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ABSTRACT

Hand gesture recognition has become increasingly popular in Human-Computer
Interaction (HCI) research as gestures provide a natural way of communication.
Previous research has focused on searching a fixed size sub-window by evaluating a
subspace of feature space that is found from machine learning algorithms such as
AdaBoost. In recent years, however, local features have become increasingly popular as
they offer robustness in illumination of the environment, scale, and rotational invariance
of the hand itself. In this thesis, we describe a novel method of static hand posture
recognition that is based on an Implicit Shape Model (ISM) of local features. We find
improvement in recognition accuracy over former methods. In addition, our algorithm
enhances the sliding-window paradigm by providing useful information such as hand
orientation and rotational invariance. The execution time of the algorithm is also
provided in order to assess its potential to be incorporated into a near real-time posture

recognition application or a hand gesture system module.

Keywords: Implicit shape model; static hand posture recognition.
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Chapter 1 Introduction

Hand gesture is one of the most intuitive communication methods among people.
Recently, there has been a large amount of literature in human—computer interaction
(HCI) focused on to developing a user-friendly interface by adopting hand gesture
recognition system. For example, “wear Ur world” or Sixth Sense [1] and Ambient
Assisted living [2] are two recently successful applications to use gesture as a module in
their systems.

Static hand posture recognition is an essential component in hand gesture systems.
In some works [2], [3], recognition is divided into two hierarchical levels. The
lower-level part is the static posture recognition. The higher-level gesture part is based
on the static posture output. It should be noted that hand gesture and posture are two
terms with different meanings in literature [3]. A hand posture is a static hand pose, and
a hand gesture is a sequence of static hand postures over continuous motion.

Gesture recognition is still a challenging problem in computer vision because hand
shapes vary among people and the uniform appearance of hand so that make it is
difficult to recognize hand in cluttered background or in the various posture classes.

Present approaches are mainly divided into vision-based and data-glove based

methods. The data-glove based methods use sensors to detect movement of the hand and



fingers. Using the data gloves can enhance the reliability of gesture system but such

devices are expensive, a little cumbersome and not friendly to use. In other hand, the

vision based methods usually use one or more [4] cameras as the input device. In this

paper, we focus on vision-based method because it is more natural and convenient to

use than data-glove based methods.

In recent years, there have been some works [5] using local features to deal with

hand posture recognition. However, the local feature is often a high-dimensional vector

so operating on raw feature vector is time consuming. Hence, Sivic [6] purposed a

clustering method on features, and then the quantized features are called visual word.

Using visual word not only increase the efficiency in matching but also the flexibility to

adopt some techniques from Information Retrieval field.

Zhou et al. [7] are probably the first ones to work on the visual word concept for

posture recognition. In addition, Wang [8] and Liu [5] used local feature algorithm (ex.

SIFT) in posture recognition problem. However, few studies have provided an approach

combine them, that is, how to use visual word from robust local feature algorithms to

deal with the hand posture recognition.

Some works [9] based on visual words simply use the bag of visual words model,

that is, discarding the spatial information of visual words. However, this approach may



not be effective because different hand postures’ visual words may be very similar, so

the key information is the spatial information between them. Here, we propose an

approach based on implicit shape model (ISM) [10], which has performed well on

pedestrian detection [11]. The main idea of implicit shape model is that all local features

vote for all possible object centers. Next, the densest region has a high probability of

containing the object. We extend the implicit shaped model voting scheme so that is

feasible in posture recognition with rotation cases and the results are assuring.

The main contributions of this thesis are the following:

1. Using implicit shape model to realize hand posture recognition and the
improved accuracy considerably

2. For hand posture rotation issues, we extended the implicit shape model by
considering the orientation of features

3. Anovel method for concurrent posture localization and recognition

This thesis is organized as follows: In Chapter 2, we review some related works in

posture recognition. In Chapter 3, the recognition algorithm based on an implicit shape

model is addressed in details. In Chapter 4, we conclude our findings and indicate some

direction for future works.



Chapter 2 Related Work

There have been many works in hand posture recognition field. In this chapter, we
review some techniques related to our work and the approaches based on vision-based
are introduced here.

2.1 Feature Algorithms

Although a digital image is composed of pixels, we usually do not use pixel color
or intensity as image feature. We could like to represent an image as a set of feature
points from some feature algorithms with some invariant properties.

2.1.1 Harr-like Feature

Using Harr-like features to detect objects has been adopt in many works [12], [13],
[14]. Viola et al. [12] used Harr-like features in face detection and this framework is
also feasible in hand detection [13].

