fi(z) = tanh(z) [34]

The models in [29, 30, 34, 35] can satisfy both the cosmological and the local
gravity constraints by using so-called chameleon mechanism [36]. The models in
[29, 30] are cosmologically and locally viable and are more distinguishable from
ACDM. The model in [29] is popular and has been discussed and constrained by
many works. For the models in [31,37,38], both the inflation in the early universe
and the onset of the recent accelerated expansion arise in these models in a natural,
unified way. These three models [31, 37, 38| easily can pass local tests, such as
the Newton law, the stability of the Earth-like gravitational solution and the very
heavy mass for an additional scalar degree of freedom. By the cosmological and

solar-system tests, [39] gives new constraints of f(R) gravity.
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1.3 Our work on f(R) Theories

In our work we focus on the cosmological perturbations in the f(R) theory. The
background information from the observations, such as type la supernova, large-
scale structure and CMB, is treated as the inputs, but not the output in the f(R)
theory test.

In practice, each of the f(R) models should be close to ACDM at the background
level. Consequently, measurements of cosmic expansion alone cannot distinguish
f(R) gravity from dark energy, and additional independent measurements such as
the cosmic structures are indispensable.

In this thesis we focus on the designer f(R) model [27,40]. Once we know the
expansion history of the universe; we can design‘a f(/2) model which can mimic the
required cosmic expansion at the backérounci 'level '

To calculate the cosmologlcal perturbatlons in f( ) grav1ty, it is conventional
to take GR as the approximation at, eagl;; tim?s At late times, [41,42] use matter-
dominated and sub-herizon apprO)Tl 1aCT’ tol Galculate the matter density pertur-

The Coslmologlcal perturbatlons in f(R) gravity

! I
from the early universe to now. For the.early tﬁmes , we calculate the cosmological

bation. In our works, we calculatef

perturbations by two methods: 1. We use GR as-an approximation to calculate
the cosmological perturbations via CMBFAST, a code, written by U. Seljak and
M. Zaldarriaga [43], for calculating the linear CMB anisotropy spectra based on
integration over the sources along the photon past light cone. 2. We develop our
numerical tool based on CMBFAST, which can solve the f(R) field equations and
the Boltzmann equations with our early-time approximation. For the late times,
we use the matter-dominated and subhorizon approximations [41] to calculate the
matter density perturbation. We also obtain the prediction of the matter power
spectrum at z=0. Then we compare both the matter density perturbations and the
matter power spectra from different approximations. And we discuss that if the

conventional method is a good approximation or not. A part of our work is based

4



on the master thesis [40] by Wei-Ting Lin.







Chapter 2

Background Expansion

1 |£ﬂ-£' —'.-fl'.{ ;

2.1 Dark Energy; 412

—-E_-,'
.“ l’ .!.F..-P
In general relativity ( Gﬁ),‘;?;}?e ein-Hilber
n /\l-
.;-;-‘ "-'1 l{\

ooy W
= T . T{a'_ s

: -';*3!.__? )IR‘+ %--T"(SR} + Z (SSfluzd

fluid

B 167TGN

we use the least action principle to derive the field equation for GR, i.e.,

1 4

V=g 09"

Then we define the energy-momentum tensor for cosmic fluids as

T _ =2 0S(s1uia)
pv(fluid) = \/— 59”” )

IThe speed of light c is set to unity.

(2.1)

(2.2)

(2.3)

(2.4)



and the Einstein field equations are
Guv = Ry — g,“, = 8rGy Z (@) > (2.5)

where the index a runs over the particle species. According to Eq. (2.5), the expan-
sion should be decelerating if the subscript a only include the baryons, cold dark
matter (CDM) and radiation. Since we find the early universe can be described well
by GR. It implies us that there might be some modifications to GR (ie. modified

gravity) or a new substance (ie. dark energy) in the subscript a.

For the background expansion of the universe we consider a homogeneous and

isotropic space-time described by the flat Robertson-Walker metric

def= ( ){ dT + dif } (2.6)

P g lf—%—,,‘ P
where the conformal time 7 = ¢/ a(rr)s" | B l',fj"';l '
L WY I
-
Dark energy posit a form of “gk v1tamnalf?! repulswe stress-energy T, (pg) in

| \

G = 87 GN (Tuu(ﬂmd =+ TW(DE ) - (2.7)

the universe. Eq. (2.5) becomes

e
sl

For perfect fluid,
T+, = diag (—p, P, P, P) . (2.8)

Taking the trace part of Eq. (2.7), we obtain

d%a
9 — 7 (p + 3P+ pr + 3P, + poi + 3Poi) (2.9)

where the subscript m means the matter part, and » means the radiation part. The
L.H.S. of Eq. (2.9) describes the acceleration of the universe. In the R.H.S., if the

the DE term (ppg + 3Ppg) negative enough at late time, this kind of dark energy

8



model could explain the late-time acceleration.

