R LR prafryaad i
L=

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

RS S =,

| mprovements oh On-Line Uniform:Multiprocessors
Scheduling

*| -
Bie-l Chu

R T B
Advisor: Chih-Wen Hsueh, Ph.D.

P EIR99E 8

August, 2010

FI38 5 RgR BT WRFR A7 i 38

Ip R T A AE -

2

ﬂ;“‘
AL T TR T’@ﬂﬁ”ﬁiﬁEE? Wlé*ﬁ#ﬂ’iﬁ%%ﬁﬂ—@&@,
SRR o RiRE e Y o AR fﬁﬂgaﬁlﬁdn@& G e m B4 5 AR E
’1&mﬁb;fﬁF#kﬁio:\.xra&M*_lﬂﬁﬁ,\i vﬂFl’ TALGA T T Rk SR
P OEEATT mIIZZ';FKHb ET e "lp\ 25, Ay B 41_mr,‘»§c VoaiEd chh kg st s - S F
3 e > W ochpE FaE e R 2 O(nlgn) - £ 1 5 o) (TR e AL P E B R
BE - REATRALE O f T RGEE T ATRR ﬁﬁ-f»/ﬁ‘ H O(Ign)f‘ by T P mg,:ﬂ
0D O(L) o a2 b R E A A5 4 EUR BT e TR AT 0 A B

Ve A E R AR

MaEz @ wEF s 5 SRR B M o R R E o B

Improvements on On-Line Uniform Multiprocessors Scheduling

. Engineering
Science

ineering

Abstract

Scheduling periodic tasks on multiprocessor platform in a hard-real-time envi-
ronment is one of the fundamental problems in computer science. In this thesis,
we consider the problem of on-line scheduling a set of n independent periodic
tasks on m uniform processors«iWe'present.an optimal scheduling algorithm
in the sense that the algorithm is'able té’ ‘schedule any feasible set to meet all
deadlines. From previous Works, the optimal algorithm gave an O(n) bound
for number of task migration and axj__O_(nﬂlg n) bound for time complexity on
each rescheduling. But for our a,lvgofﬁni,“\ééfe reduce both number of task mi-
gration and time complexity: to -H(l).l'%:nd O(lgn)xespectively. Our algorithm
also guarantees minimal Sch“eduie_ length for scheduling non-periodic tasks on

uniform multiprocessors.

Keyword: real-time, uniform, multiprocessor, optimal, on-line, algorithm,

scheduling.

Contents

1 Introduction 1
1.1 Background 1
1.1.1 Multiprocessor Platforms 1

1.1.2 Optimal Scheduler . = . - 2

1.1.3 On-line Scheduling . . ;<> . . @ 2
1.2Motivations...................; 3

1.3 Contributions and Organizations., . . .« . .41 e 3

|
2 Definitions, Assumptions, and Eeasrfi"hilij;y Condition for Uniform Multipro-
. | |

Ccessors |] l,! W ‘; 5
2.1 Definitions and Assundptions & | .« . 1L LR . . L 5
2.2 Feasibility Condition fox Uniffirm Multiprocessors-= 7
2.3 Independent Feasible Sets <. ... 0L . | A 7
2.4 Separability of Feasible Sets ... <t > 8
3 Precaution Cut Greedy Algorithm and The T-L.,. Plane 12
3.1 T-L. Planes 12
3.2 Definitions in One T-L., Plane 15
3.3 Events in One T-L., Plane 16
3.4 The Precaution Cut Greedy Algorithm 18
4 Optimal Scheduling Algorithm for Uniform Processors 21
4.1 Task Groups and Group Order 21
4.2 The Random Divide Algorithm 24
4.3 Proof of Optimality of RD Scheduling Algorithm 27
4.4 The Precaution Group Merge Algorithm 31

4.5 Proof of Optimality of PGM Scheduling Algorithm
4.6 The Preprocessed Precaution Group Merge Algorithm
4.7 Proof of Optimality of PPGM Scheduling Algorithm

5 Complexity Analysis
5.1 Analysis of RD Scheduling Algorithm

5.2 Analysis of PGM Scheduling Algorithm
5.3 Analysis of PPGM Scheduling Algorithm

6 Conclusions

Bibliography

ii

49
49
o1
52

54

55

List of Figures

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

The T-L, plane e 13
T-Le, plane e 14
kth T-L., plane e 15
An Example of Tasks Groups-and Processors Groups 22

Example of \"5,))T 1.\~ 8. 45

4

9

iii

List of Algorithms

S Ot s W N

Precaution Cut Greedy, Chenetal. [2] 19
Make Group 24
Random Divide 25
Precaution Group Merge . 31
Preprocessed Make Gro 42
Preprocessed Precautic 43
Separate Feasible 50
Next Event 53

iv

Chapter 1

Introduction

1.1 Background

1.1.1 Multiprocessor Platforms

The scheduling of a set of tasks on parallel multipfocessors platform is a basic
problem in computer seience W1th a lar%e number of applications. From previous
works [5] [2], there are at least thrle d1fferent kinds of multiprocessors platforms

that scheduling theorists are mterested in:

e Identical multiprocessors platform. All processors are identical. In other

words, all processors have the same computing capacity.

e Uniform multiprocessors platform. Each processor in the platform is char-
acterized by its own computing capacity. Once a task is scheduled onto a
uniform processor with speed s for ¢ time units, then s x ¢ units of execution

requirements are completed.

o Unrelated multiprocessors platform. There exists an execution rate r; ; be-

tween each pairs of processor P; and task 7. Once a task Tj is scheduled
onto processor P; for ¢ time units, then 7; ; X ¢ units of execution require-

ments are completed.