To search an object in images, we specify sub-windows to evaluate whether the
object is within them. For each sub-window, rectangle features are used to describe the
image appearance. A rectangle feature is composed by grey parts and white parts. The
feature value is the sum of pixel intensities in white rectangles subtracted from the sum
of pixel intensities of grey rectangles. The exhaustive set of rectangle is large. Even

each feature can be computed efficiently, but the computing completely set is



prohibitively expensive. Hence, we typically select a small subset from feature space to

represent an object class. The most common way to archive this is using AdaBoost,

which will be address later in Section 2.2.1. Finally, some common rectangle features

and the most significant feature in face detection are listed in Figure 2.1.

(a) (b)

Figure 2.1: Harr-like feature (a) four types of rectangle features (b) two most significant

features selected from AdaBoost algorithm [14]

2.1.2 Modified Census Transform (MCT)

Here, we briefly introduce the Modified Census Transform (MCT), which are
proposed by Froba et al. [15]. The features from MCT are illumination invariant and
have been successfully used for face detection [15] and posture recognition [16].The
MCT feature space is defined as a set of 3x3 kernels. For a position at an image, we first
compute the average pixel intensities between all neighborhoods, for example 3x3, is

called mean intensity. Next, the neighbor pixels that their intensities are lower than
5



mean are marked as “0” bit and the others are marked as “1” bit. An example is in

Figure 2.2.This feature algorithm is used in Just et al. that is one of our baseline

methods.
1|5 ]
214 |2 0
516 | 8 1|11

Figure 2.2 Example of the Modified Census Transform [16]

2.1.3 Scale Invariant Feature Transform (SIFT)

Scale invariant feature transform is an algorithm to detect and describe local
features in images. As the name suggests, SIFT is invariant to scale. Moreover, it is also
invariant to orientation, affine distortion and partially invariant to illumination [17].
With these properties, we often call SIFT feature as robust local feature. There are two
stages to generate a local feature from an image. The former is to detect keypoints, that
is, to find where the interesting point is. The latter is to describe the local feature as a
vector so that the similarity of patches can be measured by their vector distance.

In Lowe’s method, the keypoint detector algorithm is difference of Gaussian.

Although two stages are generally called as SIFT algorithm, we can replace detector
6



algorithm with others. The choice depends on application requirements. In addition,

Fei-Fei et al. [18] indicated that using dense regular grid features outperform than

interest points (sparse feature). However, the computation time required for dense

feature is much more than sparse feature representation. Hence we use sparse feature for

our posture recognition.

To the best of our knowledge, Wang et al. [8] are probably the first use SIFT to

deal with the posture recognition problem. Because of these robust properties, we

believe that SIFT is a good choice to be the feature method for posture recognition

problem.

There is a matching algorithm proposed by Lowe et al. [17]. This scheme provided

a naive approach to measure the similarity of posture images. However, our experience

showed that this works not well. The number of matching features are often too less to

support the recognition decision. Some SIFT features and matching examples are in

Figure 2.3. We can find that the matching algorithm provided by Lowe is good at rigid

object, but it works not well on non-rigid object like human hands. Each SIFT feature is

a 128 dimensional vector, that is too large to handle, so we used visual word mentioned

latter to resolve that.



(b)

Figure 2.3: SIFT example (a) SIFT features on a posture (b) Matching result from
Lowe’s method.

2.2  Classification Methods

In previous section, we reviewed some feature methods to represent an image.

Based on the features we extract from images, we expect the same posture categories

will have similar features. In this section, we go through some common machine

learning algorithms that are adopted in posture recognition or related field.



2.2.1 AdaBoost Approach

Many posture recognition approaches [8], [12], [19] apply AdaBoost to weight the
importance of features. Feature space is usually too huge to handle all possible cases, so
we need to know which subspaces of feature space are useful to our recognition
problem. AdaBoost is short for Adaptive Boosting. The main idea of AdaBoost is to
integrate a set of weak classifiers to be a strong one. A weak classifier is just slightly
better than coin tossing. However, since varied viewpoints of weak classifiers, we can
care about the problem separately. AdaBoost are repeatedly in T iterations. For each
round, one weak classifier is selected for optimal classifier to solving problem. Then we
emphasize the wrong samples and re-selected optimal classifier based on the
emphasized samples. With this procedure, we can focus on different viewpoint of the
problem in each round. Some of the advantages of AdaBoost are that it is less
influenced by the overfitting problem, and it is efficient in running time because only a
small subset of features we need to evaluate.
2.2.2  Support Vector Machine Approach

Support Vector Machine is a popular classification method in machine learning. It
is a supervised learning method that data point is with a class label. Usually, a data point

is in fixed dimensions.