2.2  f(R) Theory

Starting from the modified Einstein-Hilbert action,

dR&o sin th,e‘ Héld equation, we define

an effective energy—morriénmil_tﬁl qs or contribut r‘@rﬁ the deviation of GR. The

1
T

1
pveff) = 871Gy §f9;w - (R;w + g;wD - v,uvl/) Ir| - (2-12)

Then the Einstein’s field equations in the f(R) theory is similar to that in GR,
GMV = 87TGN (T,w + T,ul/(eff)) . (213)

The effective energy density is

1

Peis = grgie ( Rfr — 3H*f —f—ﬁ R) . (2.14)

2

9



Dots denote derivatives with respect to 7, here fr = dfx /O7. The effective pressure

is
1 1. H,; 1 f
P = - —fr— = — H? =) . 2.1
1= SnCin (a2fR+ P Lol fr+ 2) (2.15)
We define the effective equation of state,
| 2
Py 12 —s2fr— g/ T H[r

(2.16)

W, — - . .
1 Peff 3 3 —Hfp—H2fr+ tRfr—¢f

Taking the 00 part of Eq. (2.13), then we obtain the first effective Friedmann equa-

tion,
H . 1 87TGN
H? + H? S H — —Rfp=——(pm +pr) . 2.17
+H frt +aprﬂﬂf 3 (pm + pr) (2.17)
& i B OR
Taking the i part of (21;3,), ’tﬁ’fn—
A

= T4 |!|,|I
|

e “-. .
ta‘ﬁns-?;:we obtain the second

b

e

g &b

Lol S
Fie

effective Friedmann equation; s ] A8
. i, R

W, LIV e 4

i, R

After the linear comb;:r-‘_'ﬁl!éﬁ()n

d%a
da g7
% +5+ 53 ) . (2.19)

which describes the acceleration in the FLRW cosmology. Thus, if the part

fr—Hfr + G

(pm + 3Py + pr + 3P,)

f 1
fi—i_Q(J,2

is negative at the present epoch, the f(R) theory may explain the late-time accel-

eration.
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2.3 Designer f(R)

In this thesis, we only test the designer f(R) models. Here we give the following

informations [27,40]:

e differential equation:

i B R"\ f' 12E"  3E" f
Fg— 1+ﬁ+ﬁ F(%'F E + E 6H3+Eeff =0. (2'20)

H? p p p
EE_:Qma_3+Qra_4+Ee 7QmE_m7 QTE_Ta Ee Eﬂ-
Hg 0 0 1 0 Pcro 0 Pecro 1 Pecro

The subscript zero means today’s quantities, and the subscript ¢« means the
initial ones. The prime mqaﬂs‘cﬁf&f Irfa: 2o .
4 -k K

e

e initial conditions:
A

e

f‘@i)ﬁ;’;ﬁ."‘f n(ai
.

3wl p(a;) + 9w p(as) + (18 — 3b) wepp(a;) +9 — 3b+ ¢

p= (E8 T3
T 2(1+1) 2(1+7r) "’

QTO
QmO .

1
r J—
Q;
With given Q,,0, Q0, Wesr(a), and fr;, Ay is the only degree of freedom that should
be fixed to obtain f. Here we do not consider the decaying mode solution of the
differential equation, because that mode decays with time which means it grows
backward in time. We should set the decaying mode to be close to zero in order
to avoid large deviation from GR at early times. However, to consider full f(R)

solutions, we need to consider the growing mode. From the numerical solution, we

11



find that the background evolution grows backward in time, which is not consistent

with the background evolution that grows forward in time.

12



Chapter 3

Perturbed f(R) Evolution

Equations

Recall that we have choset: FLRW métric and flat spacetime as our background met-
ric. We consider the scalar metric pertuﬁaﬁtons in the synchronous gauge. Because
we develop the numerical.tool base ?n CMBFAST In CMBEAST, all quantities are

calculated in the synchronou_s,;gauge. ar he llne element;ds given by
ds* = a2 (B)f=dr> £ (6;; +hiy)drida} . (3.1)

Notice that, in every gauge the scalar modes only have two degrees of freedom. Here
we introduce two fields A(k, 7) and n(k,7) in k-space and write the scalar modes of

hi; as a Fourier integral
h,ij(fi", ’7') = /dgk’ezgf {kl]%]h(lg, 7') + (]%i]%j - 5@]) 677(];:, T)} s E = k‘ff . (32)

Let Y, pada =, 0ps = —6T 0y. The variables 6, and o, are defined as

, .
Y (pa+ P =ik5T%, Y (pat Pa)ou = —(kik; - 30)%5, (3:3)

a a



and X% = T — §4T%/3 denotes the traceless component of T%. d, are the energy
density perturbations. 6, are the peculiar velocity divergences. o, are the shear
perturbations. Each ¢,, 6, and o, obeys the Boltzmann equations in the synchronous

gauge [44].

3.1 Boltzmann Equations

This section shows the Boltzmann equations in the synchronous gauge [44], here
we do not consider massive neutrino. The calculation of massive neutrino is so
complicated that it is viewed as our future work. In numerical calculation, we only

consider cold dark matter, bar;yion la,roton :apdf maﬁgless neutrino. Each equation
=

is wring in Fourier space ..j'hes;é,pa with th.e Boltzmann equations in

o

€

GR.

3.1.1 Cold Dark M

(3.4)
3.1.2 Baryon
. 1.
5(, - —9;, - §h
. 4p.
0, = ——91, + k20, + ——an.or(6, — 6y), (3.5)
30
oy, = 0.