1.1.2 Optimal Scheduler

The time to finish a given set of tasks on multiprocessor platform provides a
measure for the performance of scheduling algorithms. Therefore, in general, a
scheduling algorithm is optimal if and only if the algorithm can schedule tasks
on multiprocessor platform with minimal schedule length (or finish time) [7].
But for periodic tasks, the schedule will not ﬁhish. Hence, we cannot use the
schedule length to measure“the perf(‘)gnanc‘e of schéduling algorithms. In stead,
a scheduling algorithm is said t? “b'el$ﬁ’t:i'mal ifiand only if the algorithm can

schedule all feasible set of periddiic task on multiprocessor platforms that all
: 1 1

task complete by their deadlines [2][5].

There are still other criterionsfor measuring the performance of scheduling

algorithm such as numbers of task migrations and time complexity.

1.1.3 On-line Scheduling

On-line scheduling algorithms make scheduling decisions at each time-instant
based upon the characteristics of the tasks that have arrived thus far [5]. An
example of on-line scheduling algorithm would be the earliest deadline first

(EDF) scheduling algorithm [8].

1.2 Motivations

There were many works had been done under different platforms. In 1969,
Muntz and Coffman [11] had presented an optimal static level algorithm for
scheduling tasks on identical multiprocessors platforms. Then in 2006, Cho
et al. [3] based on P-fair [1] and L-C plane [4], created the Time and Local
Ezxecution Time Planes (or T-L planes) model and provided the Largest Lo-
cal Remaining Frxecution Time First (or LLREF) optimal on-line scheduling
algorithm for scheduling tasks on identigal multiprocessors platforms. Finally
in 2008, Chen et al. [2] extended‘the ET—L plane model, created the Time
and Local Execution Requirement plane (ox, T-L;-plane) model and presented
the Precaution Cut Greedy (or PCGf@timal on-line scheduling algorithm for
scheduling tasks on uniform mul’c!i‘“Broégésorgsplatforms, which is the first on-line
optimal scheduling algorithiﬁ fo;i uniform rﬁﬁl‘piprocessors platforms. Although
the problem of scheduling a set of periodic_tasks on uniform multiprocessors
platform had been solved by the PCG algorithm, the scheduling cost of the
PCG algorithm is high. We are interested in developing another optimal on-
line scheduling algorithm that would solve the problem efficiently and with

lower time complexities and task migration costs.

1.3 Contributions and Organizations

Our contributions are as follows:

e We present an optimal on-line scheduling algorithm for uniform multipro-
cessors called Random Divide scheduling algorithm, which uses a divide-

and-conquer method to solve the problem.

e We present an optimal on-line scheduling algorithm for uniform multipro-
cessors called Precaution Group Merge scheduling algorithm, which is based
on the Random Divide and the PCG algorithm and reduces both the time

complexity and the number of task migrations.

e We present an optimal on.line scheduling algorithm for uniform multipro-
cessors called Preprocessed Precdutiok;’z' Group Merge scheduling algorithm,
which is based on the’PGM algorithm and, guarantees an O(1) bound for
the number of task migrations @ﬂ@n O(lgn) bound for time complexity

on each rescheduling. _! i 'T 4 ‘;‘

i L |
| |

The remainder of this thesis'is organi%éd as.follows. In chapter 2, we de-
scribe our problems, definitions an(i assumptions, and the feasibility conditions
for uniform multiprocessors. In chapter 3, we introduce the T-L., plane model
and the PCG scheduling algorithm [2] presented by Chen as they are the basis
of our work. In chapter 4, we present the Random Divide (RD), the Precaution
Group Merge (PGM), and the Preprocessed Group Merge (PPGM) scheduling
algorithms and prove their optimalities. In chapter 5, we analyze the perfor-
mances and complexities of our scheduling algorithms. This thesis is concluded

in chapter 6.

Chapter 2

Definitions, Assumptions, and
Feasibility Condition for Uniform
Multiprocessors

Before we discuss about the details of the schedulinig algorithms, we introduce

the basic definitions and assumption‘lé;bf uniform multiprocessor scheduling.

x
| I

2.1 Definitions and Assumptions

We discuss the problem of dynamic-priority scheduling of hard-real-time sys-

tems on a uniform multiprocessors platform of m processors and n tasks.
For processors and tasks, we have the following definitions:

Definition 1. A processor P, = (s;) is characterized by a positive constant s;,

where s; represents the computing capacity (or speed) of P;.

Definition 2. A task T; = (c¢;,p;) is characterized by two positive constants

c; and p;, where ¢; represents the execution requirement and p; represents the

period of T;. We define the utilization of a task T; to be u; = ¢;/p;.

Moreover, for tasks, we have the following assumptions:

e All tasks are periodic and the deadline is equal to the end of the period.

e All tasks are independent that tasks do not share resources or have any

precedence.
e FEach task can be assignediwith,only.one processor at a time.

e Tasks are allowed to arbitrafily migrate across processors during their exe-

cution. [
1 |

| | ;’?—« H “
Throughout this thesis, we ‘Will_"ﬂpse thé setiP = {P|]1 < i < m} to
: - |

represent the m-processor uhifoi“m multipi’écessor platform and the set T =
{T;|1 < i <n} to represent niperiodic tasks syStem. Without loss of generality,
we assume that both P and 7T are indexed in a non-increasing manner that

s; > s;y1 forall 1 <7< m and u; > u;yq forall 1 <7 <n.

We further assume m < n, because when m > n, the slower processors

will never be used.