Based on visual word framework, we use K dimensional vectors where K is the
vocabulary size. The attribute is the times of visual word in the image, and this
approach works well in many object classification problems [20], [21]. However, the
spatial information is essential some problem like posture recognition, so discarding the
spatial information of local features is infeasible. Some researchers tried to model
co-occurrence relationships among visual words from the training images.

2.2.3 Explicit Shape Model Approach

In order to search objects in an image, we need to find object location. We can
achieve this from explicit or implicit way to model object. Implicit method is based on
voting scheme, which is our main core component. In contrast to implicit, explicit
method is to model the probability density functions, which are often Gaussian
distribution function. Then, the object shape is model explicitly. The objects are
modeled as flexible constellations of parts [22], [23]. Each part represents a significant
partition to an object. Take face model as an example, there possible result may to be
the forehead, eye, and mouth part to model face object.

2.3  Visual Word Representation

In short, visual word is a clustering method on local features and then each feature

is assigned to a cluster. The features among a cluster are considered as a same meaning,

10



that is, a visual word. This procedure is the same as vector quantization from signal

processing. In order to use visual word representation, we need to decide on the

methods for visual codebook generation and vector projection. Some approaches are

addressed as follows.

Every vector quantization method could always generate errors in some respects.

Because we usually have no exact idea what the number of cluster is, and ambiguous

features on near the cluster boundary may be assigned to wrong clusters. For this reason,

the quality of visual codebook is a essential key for any recognition problem.

2.3.1 Visual Codebook Generation

A visual codebook contains the information of clusters. Hierarchical clustering and

partition clustering are two common methods to build the visual codebook. Hierarchical

clustering is conceptual more compact than partition clustering, but it is required more

computation time and memory space. Hence, the hierarchical clustering only fit in

small-scale problem.

The most well-known algorithm in partition clustering is k-means algorithm.

Initially random points are chosen to be the initial centroids. Next, all points are

assigned to its nearest centroid and the new centroids for next iteration updated from the

average coordinates of same clusters. In moderate number of features, k-means works

11



well in many visual word based recognition problems. However, one problem of
k-means is over-sampling of dense regions and Radius-based clustering overcomes this
problem [24].
2.3.2  Vector Projection

A main drawback of k-means is slow. To assign a feature to a cluster, we need to
compute all distance between feature and centroids. In practice, the number of cluster
could be in the millions scale, so the project time in transitional method is
computationally expensive. Some indexing methods could help, for example kd-tree.

For features in large scale, some methods are better than k-means in terms of
efficiency. For instance, random forest [25] and vocabulary tree [9] are usually good
choices. These methods in some sense are not precise as traditional k-means, but the
trade-off is worthy for large-scale datasets.
2.3.3 Visual Word with Spatial Information

In computer vision, the representation of visual word discarding spatial
information is called “Bag of visual words model”. However, the loss of spatial
information is imprecise in some applications. For example, two different of posture
classes may share similar visual words. Therefore, bag of visual words model is not
satisfied so that some researchers have been proposed visual word methods encoding

12



spatial information to improve recognition accuracy.

Pyramid match kernel [26], [27] is a method to extend vector dimension so that the

extra attributes contain spatial content. The image is partitioned into sub-regions and

computing histograms of local feature inside each sub-region. Pyramid match kernel is

effective for the scene category problem but for recognition problem with heavily

rotation issue. Another approach is based on language model. Visual word is a term

borrowed from text retrieval field. Tirilly et al. [28] proposed a language modeling

approach to image classification. The main idea is to build a language model for an

object class. In predicting phase, we find the most probability of language model.

13



Chapter 3 Hand Posture Recognition with an
Implicit Shape Model

In this chapter, we address how to adopt implicit shape model framework to deal
with our hand posture recognition in detail. As mentioned in Chapter 1, our recognition
approach is inspired by implicit shape model method. For every training visual word,
we record the information of all occurrences related to its hand center. The organization
of this chapter is given as follows. In Section 3.1, we give an overview of our approach.
We explain how to learn the model in Section 3.2.1. Finally, the recognition method is
included in Section 3.3.

3.1 Overview of Our Approach

In the beginning, we give a general description of our recognition approach. There
are two phase to achieve our recognition: training phase and predicting phase. In
training phase, we learn a model for each posture class. For each training image, it is
represented by a set of visual words we mentioned in Section 2.3. We collect all visual
words’ information including cluster id, position, orientation and scale in the image.
These visual words should be consistent and meaningful to their object centers. Instead
of defining the shape explicitly, every visual word around object center plays a role to
define object shape. With this assumption, we let each visual word to cast all possible

14



object center locations from the occurrences situations. That is, we learn the shape

model implicitly.