14



3.1.3 Photon

57 — —597 - §h,
. 1
97 _ k2 (4_157 — a,y) + aneaT(Gb — e»y) ,
: ) 8 3 4. 8., 9 1
F,, = 20,= EQ,Y — 51{:F73 + 1—5h + gn — ganeaTJV + 1—OaneaT (Gyo+ Gya)
. k
F'yl = m [lFly (-1 — (l + I)F»y (l+1)} - aneUTF’yl ) [ Z 37
) k 1 0,
G’yl = m [ZG’Y (l—l) — (l + 1)G’Y (l+1)] + aneJT |:_nyl + 5 (Fzyz + G’YO + G'yQ) <5l0 + %)] 9
(3.6)
3.1.4

L NS a5 .
k"}:‘g 355y ,Iaii‘. _1_51:__:,.:3,-:-' 5
20+ 1 [lélgig;’(ll&f)ﬁ‘u(lﬂ)} , >3 (3.7)

3.2 Metric Perturbations

We write down the field equations Eq. (2.11) in the synchronous gauge, where the
perturbation quantities 6Q) = (5@(];, 7).
For the zero-zero component, we let © and v equal to zero in Eq. (2.11). After a

Fourier transformation,

247TGN
~ T 2=

H k2 3 2k2
1 - - x40
3( +aH2> a2H2]X aHX+( +Ir) a2H277
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3fr H frH  127Gya 1+ fr
E2L 3 L _ (1 wops) —
+[2k2< aH2> Sem ~ g P (W wern) = =

1+ fr 3fR . 3fR .
+ (6 aH + a2H2> n 2]{32qu ’ (3.8)

For the zero-j component, we let p equal to zero and v equal to j respectively

in Eq. (2.11). After a Fourier transformation,

87TGNCL fR H 47TGNO,
(1 = UL 1
Z Wlo (1 4+w,) = k*x — aH+ 5 RH+ 7 Perr (L+wesr)| g
fr .
+(1+ fr) H77+21;{ (3.9)
ol f L& *"J

127TGNCL > - I. I \
127G na” 4. : | . 3.10
2k2(1+fR) Z'p g , g q‘ 1
Where ¢ = h + 61), and' 20

(3.11)

where d Ry is defined as the pertuf%afmﬂ of the rRlCCl scalar in the conformal New-

tonian gauge,

ORN = (¢"0Rw)y - (3.12)
In the synchronous gauge,
6 2
v=—— %2 (3aH 1 +all ) q
012 ‘ (3.13)
- n+ = {sz (G+3aHq) — 27;] .

In principle to solve the two scalar modes ¢ and 7, we only need two field equations.

Here we introduce a new dynamical variable y;, it is just for convenient, or we need
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to solve the higher order derivative equations. In fact, there are some intractable
terms such as 7 and ¢ in x. For solving the three scalar modes, ¢, n and x, we need

three field equations, Eq. (3.8), Eq. (3.9) and Eq. (3.10).

3.3 Rearranged Formulae

To solve the scalar modes by numerical, we need to rearrange the field equations.
For solving the evolutions of 1 ,q¢ and x, we need three equations only has n or ¢
or x in the L.H.S.. After some linear combinations of the equations in the previous

section, we derive the rearranged field equations

2k2x 12rGna’
i = —2aHq + 2k*n — — 0o (14+w,) 3.14
q T2 gty L Zpa (3.14)

a2\ ([ R L e M N 2! KR
= <ka2> {|:3CL—H (=) Ii} |V< +fR)3 Sl T <3a2H2 - aH2> X

‘ a;:""
87G na | 87TGNk
- L pdfh (1 ﬂiu I—: - Zpa } : (3.15)
: fR 41 NG || \
X=- kz [7+fRﬁ—-‘ ?;»HJ_Peff +weff) Q+2(1+fR)n+fRn
fR 87TGNa 127TGNCL fR
+ (aH 1—|—fR Zpa a ]{IQ 1+fR ;paaa +U)a

(3.16)

These are the full f(R) field equations in the synchronous gauge.
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Chapter 4

Approximations

4.1 Two-Scale Problem

The “two-scale problem” might] happens whemmwe-numerically solve the differential
equation (3.15).

Here we define “f-terms? whichj iﬁiéﬁottf;l_onal to the derivatives of f. And we

also call the other “GR-terms™swhich dqnot i)roportional to the derivatives of f.
Each of the scale of f-terms.should be much smaller, then'the scale of GR-terms
when the f(R) theory very similar to"GR.

Let us observe the structure of Eq. (3.15), 7

n= (f—term)_l [GR-terms + f-terms] . (4.1)

In the case of GR, both the summations of the GR-terms and the f-terms in the
square bracket of Eq. (3.15) should be zero. When the f(R) theory is very close to
GR, the summations should be tiny and non-zero values. However, in the square
bracket the order of the numerical error of the summation of the GR-terms may be
close to or greater than the order of the f-terms . Furthermore, the f-term in the
parentheses would enlarge this numerical error very much. This enlarged numerical

error would make the calculation wrong. Here we call this situation “two-scale
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problem”.

GR can describe the cosmic microwave background (CMB) anisotropies very
well before the CMB decoupling. Thus, the f(R) effect was very small, and the two
scales of f-terms and GR-terms are very different at early times. In other words,

the two-scale problem would happen at early times.