2.2 Feasibility Condition for Uniform Multiprocessors

Many works had been done for uniform multiprocessors scheduling. Funk et al.
[5] presented the feasibility condition for uniform multiprocessors. We introduce

their theorems here.

Theorem 1. (Funk et al. [5]) Consider a set T = {T;|]1 <i < n} of n periodic
tasks indexed according to non-increasing utilization and a set P = {P|1 <1 <
m} of m < n uniform processors indexed according to non-increasing speed. Let
S = Zle s; for all 1 < i <m andlet Uy = Zle u; for all 1 < i <n. Periodic
tasks system T can be seheduledito meet all deadlines on uniform multiprocessor

platform P if and only if the following c\@ﬁstmmts‘ hold

—

| '.:_-T'-,','—ﬂ‘:" |
S J;iUk,ljﬂ <k<m. (2.1)
UP % L (2.2)

We call the set {7, P} a feasible set.

2.3 Independent Feasible Sets

Based on feasibility conditions, we introduce independent feasible sets:

Definition 3. An independent feasible set is a feasible set of n tasks and m

uniform processors such that

ifl<m<mn,s #u;,V1<i<m,1<j<n, (2.3)

7

Sk > Up, V1 <k<m-—1, (2.4)
and

S > U, (2.5)

In other words, an independent feasible set is a feasible set with stricter
constraints: S > Uy, for all 1 <k <m —1; s; # uj, for all 1 < ¢ < m and

1<j<n,ifl <m<n.

We call S > U, the kth feasibility constraint and S,, > U, the mth

feasibility constraint for an independent feasible set.

There are two reasons that' the set is'mamted independent:

e Each independent feasible set cagjoe sCheduled independently that no con-
- |
text switch would occur acrb S m‘ﬁiepepdent feasible sets. In other words,
b |}
context switch would only oc'pur on the atasks within an independent feasible

set.

e Each task in an independent feasible set can be scheduled onto processor

independently in an arbitrary order.

We will prove the above properties in the following chapters.

2.4 Separability of Feasible Sets

Lemma 1. For a feasible set of n tasks and m uniform processors, if there exist

k such that S = Uy, then the set can be reduced into one independent feasible

8

set containing k' tasks and k' processors and one feasible set containing n — k'

tasks and m — k' processors, where k' is the least k such that S;, = Uy.

Proof. Suppose S = Uy for the original set. We separate the original set into
81 = {7},7)1} and 82 = {75,732} Where ’H = {Tz‘l S 1 S]43,}, 731 = {Rll S) S
K'Yy, To =A{T;|K <i <n}, and P, = {B|k <i<m}.

That is, we make the first k&’ tasks and first &’ processors form one set and
the rest tasks and processors form the other set. Since £’ is the least k such
that S, = U}, we have

SZ' > UZ,Vl < ke 1.

Therefore S is an independent f‘eéus‘i'ble Sef by definition.
o w |

For Sy, the jth, 1 < 7 <wn = £, f‘pgsﬂ%ihty constraints becomes

k'+j r | k'+j
P i 1
i=k'+1 N " i=k'+1

For all 1 < j < m — K/, the inequalitywould hold, thus S, is a feasible set. [

Lemma 2. For a feasible set of n tasks and m uniform processors, if there exist
sk = up, where 1 < k < m and 1 < k' < n (i.e. the speed of a processor is
equal to the utilization of a task), then the set can be reduced into one feasible
set containing n — 1 tasks and m — 1 processors and one independent feasible

set containing one task and one processor.

Proof. Suppose s, = uy for the original set, we separate the original set into

S1 = {T1,P1} and S; = {T3, P2} where Ty = {1}, P1 = {P:}, To = {T;|1 <
i <n where i # k'}, and Py = {F;[1 <4 < m where i # k}.

S1 is an independent feasible set by definition since S7 = s, > up = U;.

For S,, there are two cases: if & < K/, then the jth, 1 < j < m — 1,

feasibility constraints becomes

J J

ZSZ>ZUZ—UJ', for 1 < j <k,
=1
% K
Sj:ZSi—sk—Zs,>Zu, Zuz—Uj,fork§j<k',
i=1 i=j+2 j=ji

and :
Sj = Zsi — S P Zula—-uk, i3 Uj, for K< j <m —1.
1=1 i=1"| r"’
Otherwise, if & > k', then-the]thu ’1 y m 1, feasibility constraints becomes

|
|

J et 1
:ZSZ Zui: s fOI‘1<j<]€,
=1

1=1

J k-1 41

Z Z Zui:Uj,fork’§j<k,

i=1 i=1 i=k'+1
and ,

j j
:ZSZ' ZZ i —up =Uj, for E<j<m—1.

For both cases, all jth 1< S — 1, feasibility constraints would hold, thus
S, is a feasible set.]

Theorem 2. All feasible sets of n tasks and m processors can be reduced into

10

independent feasible sets that scheduling these independent feasible sets is equiv-

alent of scheduling the original feasible set.

Proof. According to lemma 1 and lemma 2, for any given feasible set, if there
exists k such that Ej, = L; or any j, ¢ such that e; = [;, we can recursively
apply the reduction algorithm to the separate the set until all of the sets are
not reducible. That is, all sets become independent feasible sets. Furthermore,
since independent feasible sets are by definition feasible sets, these independent

feasible sets can schedule indqpqaﬂﬂ?ﬁ%f{*ﬂhgrefore, no context switch would
.ql.‘:“'l' ' '4,-,.'.:__;‘ .:l.':iill" —'";"iE‘.-""nI_‘_
1= :

. - == |
OCCUTr across 1ndependen§,¢fé’amb.le g i]
e 8.