In Figure 3.1, we give an example how this scheme works. In training phase, we

assume that our hand images are upright. We record all occurrence vectors from visual

words to the hand center. In predicting phase, we predict all posture class

separately .Each visual word in the test image cast votes to all possible hand centers via

predicting the hand direction and location based on the training experiences in the

specific class. Finally, we find the densest voting region from all possible classes to be

our prediction that posture class, location and orientation are included.

(a) Training Phase (b) Predicting Phase

Figure 3.1: An example of training phase and predicting phase. Rectangle denotes visual

word; Rectangles of the same color indicate the same visual word. Red arrow represents

15



the posture direction. Dotted vector is a vector from visual word to hand center

3.2 Learning the Implicit Shape Model

In this section, we focus on the learning procedure to build implicit shape model.
We based on the voting scheme from [10]. However, the original work does not
consider the orientation of features. We slightly modified learning procedure so that is
feasible in posture recognition.
3.2.1 Visual Vocabulary Construction

Visual vocabulary is the number of visual words. Before getting visual words, we
need detect the local features from images. In our task, the number of total features is
usually in the thousands scale, so we use the traditional visual codebook algorithm
k-means for generating a compact codebook. Figure 3.2 shows an example of feature
patches after clustering. Each row is a codebook entry representing some similar

appearances

16



Figure 3.2: An example of visual words, each row is a visual cluster we called a visual

word and features belong to a visual word exhibiting similar feature appearances

17



3.2.2 Hand Center Estimation

In previous work, object center locations are often defined as a manually way [10],

[11], [29] .Unfortunately, our posture datasets have no hand center information. Hence,

we propose a simple estimation for object center.

We estimate the center of a hand image from the average coordinates of all feature

coordinates. In our observations, the estimated locations are consistent for all posture

classes if hand images are cropped or in uniform background. The Figure 3.3 and Figure

3.4 show some examples of our estimations.

Figure 3.3: Some examples of hand center estimations from the T. C. Liu posture

database

18



Figure 3.4: Some examples of hand center estimations from the Triesch posture

database

3.2.3 Record the Occurrence Vectors
After our training image center coordinates are estimated, we next establish the
relationship between hand center and visual words. Given a training dataset as
H = {h = (h;,hy,hy)|h € H}
where h;is the hand image, (hx, hy) is the hand center coordinate estimated from
section 3.2.2. A hand image contains a set of local features and the extracted features are

matched to the visual cookbook entries. After that, each local feature’s appearance is
19



represented by a visual cluster id. For each visual word is characterized as
f= (£, fe fo £y, fs o)
where each local feature belongs to posture class f, and is assigned to a codebook
entry f.. The feature is observed at location (fy,f;) and with the scale fs and
orientation fg. With a set of features from a hand image, we record the difference
between each visual word and its hand center by a three dimensional occurrence vector
as
ox]  [C(he =F)/fs
0= [oy] = |<hy —£,)/f;
Og fo

The feature scale normalizes occurrence vector in order to predict with different
scales in testing images. Leibe et al. [30] proposed this normalization to achieve the
categorization in multiple scales. These occurrence vectors are the fundamental
elements of our model and they are grouped together by posture class.

It should be note that we assume our training image are upright. Hence we assign
the training hand direction to be the upward direction because the training hand
directions are all in 90 degrees and reference axis is the x-axis. Figure 3.5 shows an
example of hand direction of a training image. This setting lets us to train model with

the consistent shape direction.
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Hand direction

X-axis

Figure 3.5: Hand direction of training images.

We use inverse document frequency (IDF) to measure how important a visual is in
the training data. For each visual word importance, we use IDF weighting inspired from
text retrieval problem. It is a good criterion for measuring the distinctiveness. The IDF

value of a visual word f. is computed as

[{pi}|

IDE(fe) = log 1 e o]

where p; is the i*" posture class.

Ideally, each posture should have at least one distinctive feature or visual word, but
these distinctive features are less and not stable to find. Hence, soft weighting
assignments are usually adopted like IDF weighting. In general, a visual word is highly
distinctive if it appears in less posture class, hence we give higher weighting to this
visual word.
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In conclusion, we record two parts from training data in learning model step. The

former is the occurrence vectors. For difference posture classes, we record them

separately as Figure 3.6. The latter is IDF weighting for measuring the distinctiveness.