4.2 Our Approximation (a solution to the two-

scale problem)

For solving the two-scale problem at early times, we provide our approximation. We

, ,j
decompose 7 into two pants, n‘Y-ands™ by two different. orders,

71; ,?ir ¢ dh (4.2)
f o= | ';
Where 7(°) corresponds to the orde Jf GP{!rﬁermls ' and nPicorresponds to the order of

f-terms. We obtain the evolutlon ehq%uatlons resbéctlvely of n(® and n via dividing
Eq. (3.16) by the two orders Wlth Ed:+(4.2), :

. 4G na? 27rGna®
0) — Z
77( ) - k?2 . pa‘ga (1 + wa) - (1 + fR) k2peff (1 + weff) q, (43)
1 1 aH . 1.
2(1) o il _ 2(0) _ = (0) (1)
1 =1 |2X T <4k2f 2k2fR> ¢ = fri” =5 /e (0 + 1)
. N (4.
1 Ir 6rGna” fr
- LUEL LN 1

At early times, we neglect the f-terms in § Ry. Therefore, we have an approxi-

mation form for d Ry from Egs. (2.11),(3.12),

(SRN = 3|:|X + RX — fR(SRN — 87TGN(5TN =~ —87TGN5TN s (45)
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where 07Ty is defined as the perturbation of the trace of the stress-energy tensor in

the conformal Newtonian gauge,
Ty = (9" 0T )y - (4.6)
Thus, in the early universe, we have

X~ X(approx) = _SWGNfRR(STN = 87TGNfRR Z pa(l - 3wa)5N,aa (47)

where 0y, is the density perturbation of fluid @ in the conformal Newtonian gauge.

The second approximation is to neglect the terms related to #™") in the relation

of x which is obtained from the derivative of Eq: (4.7),
iy ':;! 1

. d :
X~ EX(approx) ~ X(approx) ;— 87TC;N Zpa [fRR e gaH( = wa)fRR] (1 - 3wa)é‘Na

+87r@7vj35.z fall “3u,) N)(N

1% (45)
where l ’"ﬁ \
' 2772
“0) _ q ©) (3aH . 8a*H* + 3aH
=(1 — . 4.
Ong = (1 +w,) ( 0, o +3n e Ve (4.9)

To calculate the evolution of the perturbations in the f(R) theory, we need
Eqgs. (3.14),(4.2),(4.3),(4.4),(4.7),(4.8) and the Boltzmann equations. We provide
our approximation to obtain Egs. (4.2),(4.3),(4.4),(4.7),(4.8) which have no two-

scale problem.

However, we expect that the approximation could not be satisfied at late times.
In principle, we need to solve the perturbations by the original f(R) equations at
late time. Unfortunately, even when the f-term in the parentheses in Eq. 4.1 at late
times is much bigger than it at the early times, the two-scale problem still exist.

Maybe the designer f(R) model is so close to ACDM that the the f-term in the
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parentheses in Eq. 4.1 is still not big enough at late times. One possible solution is
choose other conventional f(R) models. Another safe is using other approximations
to calculate the late-time perturbations. Because we take the order of f-terms as
new perturbations quantities to divided Eq. (3.16) by two orders. For convenient,

we call our early-time approximations “double perturbation” (DP).

4.3 GR Approximation

In numerical one takes the evolution of the perturbations in the ACDM as an con-
ventional approximation of solving the perturbations of the f(R) theory at early
times. We call this approximation “GR approximation”. Because in GR approx-
imation one neglects the effect of the rmodif-i'c'ation of the f(R) theory to GR, the

validity of this approximation might need to be exémip@d.

Our approximate equaﬁions in Sec~4;'-2 aré thé same a-s;the evolution equations of
- |

the perturbations in GR,*when we neglem‘he. f terms. Therefore, in GR approxi-

mation one does not consider the effect 0? the f “Perms which are very small at early

times. Therefore, we claim that 01hr approx1ma,t10n contaims more f(R) effect than

GR approximation at early tlme.

4.4 Late-Time and Subhorizon Approximations

In this section, we use the approximate formula derived by Tsujikawa [41] . At
late times, our universe is matter dominated, so we can approximately neglect the
contribution from radiation. For the subhorizon approximation, we only consider
the modes which are much smaller than the comoving hubble radius, £ > aH.

Consider the conformal Newtonian gauge,

ds®> = a*(7) {— 1+ 2U(Z, 7)] d* + [L — 2&(&,7)] dZ”} . (4.10)
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The following perturbed quantities are defined in conformal Newtonian gauge,

H' ATGeffpm
5;711(New) == (2 + E) ;n(New) + T];f(sm(New) ) (411)
where Y
4k
Gep = A (4.12)
€ — 2 . .
L+ frl+ 2% o

For convenient, we call the approximations 7'su.
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Chapter 5

Comparison of the

Approximations

5.1 Early-time Approximations GR and Ours(DP)

\ S

In order to compare the fesults obtainégi-’l'ffbm the differént early-time approxima-
tions, we utilize the designer f (R)E mod&_.[ﬂ]. The designer f(R) model is one of
the f(R) models. It can gengrate :;m-y required lexpansion history of the universe.