11

Chapter 3

Precaution Cut Greedy Algorithm and
The T-L. Plane

Our works are mainly based-on_the Precaution Cut Greedy (PCG) algorithm
and the T-L., planes presented by~Chen-et al.%[2]:: Therefore in this chapter,

we will introduce the PCG algorithﬁfﬁi;d the T-L., plane model.

A
i

3.1 T-L, Planes

Chen extended the T-L plane model [3] and the L-C plane model [4], created
the T-L., plane model [2]. T-L., planes stands for Time and Local Execution
Requirement planes, which models the behaviors of tasks in uniform multipro-
cessor platform. As shown in figure 3.1, task T; arrives at time ¢ and its deadline
is t + p;. Also, as the figure shows, T; is assigned with processors P, and P,
alternatively in different time intervals. Since P is faster than P, task T; would

have higher execution rate on P, than P». Therefore, as shown in figure 3.1, the

12

¢k Execution path

fluid schedule

T
I I time

t t+ p

Figure 3.1: The T-L., plane
slope of the execution path is largerswhilesthetask is assigned with P. Finally,
the fluid schedule of T; representsithe average-cxecution rate during the entire

period, which is shown in figure/3-% by & dotted line. The average execution

=

¢

rate of 7; can be easily calculated by',_'__"é';-/rpi”, which is equal to the utilization of

| | T

|
11

While n tasks are coﬁéider!ed togethef; their fluid schedules can be con-
structed as shown in figure 3.2."Similar to-the T-L plane [3], a right triangle can
be found between every two consecutive end of periods and these right triangles
would divide the T-L., plane into contiguous time intervals. We called the kth
right triangle as the kth T-L.,. plane and let the length of the corresponding
time interval be t7. Since no two right triangle would overlapped with each
other, we could schedule in one kth T-L., plane without considering the dead-
line of each task [6] — just to consider the local remaining execution requirement

in time interval of length tfc. Since the local remaining execution requirement

13

Fluid Schedule

time

Fluid Schedule

~ time

Fluid Schedule

-~ _
-

== time

(et VTL‘er ‘ ne
Figure 3.2 T-Lo, plane
of each task is proportional to the average execution rate and the length of the
time interval, all k&th T-L,, planes are similar to each other. As long as we can
finish all the jobs before the end of the T-L., plane, we could give an optimal

scheduling algorithm.

14

Py

processor boundary of P;

Event C
l
execution path

l2 b3 < »
~ N N
N .
N ~ fluid schedule path
AN N < Tl
t
12 | N~ s AN
P PN~ K Event F
2 | S N
N
1 N N
| N T2 N7
SO0 processor boundary of P»
N
> ~
N
~ N
SRaR Even B

- “Figure 3.3: kth T-Lé plane

3.2 Definitions in One T—Ler Plane

In the kth T-L., plane at time 0 < ¢t < t% we define the local computing
capacity for processor P; to be ¢} = s; x (t§ —t) and E} = SO el The local
computing capacity represents the actual computing capacity of a processor in

the T-L., plane. For simplicity, we define e; = ¢! and Ey = E}.

Chen defined [; ; to represent the local remaining execution requirement of

task 7; at time ¢;. The value of [; ¢ is equal to u, x t’}. Chen also defined the local

15

utilization r; ; = li,j/(ﬁ — t;) of task T; at time ¢; in the T-L,, plane. But for
simplicity, we rewrite ¢; as ¢ and define the remaining execution requirement

of task 7; at time t as [;; and the local utilization of task 7; at time ¢ as

Tip = lijt/(tﬁ —t) in the T-L,, plane.

As shown in figure 3.3, during the execution, the execution paths of tasks
might intersect with each others. Thus in a T-L., plane, at time ¢, {;; > [;414
would not guaranteed to hold unless t = 0. Therefore, to distinguish with Chen,
we define ! to be the ith largest loeal Témaining execution requirement at time

It. Alsojiwe. define I; = 1) and Ly, = LY for simplicity. Note

t _
¢t and Lk - Zz 1%
that here ! do not guaranteedito be the local remaining execution requirement

of T; at time ¢t unless £ = 0./ Also note-that l =0 =10 0-
| ""’-— |

1

F l]: \ ‘
3.3 Events in One T- Ler PlaLe |

|

In T-L., plane, Chen observed three kinds of time instances (or events) that
rescheduling is needed. These events are bottom hitting events (or Event B),

ceiling hitting events (or Event C), and floor hitting events (or Event F).

Definition 4. (Chen et al. [2]) Event B occurs when the local remaining exe-
cution requirement of a task T; is equal to 0, and the execution path of the task

would hit the bottom of the T-L., plane.

Definition 5. (Chen et al. [2]) Event C occurs when the local remaining ex-

ecution requirement of a task T; is equal to ey (i.e. the computing capacity of

16

processor Py), and the execution path of the task would hit the ceiling (i.e. the

processor boundary of Py) of the T-Le, plane.

Definition 6. (Chen et al. [2]) Event F occurs when the local remaining exe-
cution requirement of a task T; is equal to the computing capacity of a processor
Pj, and the execution path of the task T; would hit the processor boundary of

processor P; in the T-L., plane.