The overall training algorithm is as Algorithm 1.

« ®
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Detection Patches Words Vectors

Figure 3.6: The training procedure. For each training image, local features are extracted
and clustered to visual words. The relationship between visual words and their center
are record as occurrence vectors. Finally, we group the occurrence vectors by each

posture classes.
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Algorithm 1: Training procedure

Input : training images H
Output : occurrences vectors Occ
//Initialization
For all posture class i do
For all codebook entries j do
Occ(fp,fo) =0
//Record occurrences vectors
For allh € H do
For all feature f € image h; do
ox] |(hx —£)/fs
occs = [Oy] = [(hy — ) /fs
Og fg

Occ(fp,fc) = Occ(fy,fo) U occy
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3.3 Posture Recognition

After the ISM model is built, we can recognize a test hand image to the most
possible posture class. In this section, we address this recognition in detail.
3.3.1 Hand Center Prediction

Given a feature from a training image and a feature from a testing image, for
example, we assume these two features are assigned to the same codebook entry, that is,
they have similar appearances. We can represent them by their scale, position and
orientation on a standard two-dimensional coordinate plane. In training phase, we can
compute the angle between the feature vector and the x-axis. In prediction phase, we
compute the transferred hand center by the differences in orientations and scale. In

conclusion, we predict the hand centers by all occurrence vectors in training phase.

Trainingb h, Predicting h,'

Figure 3.7: Diagram of visual word and hand center
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Given a testing visual word f= (fp, fe, fy, fy, fs, fg) , and the corresponding
occurrence vector o = (OX, Oy, 09) which is looked up by (f., f,), we predict the hand

center location by

h, l[fx + f /OXZ + oyzcos(atanZ(oy, oX)1 + (fg — 09))]I
hpred,fp = [h ] =
Y l f, +fs ’oxz + oyzsin(atanZ(oy, ox) + (fg — 0g)) J

We illustrate how the prediction works in Figure 3.7. It should be noted that the
predicting hand centers are usually at least one because there may have many training
samples in same visual word and posture class.

3.3.2 Voting Procedure

Unlike the original work of Leibe, we do not use scalar weight voting to predict
possible object centers. Here, we propose a new voting scheme based on a vector weight
vote to predict the two dimensional hand center vectors. We concurrent consider the
feature scale and orientation, so this posture prediction is scale and rotation invariance.
These two properties are robust for our posture recognition system.

For each posture class, the visual word cast votes to all possible hand centers. A

' The two-argument function atan2 is a variation of arctangent function.atan2(x,y) is the angle in
radians between positive x-axis and the point (x,y). the angle is positive in upper half-plane, and negative
for lower half-plane
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vote is represented as a unit two dimensional vector to predict a likely hand location and
direction. With this vote scheme, we hope the votes from noisy feature have arbitrarily
orientation. Hence, the summing up vectors from the region will have less magnitude
and negate each other. In contrast, a high potential hand region should be received
consistent hand direction votes. The voting scheme is illustrated as Figure 3.8.

To decide the most likely hand center region, we discretized the two dimensional
space into bins. We suppose the bin width is B, image height is H and width is W.
Therefore, there are (g) X (%) bins. The bin width is a parameter of our algorithm to
control the precision of hand locations. To small bin width will be sensitive by noisy
occurrence vectors. In our experiments, we set B to be 16 pixels. Finally, we accumulate
the votes group by bins, and find the largest vector among them to be final our

recognition result and an example is illustrated in Figure 3.8.
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Figure 3.8: Choosing the most possible hand location by summing up all hand

predicting vectors in each sub-region and find the largest vectors to be our final
prediction

4
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For each posture class, we computed the voting vectors separately as Figure 3.9,
and the largest vectors among all posture classes to be our final prediction. The direction

of largest vector provides the hand posture direction. This orientation information could

be a nice feature to some postures like point posture.

Y

(a) posture fist prediction (b) posture palm prediction  (c) posture six prediction

Figure 3.9: Hand posture predicting result (a) ~ (c) are three posture prediction results.

Because the magnitude of fist vector is largest, this posture image is more likely to be a
fist.
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3.3.3 Preprocessing the Images

In practice, we could assume some constrains about hand image inputs. For
example, it is nearly impossible for a posture prediction that is downward in general
application. In addition, hand image input should have moderate size because we
usually do not care for a hand image input if it is too small. Based on these assumptions,
we introduce two thresholds to eliminate some unstable features: scale threshold s, and
the difference of orientation threshold AB;.