Our numerical tool to solve the ¢osmological berturbations is based on CMB-
FAST public code. We choose the cosmological parameters from Seven-Year Wilkin-
son Microwave Anisotropy Probe (WMAP) observations [12], namely, the effective
number of neutrino species, N.¢s = 4.34; the mass fraction of helium, Yz, = 3.26; the
hubble constant, Hy = 73.8(Mpc~!-km/s); the abundance of baryon Qu = 0.0455;
the abundance of cold dark matter €2, = 0.226; the abundance of effective dark
energy {lcrpo = 0.728; the matter-radiation equality time, z., = 4828.

On the other hand, our numerical tool to solve the background evolution is the
designer f(R) code developed by Wei-Ting Lin. We choose the initial conditions to
design a certain f(R) model. The initial time, a; = 107%; the initial value of fg,

fri = fr(a;) = —1.3923016 x 107%%; the constant equation of state, wes; = —1.
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Figure 5.1: The backgroundevolutions of’ }ifle designer f(R) model. The initial
conditions for designer f(R) model a;="10"55fz; =%1.3923016 x 107%, weypp = —1.
m is defined by Rfrr/(1+ fr), some workers may fitilize_. it to analyze the deviation
between a f(R) model an,clf'ACDM:,,T-l%e Ch/.[iB-._glecoupl'fi}g time is z=1090.
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This f(R) model has passed the large %@ﬁtx"uicture tests [39].

Fig. 5.1 shows the background e olq&ps dlf :'the designer f(R) model. Because
the derivatives of f are smaH;:;f / HJ ils almest a (#oLstaﬁrti,:'Where f~—=2A. fg; should
be a very small value, such tha:t? fR ig small eir_ioﬁgil‘at early times. The parameter
m is defined by Rfrr/(1 + fr) [28]. Some workers may utilize it to analyze the
deviation between a f(R) model and ACDM [26,41,42]. We can see that m is close
to order one at late times, and fr may not be viewed as a small quantity.

Most of the late-time approximations of the evolution equations of the perturba-
tions in f(R) are built in the conformal Newtonian gauge [26,41,42]. Therefore, for

the future works we show the following results in the conformal Newtonian gauge.

5.1.1 Results
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Figure 5.2: The comparison of the matter density perturbations calculated by our
approximation and GR approximation. The upper figure is for the case k=0.1Mpc~1,
and the lower figure is for the case k=0.01Mpc™'. §(ours) is the matter perturba-
tion in the conformal Newtonian gauge calculated by our approximation. 6(GR) is
the matter perturbation in the conformal Newtonian gauge calculated by GR ap-
proximation. The fractional difference is defined by |0(ours) — 6(GR)|/(|d(ours)| +
|0(GR)]). ¢y is defined by |X(approx) — X|/(|X(approx)| + X|), it is the criterion of the
validity of our approximation. c,, is defined by (aH/k)*Rfrr/(1 + fr), some work-
ers may utilize it as a criterion of the validity of the GR approximation. The CMB

decoupling time is z=1090.
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Figure 5.3: The comparison of the ¥/® calculated by our approximation and GR
approximation. The upper figure is for the case k=0.1Mpc~!, and the lower figure
is for the case k=0.01Mpc™t. ¥/®(ours) is ¥/P calculated by our approximation.
U/®(GR) is ¥/ calculated by GR approximation. The fractional difference is
defined by |¥/®(ours) — ¥/O(GR)|/(|¥/®(ours)| + |V/P(GR)|). ¢, is defined by
| X (approx) = X|/ (| X (approx) | +1X]), it is the criterion of the validity of our approximation.
Cm is defined by (aH/k)?*Rfrr/(1 + fr), some workers may utilize it as a criterion
of the validity of the GR approximation. The CMB decoupling time is z=1090.
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Figure 5.4: The comparison of the

k=0.1Mpc~!, and the lower figure

is z=1090.

CMB photons density perturbations calculated
by our approximation and GR approximation. The upper figure is for the case
©p(ours) is the
CMB photons density perturbations calculated by our approximation. ©y(GR) is
the CMB photons density perturbations calculated by GR approximation.
fractional difference is defined by |©(ours) — ©y(GR)|/(|O0(ours)| + |©o(GR)I). ¢y
is defined by |X (approx) — X|/(|X(approx)| + |X|), it is the criterion of the validity of our
approximation. ¢, is defined by (aH/k)>*Rfrr/(1 + fr), some workers may utilize
it as a criterion of the validity of the GR approximation. The CMB decoupling time

is for the case k=0.01Mpc~!.



In Fig. 5.2-5.4, we calculate the cosmological perturbations for comoving wave
number k=0.1Mpc™! and k=0.01Mpc~'. The fractional difference ¢, is defined by
| X (approx) = X|/ (| X (approx) | +1X]), it is the criterion of the validity of our approximation.
When ¢, is close to order one, Egs. (4.7),(4.8) may not be good approximations.
Thus, we show the calculations from our approximation until ¢, = 0.1. ¢, is defined
by (aH/k)*m, some workers may utilize it as a criterion of the validity of the GR
approximation when they also consider the subhorizon approximation at late times.

The CMB decoupling time is z=1090.