Note that there are two situations for Event F. If the local remaining ex-
ecution requirement of task 7y is originally greater than the local computing
capacity of processor P;, then the eXecuti!(.)n path of T; would hit the processor
boundary of P; from top: Otherwisg, if the local remaining execution require-
ment of task T; is less than the locél%guting capacity of processor P;, then

the execution path of T} would hw th&proﬁessor boundary of P; from bottom.
F ‘
N | i |

Whenever Event B or .E"vené C occurs,*i't‘--is apparent that a rescheduling is
required. For Event F, Chen stated that [2] Although, when event F occurs, it
is not necessary to reschedule to satisfy FG condition (i.e. the feasibility condi-
tions), it is the precaution time instance to reschedule for our optimal scheduling
algorithm. Whenever any of these three events occurs, we will reschedule all the

tasks in our optimal scheduling algorithm.
In our work, we defined a new time instance called Event V:

Definition 7. For a feasible set of n tasks and m processors, in a T-L., plane,

Event V happens at time t whenever E} = Lt k # m, holds.

17

In other words, Event V is the time instance that the kth feasibility con-
straint is about to be violated. It is apparent that whenever Event V occurs, a
rescheduling is required. Otherwise the feasibility conditions would be violated

and the set would become infeasible and non-schedulable.

3.4 The Precaution Cut Greedy Algorithm

The Precaution Cut Greedy (PCG) scheduling algorithm is a work-conserving
algorithm [5] based on the idea of “precaution.” The algorithm always assigns
the task with largest remaining exécution requirement to the fastest processor,

and will reschedule on the;oceurrence of any G, Fjor B event.

When any event occurs, there ‘r‘;r:u.sz{j-_bue a task on a processor boundary in

T-L., plane otherwise the execut%o‘n re%luiregnent of-the tasks is equal to 0. PCG
r ; ‘

will remove the task and the processor assééiate with the event and reschedule

by greedily assigning the task with largest'remaining execution requirement to

the fastest processor.

18

Algorithm 1. Precaution Cut Greedy, Chen et al. [2]

Input: A set 7 of n tasks {11, T5, ..., T,,} with utilization wuy, us, ..., uy,.

A set m of m processors { Py, P, ..., P, } with speed s1, s9, ..., Si.

1. while any event [C|F|B] occurs at time t do

2 if s; =r;; then

3 assign T} to P; until the end of the T-L., plane

4 remove P; from 7, remove T} from 7

5. else if r;; = 0 then

6 remove T} from 7

7 while there are ready tasks-do ‘

8 assign task with-largest remaining execu’gion requirement to the
fastest idle processor

9. end while | <=

10. end while |

Chen proved that the set of tagks and précessors is feasible while any event

occurs.

Theorem 3. (Chen et al. [2]) When any event occurs, the set of tasks and

processors is feasible by PG and PCG scheduling algorithm.

Moreover, Chen proved that when any event occurs, the removal of the
task and the processor associated with the event will not lead to the violation

of feasibility conditions.

Theorem 4. (Chen et al. [2]) When any event occurs, there ezists a task on a

19

processor boundary in T-L.,. plane or the execution requirement of this task is
equal to 0. If we remove the task and the processor, the remaining set of tasks

and processors will still be feasible.

Actually, theorem 4 can be explained by the separation of feasible set of
theorem 2 in chapter 2. Therefore theorem 2 is a generalized form for Chen’s
theorem. Furthermore, we will state another generalized form of Chen’s theorem

3 in the next chapter.

20

Chapter 4

Optimal Scheduling Algorithm for
Uniform Processors

In this chapter, we will present the threesscheduling algorithms: the Random
Divide (RD) algorithm, the Pregaution Group Merge (PGM) algorithm, and
the Preprocessed Precaution Group“ Merge (PPGM) algorithm in the following

'

sections.

4.1 Task Groups and Group:Order

Before introducing our scheduling algorithms, three terms must be defined: task

groups, processor groups, and group order.

Definition 8. For a feasible set of n tasks and m uniform processors, we define

task group G; = {Tjle; <lj < eiy1,V1 <i<m,1<j<n}.

In other words, a task group is a set of tasks that all tasks in the set are

bounded by the same pair of consecutive processors in the same T-L,, plane.

21

r > ||

s | 1
Figure 4.1:" An Examp‘e‘.of Tasgks Groups and Processors Groups

Similar to task groups, a set P of*processors can be divided into processor

groups:
Definition 9. For a feasible set of n tasks and m uniform processors, we define

processor group H; = {P;} to be a set of processors where |H;| = |G|, for all

1 <7< m.

Note here that we did not specify the construction of processor group H;.
As long as |H;| = |G;| would hold for all 1 < i < m, we consider the processor

groups as valid.

22

Definition 10. A group order is an order on scheduling tasks onto processors

that task T; would be assigned processor P; if and only if T; € G, and P; € H,,.

In other words, we would schedule tasks and processors according to their
group index: tasks would be assigned processors if and only if they have the
same group index. If there are more than one tasks and processors have the same

index, then the assignment is a random order for these tasks and processors.

The simplest way to form processor groups is to make faster processors into
prior groups as shown in algerithin, 2. AS mentioned in the previous chapter,
PCG scheduling algorithm is/a Work—coﬁserving algorithm that would always
assign processors to tasksiin/an order that the task with largest remaining ex-

Yo e L |
ecution requirement always gets thefastést processor. In other words, in a

H l‘t ‘, |

T-L,, plane, if we make process?r groups a“ic‘}cording to the computing capacity
of processors, then the PCGH"‘aIgiofithm Wo{hfd,assign processors to tasks firstly
in a group order for tasks in different groups, then secondly in a greedy or-
der that the task with largest remaining execution requirement would get the
fastest processor for tasks in the same group. Hence we can view the order of

assignment of PCG algorithm as a subset of group order.