Hand appearance is more uniform than other objects in object recognition problem,
for example car, so feature in small scale could arise in any hand part. These features are
less informative than feature in large scales. A comparative of small visual word and

large visual word is in Figure 3.10.

(a) Small visual words, radius < 3 pixels (b) Large visual words, radius > 3 pixels

Figure 3.10: Comparative of large and small visual words
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Orientation constrains could take place in two situations. Given a testing visual
word, the orientation of this visual word should be consistent to the training visual
word‘s orientation. If the difference between training visual word and testing visual

word is large, it is likely to be a nosy feature. Here, we simply drop these features.

3.3.4 Summary of Our Recognition Algorithm

In this section, we conclude all concepts into a recognition algorithm that predict a
unknown hand image to posture class based on implicit shape model. In Figure 3.11, we
give an outline of our recognition algorithm. Given a test image with unknown posture
label, we predict each posture class separately. Finally, the strongest response grid from

them will be our prediction.

TestImage

A

e ¥ &

Posture 1 Posture 2 Posture 3
° ‘ . ’ A [
- 1 I . ° .

Figure 3.11: Posture recognition overview
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There are three parameters in our recognition algorithm: width B, difference of
orientation threshold AB; and scale threshold s;. B is less to improve the localization
accuracy but it’s more sensitive since there are fewer features to support in the grid.
AB; and s, settings depend on the posture image scope. In general, if we set the
threshold more fit the hand posture data. We could boost the accuracy up. The

recognition algorithm is as Algorithm 2.
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Algorithm 2 ISM recognition algorithm

Input: bin width B, difference of orientation threshold A8y, sclae threshold s;,
test features Fiegt
Output : posture label 1 and bin location (x, y)
For all p; in all posture classes P do //Initialization
For all (%, y)in spatial bins do
score(p;, X,y) = [8]
Forall f = (£, f, f, £y, fs, o) in Frege
For all o = (0y,0y,0¢) in database look up by (fp, f.)
If f,> s and |fy — o0g| < A6, then
length = f; ’oxz + oy?
0= arctanZ(fy,fX)
cy = fy + cos(6 + AB)length
cy = f, + sin(6 + AB)length

cos (g +40) IDF(f)

predictVector = s
sin (E + 1) IDF(f,)

score (fp, l%xl , l%yl) « score (fp, [CEXJ, [CE‘VJ) + predictVector

return argmax ., ||score(p,x,y)||
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Chapter 4 Experimental Results

In this chapter, our prototype system is described in Section 4.1. The evaluation

results compared to others are in Section 4.2.

4.1 Hand Posture Recognition System

(a) Logitech Pro 9000 (b) System snapshot

Figure 4.1: (a) Webcam (b) snapshot, the rectangle is center and the line denotes the

posture direction

In order to demonstrate our posture recognition approach, we have built a demo

program. The program is realized on OpenCV with python wrapper and use the webcam

as the input device. The webcam specification is the Logitech Pro 9000. The system

snapshot is as Figure 4.1 (b) Using digital still camera to get training image is also

suitable, but we prefer the webcam device because the ability of near real-time in

demonstration. The system is run on a dual core at 1.66 GHz with 2.5GB of ram.
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4.2 Evaluation

Our method is evaluated on two posture databases. First, we introduced the

features of posture database in Section 4.2.1. Triesch database’s result is in Section

4.2.2.The T. C. Liu database evaluation is in Section 4.2.3. Finally, the running time

analysis is included in Section 4.2.4.

4.2.1 Hand Posture Database

In this section, we introduce two posture databases we used in this thesis. The

Triesch hand posture database included ten posture classes from American Sign

Language. This posture database has been used in many works [16], [31], [32]. The

main feature of this dataset is that the varied posture classes in both uniform and

complex background. An example of this dataset is shown in Figure 4.2.

Next, T. C. Liu database is provided from Robot Perception and Learning Lab at

National Taiwan University. The database is tailored toward robot recognition of three

basic postures — fist, palm, and six as commands for directing robots. Each image is

cropped but with variance of illumination and background as Figure 4.3. The works [5],

[8] based on T. C. Liu database are also taking advantage of the robustness of SIFT

features. Finally, Table 4.1 summarizes the features of the two database.
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Figure 4.2: Samples of Triesch posture database

‘-_""'Q

(a) Fist (b) Palm (c) Six
Figure 4.3: Samples of T. C. Liu database

Table 4.1: Statistics of two posture databases

Classes Background Images/Class
Triesch Database 10 Uniform/Cluttered 72
T. C. Liu Database 3 Cluttered 300
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4.2.2 Results of Triesch Hand Posture Database

We followed the protocol setting from Just el al. [16].There are two protocols used

in their work. The protocol 1 we used in this thesis contains only training data in

uniform background. The other protocol contains training data in both uniform and

complex background. Because the training data in complex could be noisy data in our

learning, we adopted the former protocol as our dataset setting. There are two testing

images were lost by Triesch [16]. The protocol 1 statistics of the Triesch database is in

Table 4.2.