In Fig. 5.2, we present the matter perturbation in the conformal Newtonian gauge
calculated by our approximation, d(ours),and that calculated by GR approximation,
d(GR). The fractional difference between d(ours) and §(GR) is defined by |6(ours) —
5(GR)|/(8(ours)| + [SGR)PS 18

In Fig. 5.3, we present \I// d calculated by oui(:éppypximation, U /P (ours), and
that calculated by GR. approxunatlon A / CD(GR) The fractional difference between
U /®(ours) and ¥/P(GRY is define : bi;-‘ﬁz#g burs U/®(GR)|/(|V/P(ours)| +
1 /B(GR)]).

= Ty l

ﬂiﬂ
p

In Fig. 5.4, we present the CM%B photonsuiensmy ‘perturbation calculated by
our approximation, Gg(ours), and that calculated by GR approximation, ©¢(GR).
The fractional difference between Og(ours) and ©y(GR) is defined by |Og(ours) —
©0(GR)|/(|O0(ours)| + [©o(GR)]).

Figure 5.4 shows that for the Fourier mode with & = 0.1 Mpc~! the fractional
difference in the CMB photon density perturbation is about 1% around the photon-
baryon decoupling time, zgee = 1090 (a ~ 1073), and reaches as large as 10%
around a = 1072, For k = 0.1 Mpc™! the fractional difference is about one order
of magnitude smaller: < 0.1% around the decoupling time; ~ 1% around a =
10745 ~ 0.03. This result indicates that the effect of the gravity modification at
early times in the f(R) theory may not be negligible compared to the accuracy of

the CMB observations. With regard to the matter density perturbation in Fig. 5.2,
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for k = 0.1 Mpc~! the fractional difference is about 1% around a = 1072, which is
marginally negligible when compared to the current observational accuracy, while

for k= 0.01 Mpc™! it is smaller: < 1073 before a = 107! ~ 0.03.

5.2 Two Methods of Solving Cosmological Per-
turbations

There are two methods to calculate the cosmological perturbations from early times
to now. Method I is the conventional method, and Method II is our new method in

this thesis.

e Method I : GR— Tsu:

. .' :'
We use the field equations-in GR to Selve th¢-perturbations until some time

for some k. On this ﬁiming we still think e are‘g’ood approximations. How-
ever, the late-time and subhorizenrappr?mmatlons can be applied. Then we

calculate matter density perqu bati éi by Tsu

= ||

o Method IT : DP— T'suis- ! E ! "g
4 174

We use DP to solve the perturhations until $oine time for some k. Similarly,

we calculate the matter density: perturbation by 7'su.

We will compare the matter density perturbations d,, and the matter power spectra

P,, predicted by these two methods.
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conventional

Figure 5.5: The flowchart of our strategy.
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5.2.1 Criteria

Most of the other people use GR to solve the early-time perturbations and solve
the late-time and subhorizon matter density perturbation by T'su. To reproduce
their work, we need to make sure that in the traslation point, both GR and T'su are
viable. Then we choose a criterion to decide the timing a. to switch from GR to
T'su. The parameter m = Rfrr/(1+ fr) was first introduced in [28]. It characterizes
the deviation from the ACDM model (f(R) = R/8kG — A). If m < (aH/k)?, the
deviation is small. This regime is called “GR regime”. Some other workers solve
perturbations by GR in the GR regime. If m > (aH/k)?, the deviation is big. This
regime is called “scalar-tensor regime”. The other workers solve the matter density
perturbation by T'su in the scalar-teI}sor regime... Of course, they need to check
if both subhorizon and matter-donfinated are satisﬁed We take the subhorizon
criterion as k/aH = c. For subhorlzon case, we need to care about that if the
model is in the GR reglme (m < &H_ﬁ{: %) afld matter dominated. We think it
is much better to switch from GR| Fg"ﬁ’f Uhe GRi regime when subhorizon and
matter-dominated are Satlsﬁed S<1 e take s to, judge When we switch from GR to
T'su. A adp { !I E AN

In our work, we also use DP to solve the p:ertut-bations in the GR regime. Then
we use a. to judge when we switch from DP to T'su. However, we know DP is an
early-time approximation and it is invalid at late times. At a., both DP and T'su
are viable. We use n(! / n© = ¢, to judge if DP is viable. Unfortunately, these two
periods can not overlap when we use the criterion ¢, < 0.01. We choose another
criterion ¢, which is not too rigorous to find the overlap. Even though the calculation
by DP is not so accurate near some a,, where nV)(a,)/n”(a,) ~ 1, we still believe
Method II is better Method I. Because we have considered the f(R) corrections to
GR, even though the f-terms cannot be viewed as new perturbation quantities, the

calculation by DP is still closer to the exact solution than the calculation by GR

at late times. It is to say, if Method II is not good, then Method I is worse. If the
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result from Method II is very different to the result from Method I, Method I may
not be a good approximation. We use m/(aH/k)* = ¢, as our criterion. However,

we give the priority to ¢,,. So a. = (k/H)(m/c,,)"/?