23

Algorithm 2. Make Group

Input : An independent feasible set {7, P} of n tasks and m
uniform processors

Output: Tasks groups G and processors groups H
// Initialize

1. 1+ 1,7«1
// Scan T and P to make group

while 7 <n do
Gi+ ¢
Hi+ ¢
while [; > e; 4 andj <[n do
G+ G UT, =
H; «— H; U P 1 i
jegtl J

© 0o NS Ot

end while

—_
<

1+ 1+1

—_
—_

end while

4.2 The Random Divide Algorithm

The Random Divide (RD) scheduling algorithm is a divide-and-conquer algo-

rithm that is shown in algorithm 3.

The RD scheduling algorithm takes a feasible set as input. Initially the

24

Algorithm 3. Random Divide

Input: A set T of n tasks {11, T5, ..., T,,} with utilization wuy, us, ..., uy,.
A set P of m processors { Py, Py, ..., P,,} with speed s1, s, ..., Sim.

1. repeat

2. if B event occurs then

3. remove the task-withlocal remaining execution requirement
equals to 0 e

4. assign another ready task ‘c‘t(;:l’%heidle processor

D. else “ , =

6. separate {7, P} ith ilirldependen;c feasible sets

7. for each independent feasible set. assign processors to tasks in a
random order

8. end if

9. until FEvent B or Event V occurs

25

algorithm would separate the feasible set into independent feasible sets, then
for each independent feasible set, the algorithm would schedule tasks onto pro-
cessors in a random order. The algorithm would keep this random order until
Event V or Event B occurs. If Event B occurs, the task associates with the
event is removed since its remaining execution requirement equals to 0, and then
another ready task would be assigned to the idle processor. Otherwise, Event V
occurs, then the RD algorithm will again separate those feasible sets associated
with the event into independent feasible sets, and will reassign processors to

tasks in a random order.

We give an example, of execution in ﬁgure 4 2 that in the T-L., plane,
initially the feasible set contains th,r.ee processors Py, P, and P3; with local
computing capacity e; = 1, €5 —!L P 2, ,ﬂ), 1 /4 respectlvely and three tasks 77,
T, and T3 with local remaining :executlon ;equ1rement Iy =3/4, 1, =5/8, and
I3 = 3/8 respectively. At the beéinning, ail"the feasibility constraints holds,
and T4, Th, and T3 are scheduled oﬁto Py, P, and Pj respectively in a random
order. Then at time ¢;, Event V occurs that E' = L!'. Hence we separate
the original feasible set into independent feasible sets S = {{71},{P1}} and
Sy = {{T5, T5},{ P, P3}} and again reschedule these two sets by assigning Py
to 11, P» to T3, and P3 to T,. Note here that &7 contains only one processor
and one task, so it would not need to be rescheduled until the end of the T-L,,
plane. Then finally at time t,, another Event V occurs in S, that both E* = L2

and E2 = L?. Therefore, we further separate S; into independent feasible sets

26

Py

Ty

Fig{ire 4Ib RD Schedulinjg‘A‘lgorithm
{12}, {P.}} and {{T3},{Ps}}: Now"both independent feasible sets contain
only one processor and one task, so they would not need to be rescheduled until

the end of the T-L,, plane. Hence we finish the schedule.

4.3 Proof of Optimality of RD Scheduling Algorithm

We will prove the optimality of RD scheduling algorithm in this section.

Theorem 5. For a feasible set of n tasks and m uniform processors, in a T-Le,

plane, as long as all processors are fully utilized, the mth feasibility condition

27

will always hold.

Proof. The proof is straight forward. Since the set is feasible at the beginning,
at time ¢t = 0 in the T-L,, plane, we have the mth feasibility condition hold at

the time. That is,

or equivalently,

Now since we keep all processorsto be fully utilized, we assign all m
processors to tasks and there are no idle processors. Therefore, at any time ¢,

in the same T-L,, plane, the mth feé;siblé pOndition becomes
B! —tx”}:s;bb —tstZ_Lt (4.1)

The inequality Ef > L% Wlll alvva;ys hold regardless of ¢, thus we finish the

proof.

[l

Theorem 6. For a feasible set of n tasks and m processors, the RD scheduling

algorithm is optimal and feasible for uniform multiprocessors.

Proof. We prove by showing that in a T-L,., plane, whenever an Event V occurs,
we can reschedule by reseparating the feasible sets into independent feasible sets,

so that no feasibility constraints would be violated during the schedule.

28

According to the algorithm, we initially separate the given feasible set

into independent feasible sets. Therefore, for each independent feasible set S;,
initially we have

sj #up, V1 <j<m;,1 <k <n,

Sy > U, V1<k<m;—1,
and
Sm; 2 Uns,

or equivalently, .

e; 2 V1 gjg%i,lgkgni, (4.2)

Yo 0 |
and | =211
TR ||
| [Eats LAY W & (4.4)
| 1
Where m; and n; represént the number of processors and the number of

tasks of an independent feasible set:S;: ' Note that here we assume m; > 1
because if m; = 1, then the independent feasible set would contain only one
processor. Moreover, due to the feasibility constraints of independent feasible

sets, it is apparent that the set is always feasible.

Since the scheduling algorithm would always assign all processors to tasks,
all processors are kept fully utilized during the schedule. Therefore, according
to theorem 5, we know for all independent feasible sets, the mth feasibility

constraint would always hold.

29

We now focus on the independent feasible set S; that Event V occurs
during the schedule. Because Ej, > L;V1 < k < m; — 1, would hold for all
independent feasible set §;, no matter that how the order of assigning processors
to tasks is, before any of the feasibility constraints of §; is violated, at time

t > 0, there must be that
Ik, 1 <k<m; —1,E, = L}. (4.5)

In other words, at time ¢, Event V occurs and independent feasible set S;

becomes feasible sets at this moment.