Table 4.2: Statistics of the Triesch hand posture database protocol 1

Training Validation Testing
Number of people 4 4 16
Number of images 80 80 558
Background type Uniform Uniform Uniform/Complex

The principal parameter of our training algorithm is the number of visual

vocabulary. In order to determine the visual vocabulary size, we used the validation set

to evaluate the trained model from different visual vocabulary sizes. The validation

result is in Figure 4.4. The accuracy is best on visual vocabulary equals 2750.
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Figure 4.4: Validation Result of the Triesch Database

Table 4.3 shows our recognition result in both uniform background and complex

background. We can see that in both backgrounds our approach achieves a better

accuracy when compared to a posture classification method based on modified census

transform in Just et al. [16]. As expected, recognition accuracy is greatly affected when

the background is cluttered.

Table 4.3: A comparison of the recognition results in Just and ours

Accuracy Uniform Background | Complex Background
Just [16] 89.97 % 64.38 %
Ours 93.10 % 65.27 %
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Table 4.4: Recognition results with more training data

Accuracy Uniform Background | Complex Background

Training with validation set 95.61% 69.03 %

In addition, we found that the experiment result can be improved further if the

images of validation set are also included for training model. The result is in Table 4.4.

Ideally, the recognition accuracy can be improved further if we have more training

samples. The reason we did this setting is that the validation set is usually also useful

information and they are available data. Training model included validation set is better

than without it.

Aside from the 1% and 3% improvement in recognition accuracy in uniform and

complex background, respectively, our approach improves upon the method proposed

by Just et al. in additional number of ways. Table 4.5 summarizes this. Despite being

able to recognize postures with good accuracy, their method was not able to provide a

localization and orientation of the hand while the inherent property within our approach

allows us to easily gather such information.

In addition, we observe from the dataset that assumptions are made in terms of hand

position and orientation that requires the hand to be upright and centered in order for

recognition to occur. Like the method proposed by Just et al., they need to scan all

sub-images with varied scales to detect a possible hand posture. It is called sliding
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window approach. In our approach however, the algorithm exhibits scale and rotational
invariance through the use of SIFT features, which are inherently scale invariant, and
the occurrence vectors, shown to be rotational invariant in previous sections. By using
SIFT features also allows us to detect the hand with robustness since we do not place

such a constraint on the placement of the hand in the center of image.

Table 4.5: Comparison of metrics between of our method and Just [16]

Comparison Orientation Rotation/Scale Invariance Centering
Justetal. [16] No No No
Ours Yes Yes Yes
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4.2.3 Evaluation of T. C. Liu Posture Database

For each posture class, we have 300 images samples. We let 200 images for

training and 100 images for testing. The size of each image is around 100 x 100 pixels.

In order to determine the number of visual vocabulary, we ran 5-fold cross validation on

training set. The 5-fold cross validation result is in Figure 4.5. Hence, we set K to 1250

in recognition.
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Figure 4.5: 5-fold cross validation result of Liu Database

We tested 300 test images, with each posture class containing 100 images each.

The results show a 98.67% recognition rate for the posture classes. It should be noted

that the algorithm allows for n/8 rotation of the hand. If the system detects that the

feature in the test image has a difference of orientation greater than the threshold, so it

could possibly be a noisy feature. Here, we simply drop it. Table 4.7 shows the dataset
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being run using different inherent parameters, namely, allowing for a hand rotation of

360° in order to show rotational invariance.

Table 4.6: The confusion matrix of our result at B=32, A8, = 0.125m, s; = 3

Ours Fist Palm Six Total Accuracy
Fist 99 0 1 100 99%
Palm 0 100 0 100 100%
Six 1 2 97 100 97%
Total 100 102 98 300 98.67%

Table 4.7: The confusion matrix of our result at B=32, A@; = 21, s; =0

Ours Fist Palm Six Total Accuracy
Fist 99 0 1 100 99%

Palm 0 98 2 100 98%
Six 4 9 87 100 87%

Total 103 107 90 300 94.67%

41




Finally, we want to compare our results with T. C. Liu’s method, which is similar

to ours. Table VII provide a summary of this result. We have a 98.67% accuracy rate

when compared to his method, with only an accuracy value of 87.6%.