5.2.2 Results

In our work, we choose the designer f(R) model in Sec.5.1 : fgr; = —1.3923016 x
1073 w = —1.0. This model is cosmological viable [39,40].
In the following works, we take the criteria, ¢; < 10,¢, < 3.0. The k& we choose

here satisfy a, > a.. Recall that c,, = 0.01 determine if the calculations translate

from GR (or DP) to Tsu.
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Figure 5.6: The matter density perturbation d,,(a) in the conformal Newtonian

gauge for k£ = 0.20Mpc™

!. The designer f(R) model fr, = —1.3923016 x 1073,

wepr = —1.0. The criterions a. = 0.0207016, ¢, > 10, ¢, < 3.0, ¢;, = 0.01.
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Figure 5.7: The matter’gieapsit ) Iﬁ ﬁhe conformal Newtonlan

gauge for £ = 0.11Mpc™".
wepr = —1.0. The cr1ter10ns
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Figure 5.8: The matter density perturbation d,,(a) in the conformal Newtonian

gauge for k£ = 0.02Mpc~

!. The designer f(R) model fr;, = —1.3923016 x 1073,

wefs = —1.0. The criterions a, = 0.0576506, ¢, > 10, ¢, < 3.0, ¢;,, = 0.01.
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In Fig. 5.6-Fig. 5.8 are for different comoving wave number k. Notice that, in
this model, the deviation from GR is not small at late times. Therefore, a, are too
small to find small k£ (when k is smaller, a. is bigger) which can satisfy a, > a..
We calculate the matter density perturbations d,,(a, k) for Method I, Method II and
GR.

We can see that,. The fractional difference of matter power spectrum between
these two methods is bigger than 10%. In this case, we believe that Method 1T is
better than Method I, because Method II have considered the 1st order f-terms
(ie. fr, fr, frr and fr). The only deficiency of Method II is that it does not con-
sider higher order f-terms (ie. f3, f']%7 f2p, f2r and so on). Even though Method
IT is not accurate at late times because.of.the higher order f-terms. We can still
say that calculations by Method II'is '¢loser;l’ﬁ_o the ealculations by the exact f(R)

field equations Eq. (3.14), Eq. (3,18) and Eq. (316) than Method I. The difference

between Method T and Method 11 isTnot theonly inaéé—uracy source. However, we

—
P ]

can tell the lower bound of the inacq{lr%:ﬂip .hmder these criteria ¢, > 10, ¢, < 3.0

and ¢,, = 0.01, we may say that Melat od I[;ts not :a good approximation. To see more

o
o Ty | |

results, we try to change the?.__c;iterjlor cx 8110 t? FFk A 100 We choose a big ¢, < 3.0
here. Here ¢, is not our prior-éljiterion to deﬁerﬂﬁne a.. Instead, we choose ¢, as
our criterion to translate to T'su. So :'dC oy (m/:cm)l/zk/H, and ¢, > 10 and ¢, < 3.0
also need to be satisfied. We use the same designer f(R) model as before. For the
criteria ¢, = 100 and ¢,, < 0.01, we obtain the corresponding a.. At a., it should

be matter-dominated.
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Figure 5.10: The matter density perturbation 6,,(a) in the conformal Newtonian
gauge for k = 0.20Mpc—!. The designer f(R) model fr; = —1.3923016 x 1073,
wepr = —1.0. The criterions a. = 0.0043854, ¢;, = 100, ¢, < 0.1, ¢,, < 0.01.
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Figure 5.11: The matterdgﬂslt
gauge for k = 0.18Mpc™ J.;thérées It@del,.\f} —1.3923016 x 10~ 30,
weps = —1.0. The criterions’ a,;,r - 0.0052803, "¢ = ;ILGQE, ¢y < 0.1, ¢y < 0.01.
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Figure 5.12: The matter density perturbation ¢,,(a) in the conformal Newtonian
gauge for k& = 0.16Mpc~!. The designer f(R) model fr; = —1.3923016 x 1073,
wefs = —1.0. The criterions a, = 0.0065091, ¢, = 100, ¢, < 0.1, ¢, < 0.01.
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In Fig. 5.10-Fig. 5.12 are also for the same designer f(R) model, and we take
different k(Mpc™'). Again, in this model the deviation from GR is not small at late
times. Therefore, a, are too small to find small k (when £ is smaller, a. is bigger)
which can satisfy a, > a.. We calculate the matter density perturbations 4,,(a, k)
for Method I, Method II and GR. In Fig. 5.10-Fig. 5.12, we calculate the matter
density perturbations 6,,(a, k) for Method I, Method II and GR. Then we can use
them to calculate the matter power spectrum Py, (ag, k) at ap=1.

We can see that, the differences between Method I, Method II are so small. For
this model, the deviation from GR is not big at late times. Because a, are big

enough, both GR and DP are good approximations before a.. Where the criterion
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Chapter 6

Discussion

6.1 Conclusion

In Chapter 3, we showed th,_e f(@R) field equations.r In Sec.3.3, we present the equa-
tions we need to solve the cosmologica_iﬁe@urioations. In Chapter 4, we found the
two-scale numerical problem' at early tfﬂ’%g;auél to the smaller f-terms and bigger
GR-terms. Then we propose our a? roxi:ifiétiori} f‘double perturbation” (D P) to deal
with the two-scale problem"’é;t Veai'lly times. Hdvy_eyer, ithe two-scale problem still
exist at late times. We also présént the apprOxim;tions where some other workers
may take them to solve the two-scaleproblem. There are the GR approximation as

an early-time approximation, and the late-time and approximation with subhorizon

presented by Tsujikawa.