We then separate S; againdy algorithm described in theorem 2. Therefore

at time ¢, we would have aﬁother‘sé,‘pﬁpf indépendeﬁt feasible sets and the initial
o £
= | “

conditions would be invafiant. || ===
i
In a T-L, plane, by no morF Lhaﬁ m —:]r reseparations, the original set will
o ‘.) !
be separated into m independént feasible sets with each set containing only one

processor, which is the base case of tasks scheduling, and is apparently to be
feasible and schedulable as mentioned before. Therefore, any feasible set can be
schedulable using RD scheduling algorithm. That is, RD scheduling algorithm

is optimal.

30

4.4 The Precaution Group Merge Algorithm

Based on the RD and PCG scheduling algorithm, we develop the Precaution

Group Merge (PGM) scheduling algorithm as shown in algorithm 4.

Algorithm 4. Precaution Group Merge

Input: A set T of n tasks {11, T5, ..., T,,} with utilization wuy, us, ..., uy,.
A set P of m processors { Py, Py, ..., P,,} with speed s, S, ..., Si.

1. repeat
2. if B event occurs then ‘
3. remove the task with-loeal rentaining execution requirement

equals to 0
assign another ready task'te the idle processor
else | T,-@ 4 g

separate {7, P} infe imﬁepeﬁdenﬁ feasible sets

for each independent foasible set; maake group by algorithm 2

e A

for each independent feasiblé set, assign tasks with processors in a
group order

9. end if
10. until any [C|F|B] event occurs

The PGM scheduling algorithm borrows the idea of precaution of PCG

algorithm, and would reschedule at the occurrence of any C, F, or B event.

The algorithm takes a feasible set as input. Initially the algorithm would

31

separate the feasible set into independent feasible sets. Then for each indepen-
dent feasible set, the algorithm would make task groups and processor groups

and would assign tasks with processors in a group order.

The algorithm would keep this order until that any C, F, or B event to
occur. When B event occurs, the algorithm simply removes the task associated
with the event and reschedules another ready task to the idle processor. When
C or F event occurs, we know there must be at least one task on a processor
boundary in T-L., plane, that is, weshave remaining execution requirement
of a task equal to the computing Capacify of a"processor. Therefore, we can
apply the separation algorithmin theorem 2% remove (or simply we say cut)

the task and processor associated with thie event|from the current T-L,, plane.

=

After such removal, the number @ﬁ pfdfgﬂééors and tasks in the T-L,, plane both

decreases by one, and we expect a mérnge pf two.task groups whose processor

boundary is the same as the removed processor.

We use the same feasible set in the previous section for RD scheduling
algorithm as an example to demonstrate the execution of PGM scheduling al-

gorithm. The example is shown in figure 4.3.

At the beginning, all the feasibility constraints holds. Since s; > uy > uy >
So > ug > S3, we make task groups by G; = {711, T»}, Go = {715} and processor
groups by Hi1 = {P, P}, Ho = {P}. Following the group order, T} and 715

would be assigned with P; and P, and T3 would be assigned with Pj, thus we

32

4 i n o
- 4 | to t ¥

|

2 1‘ | :
Figure 473: 'Exallnple of PGM Scheduling Algorithm

assign 11, Ty, and T3 with P, Pl, and *P; Tespectively. Then, at time #;, Event
F occurs that the local remaining execution requirement of 7T is equal to the
local computing capacity of P, therefore, we separate the original feasible set
into independent feasible sets S; = {{11, T3}, {P1, Ps}} and S; = {{TL},{ P} }.
Now for &s, it is an independent feasible set with only one processor and one
task, therefore as long as we assign P, to Ts, it would not need to be reschedule
until the end of the T-L., plane. For &y, it is the original feasible set with T5

and P, removed, and we assign P; to 17 and P3 to T3 to satisfy the group order.

33

Finally at time t,, another Event F occurs when the execution path of 7T} hits
the boundary of P3 (note that at this time, the execution path of T3 also hits
the boundary of P;). Now we again reschedule by remove &3 = {{T1},{Ps}}
from &;. Hence both & and S3 contain only one processor, so as long as we
assign P3 to T} and P, to T3, they would not require further rescheduling until

the end of the T-L,, plane, and we finish the schedule.

4.5 Proof of Optimality of PGM Scheduling Algorithm

The PGM scheduling algorithm is ‘Simil‘\"‘a'r to-the PCG scheduling algorithm
except that PGM would ‘assign processors to'tasks in a group order. But in
another point of view, as long as Weff_:ﬁ_n..prove that the violation of feasibility
constraint (or Event V) wouldro¢ ur{;ﬂogaﬂier than the first occurrence of any
C, F, or B event, PGM scheduiipg éiéorii:hm é¢an ‘be thought as a subset of

the RD scheduling algorithm bécause group order is a subset of random order.

Hence the PGM scheduling algorithm is feasible and optimal.

Theorem 7. For an independent feasible set of n tasks and m processors, if
we schedule using PGM algorithm, then Event V would occur no earlier than

FEvent F in the first task group.

Proof. Suppose there are n’ tasks in the first task group, we have G; = {T;|1 <
i < n'}, Hy = APl < i< n} and s1 > up > ug > 0 > Uy >S9 >

s3 > ... > sy. Also, the feasibility constraints should hold, therefore, we have

34

Since we assign the fastest n’ processors to tasks in the first task group,
according to theorem 5, the n'th feasibility constraint would never be violated.
Hence it would be no need to prove the occurrence of the violation of the n'th

feasibility constraint.