Table 4.8: Recognition result comparison with ours and T. C. Liu [10]

Method Accuracy
Ours 98.67%
T. C. Liu’s one-against-other [10] 87.6%
T. C. Liu’s multi-class approach [10] 86.7%

4.2.4 Running Time Analysis

In this section, we analyze the running time and there are training phase and test
phase in our method. In training phase, it takes time to extract features, generate visual
codebook and build the ISM model. On the other hand, it takes time to extract feature,
project feature to visual word and run the ISM model when a test image is given.

The summary of time required for training an ISM model is as model. The most of
time is on feature extraction and visual codebook generation, so building an ism model
is very fast. The feature extraction is based on SIFT algorithm and an alternative is the

well-known SURF algorithm [33]. In addition, some works [9] prefer vocabulary tree to
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generate visual codebook for speed purpose. The time list as table was computed from

the average of ten executions.

Table 4.9: Summary of average time in training an ISM model

Training Time Triesch database protocol 1 T. C. Liu database
Feature extraction 12.01 secs 103.9 secs
Codebook generation 46.2 secs 173.8 secs
ISM building 0.28 secs 1.296 secs
Total 58.5 secs 279.0 secs

There is often an interest in the recognition speed of any posture recognition
algorithms in order to assess its potential as a practical application. Here, we will

evaluate the execution time of the algorithm on the two datasets. Table 4.10 shows a

summary of the result.

Table 4.10: Summary of average recognition time

Recognition time / per image | Triesch database | T. C. Liu database
Feature extraction 276 ms 179.3 ms
Projection 848 ms 373 ms
Classification 23 ms 22 ms
Total 1,147 ms 574 ms
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The average execution time of our algorithm in recognition is 1.147 s for an image

from Triesch dataset and 0.574 s for an image from T. C. Liu dataset. It would be an

acceptable value for any static hand posture application that requires a performance

similar to near real-time due to the fact that it is within a tolerable threshold. It turns out

that the bulk of the operation is in extracting and projecting SIFT features, which takes

up 97% of the total execution time. This observation leads to an idea for further

improvement by using a more efficient way of extracting local features from an image.

There are a number of improvements over SIFT, e.g. SURF motioned above, such that

we can reduce execution time. In addition, we can use a fast visual codebook algorithm

to speed up the projection time as we described in Section 2.3.2.The project time

depends on the number of visual vocabulary since we need to project to the nearest

visual word.
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Chapter 5 Conclusion and Future Work

How to use implicit shape model to recognize hand posture images was addressed
in this thesis, and the principal findings suggested that using implicit shape model to
realize hand posture recognition and the improved accuracy considerably. We extended
the implicit shape model by considering the orientation of features and a novel method
for concurrent posture localization and recognition.

One of the advantages of our system is that our training time is fast. In our learning
method, each posture model is learnt from a set of hand images in the same posture
class. In some applications like HCI, users may prefer to use the intuitive hand postures
they like. Hence, we could not learn the model previously. Because our training
procedure is fast, the posture models can be learnt when the posture system is
initializing. We should examine not only the recognition but also the localization. In this
thesis, we proposed an implicit shape model approach to recognize hand postures.
However, the location information of hand movements is an important issue of dynamic
hand gesture application. We discretized the two dimensional space into bins and each
bin is a hand posture candidate. This approach is simple but not accurate. Some authors
[10], [29] applied mean shift algorithm to seek the hypothesis. Because of time
constraints, we have not investigated that yet. It could be a better approach to detect
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multiple hand instances in an image.

In practice, SIFT and SURF are the two most common local feature algorithms.

Because hands are articulated, the scale and rotation invariance properties from

algorithms are very important for our recognition task. We adopt SIFT for our local

feature algorithm since it is more distinctive than SURF in most of our tasks, although

SIFT is much slower than SURF. However, users usually don’t give multiple hand

gesture command over short periods of time in pure static posture application. For

real-time systems such as dynamic hand gesture system, our framework can readily use

SURF indeed.

Future research directions could be conducted on dynamic hand gesture

recognition based on static posture recognition result for more varied hand commands

including both hand poses and movements like waving goodbye. In this paper, we only

consider the recognition problem. That is, we force to decide a posture class even if

there is no hand in the input image. In order to solve this hand detection problem, the

simplest solution is to define a threshold to reject hypotheses with low score. However,

how to decide thresholds in different circumstances is non-intuitive. In addition, some

other cues might be beneficial to improve accuracy. For example, using a skin color

model predicts the possibility of pixels to be a part of hand.
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