In Sec.5.1, we compared the two early-time approximtaions. We use double per-
turbation as the early-time approximation to calculate the early-time matter density
perturbation. For the conventional method, we used GR early-time approximation
with Tsujikawa’s approximation to calculate the early-time matter density pertur-
bation and compare it to the result from our method. We found our approximation
can improve the conventional methods and provide a new way to constrain the f(R)

models.
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In Sec.5.2, we proposed two methods to solve the full time cosmological perturba-
tions. We use double perturbation as the early-time approximation and Tsujikawa’s
late-time approximation. This is our new method to calculate the full-time mat-
ter density perturbation and the matter power spectrum without fitting. For the
conventional method, we used GR early-time approximation with Tsujikawa’s ap-
proximation to calculate the full-time matter density perturbation and the matter
power spectrum without fitting. Then we compared to the results from these two
method. We finally found that the conventional Method (ie. Method I) might not be
a good approximation under certain criteria ¢y, ¢, and ¢,. Because of the prediction
of the observational matter power spectrum might be accurate at 10% level [45].
The fractional difference of matter power spectrum from these two methods might
be smaller than 10%. When ¢ > 103 ¢, = 3.{!)',and ¢m = 0.01. The fractional differ-
ences are more than 10%. Tt seems that calculaté*éérly—time perturbations by GR

might not be a good choice. 'We thirtk f_‘doubl’é'perturbétion” is the better choice to

| <= ||
Thus for self-consistency’s sak_la, the.‘L}R a,pfproximation is problematic, and a

-|.—:_' | [

better treatment for the early.—_time% évolution is necessary, which our approximation
' | L ;

calculate early-time perturbations.

may provide.

6.2 The Future Works

The tested model is generated by designer f(R). However, we need to use the other
conventional f(R) models which are exact functions of the Ricci scalar. To compare
other people’s works, we should use their models, not only the designer f(R) models.
In [29], there are some useful rearranged equations to solve f(R) evolution in the
background level. However, we have found that it is difficult to handle an exact
f(R) model by numerical. Even though in background level, the two-scale problem

emerges at early times again! Because some higher order derivative terms in f(R)
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theory do not appear in general relativity. So these terms must be f-terms. At
early times, each f-terms are smaller than the inaccuracies of the summation of
GR-terms. To solve this two-scale problem, we should use some approximation. In

principle, we need to use iteration to solve this problem.

So far, our works can only tell that if other people used good or bad approxima-
tions. We have not given the new constraint for f(R) gravity yet. In principle, we
need to solve the f(R) field equations at all times. Because the two-scale problem,
we use DP to solve perturbations at early times. We have developed a numerical
code base on CMBFAST to solve the f(R) perturbations by DP. We call it “CODE
I”. On the other hand, we also developed a numerical code base on CMBFAST to
solve the f(R) perturbations by the exact if (R) field equations. We call it “CODE
i = S

We have tried to solve the laté-time perturbatisﬁs by the exact f (R) field equa-
tions (ie. CODE II) . However the ﬁrst der{lvatlve of the metric perturbation 7 (ie.
n) is very discontinuous at the trans -atu:ﬁ;:;nLt ac The late-time cosmological per-
turbations will fiercely oscillate as time gcﬁ:’s byl ThlS can1iot be thought as a correct
result. We have tried different; des1g§ner fLR n!}ddels d: and k. But the problem is

still there. It is because that theftwofscale problem still exist at late times. Maybe

the other conventional f(R) models could solve this numerical problem.

We have tried to prolong the viable period of CODE I. We use iteration to let the
calculation of x be more close to Eq. 3.11. However, this method does not prolong

the viable period of CODE I because of the big ¢, at early times.

T'su can only calculate subhorizon and matter-dominated cases. We need to
choose another method to solve the late-time perturbations. The hopeful candidate
n [42]. Even though in this paper the authors also use matter-dominated and
subhorizon approximations, they claim that they have considered some higher order
corrections for the subhorizon approximation. It seems their work may give more

precisely calculations than T'su. And we do not need to consider wave length so
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much smaller than the horizon. We can consider a smaller a.. At the smaller
a., DP is more possible a good approximation. Notice that in [26], the authors
did not use Eq. (4.11) to calculate matter density perturbations. Instead, they use
only matter-dominated approximation but no subhorizon approximation. Their new
formula is more general than Eq. (4.11). Because their formula will be reduced to
Eq. (4.11) when considering subhorizon approximation.

In [26], the authors also only consider matter-dominated approximation. So
far, we believe DP can be adapted to the early matter-dominated period. Thus, it
might also be a hopeful candidate to calculate late-time matter density perturbation
without numerical problems.

It is another save to consider higher-order perturbations in f(R) gravity. We
might consider “triple perturbations™ or som‘,;efi}hing we haven’t thought. If we could
the higher order perturbationsﬁ;)f [42] to calculaﬁé-K:i;érturbations to develop a new
approximation to solve thésvberturba'tigns at, Aate timersjie to develop CODE 1.5).
We hope when CODE 1.5 is Vlable We;?_fijﬂd a timing a1s when CODE 1.5 can
connect to CODE II safely. TheI{ cﬁyld qa;'lculate matter power spectrum by

CODE IT and obtain our new: pons{rrlntfor i (]ﬂ gravity. And we can constrain the

f(R) models by the matter density power spectrim.
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