Suppose t is the time that kth feasibility constraint is about to be violated,
that is B = L, for all 1 < k < n’. Because processors are assigned to tasks
in a group order, it is actuallya random erder for tasks in the same group.
Therefore, we assume initially_at tiine d!,.we assign processor P! to tasks 77,
and now at time ¢, the lo¢al remalmng executlon requirement of 77 is I’;; and
UVig > Vi for 1 <i<n'. Let ¢ béi}l_he épeed of processor P!, then ¢ can be

|

calculated as follow: H ‘ "!~ {
T ‘
I | Ek e Ll}{:‘hi

Ek Ek—tXZSZ Ek—tXSk,

k
Lt :Zl’,’,o—tx ZS’i:Lz—tXZS/i:Lgﬂ—tXS;ﬂ.
i=1 i=1 i=1
Therefore,
E,— L,

A —. 4.

where 1 < k < n/.

Suppose initially 7} is the task that is assigned with P, then the time of

35

occurrence of Event F can be calculated as

lj—eg
81—52'

Furthermore, we know for 1 < k < n/,

S, —Sp = (s1+s3+...+sp)—(s]+ 85+ ... +5)

< (81 + S9 + ... + Sk) — (Sn/ + Sp—1+ ...+ Sn’—k-l-l)

and

36

(4.7)

(4.8)

Otherwise, Uy, > S}, implies j > k because if j < k, we have

Uy

Ul + Ug + ... + Uk

IA

Uy + ug + ... +up + (uk+1 + Uggo + ... + un/) — (S;c—i—l + 8;64_2 + ...+ S’n/)

< (S/1+S/2++8;—1)+81+(S;+1+$;+2+—|—S;€)

~ .
Hence,
By — L Sk — Uk
—,k >ty X 7_ h];l? Lty
5= 5, S 2
>ty X o

'I:L-'I

b ' L
) Z’q’ ‘ ' 0 ZZ“QSZ + ZZ Tl/ k_l_l SZ
;) i Z ~2 S+ Zz n'—k+1 50

w‘ o 1
 i—=nl= k41 Si

v
<
%

1V

>

4.9
p— (4.9)

Both cases implies the occurrence of Event F is earlier than the occurrence

of Event V for all 1 < k < n/, therefore we finish the proof.

37

[l

Theorem 8. For a feasible set of n tasks and m processors scheduled using
PGM scheduling algorithm, there must be at least one Event C, Event B, or

FEvent F occurs before Event V.

Proof. Theorem 7 shows that Event V would occur no earlier' than Event F in

the first task group. Therefore, we now consider the groups other than the first
group.

Suppose at time ¢ Event V -occurs, and the kth feasibility constraint is
about to be violated. Becaused@t time ¢, B> Ly |, E} = L}, and E}_ | >

Li.,, we have €} <[l and e[, > l};ﬂ_ :N?W we 'consider three cases at time 0

| | ;’?—« \
H m |l
e Case 1: Suppose initially at| time 0, |y >%lg.- Then there must be an

before time t:

intersection at time 0 <#.< t4{i.e. efi'= [L); hence F event occurs.

e Case 2: Suppose initially at time 0, exy 1 < [;1. Then there must be an

intersection at time 0 <t <t (ie. e}, =1,), hence F event occurs.

e Case 3: Suppose initially at time 0, e, < I and egy1 > lpr1. Then E,i =
El [+el <Lt 41 = L, which leads to a contradiction indicating that
the kth feasibility constraint is not the one that is about to be violated.
Therefore, there must exist &’ < k such that the k'th feasibility constraint

has already been violated at time ¢ < ¢. Then we move to time ¢’ and the

38

problem becomes the same except that k' < k. By such reduction, the case
3 will be recursively reduced to either case 1, case 2, or the base case (i.e.
first group), and turn out that there must be an event to occur earlier than

the feasibility conditions is violated.

Therefore we finish the proof.

[l

As mentioned in earlier chapters; PCG scheduling algorithm assigns pro-
cessors to tasks in a greedy manner*that‘“-\fhe task with largest local remaining
execution requirement will get the fastest processor, and the order of assignment
of PCG scheduling algorithm is a sﬁﬂliset_- of ‘groupn(.)rder. Therefore, theorem 8

is a generalized theorem of Chen’ H tﬂ;;;erﬁ in theorem 3.
\ 1 ‘

Theorem 9. For a feasible.set Oan tasks anﬁ m processors, the PGM scheduling

algorithm is optimal and feasiblde for uniform.‘Trnultz'pmcessors.

Proof. Since the set of tasks and processors is feasible, it follows the feasibility
conditions. Since PGM reschedules at any event, according to theorem 8, the
new task set is still feasible in the T-L.. plane. Since each T-L.,. plane is
independent, the entire schedule is feasible. Therefore, any feasible tasks set can
be scheduled to meet all deadlines using PGM algorithm, and PGM scheduling

algorithm is optimal.]

The main drawback of PGM algorithm is that the algorithm would not

39

Py

l ilé

Figure 4.4: Yet r;&':nqﬂ}ér tExample of]‘PCI}M Schéduling Algorithm
guarantee a constant bound for ntaskvmigra;clions while rescheduling. An example
is shown in figure 4.4 where initially the feasible set contains five processors P,
P, P3, P,, and P5; with local computing capacity e; = 1, es = 0.85, e3 = 0.7,
es = 0.5, and e; = 0.3 respectively and five tasks T4, T, T3, Ty, and T5 with local
remaining execution requirement [y = 0.55, [, = 0.4, and I3 = l4 =[5 = 0.25
respectively. Initially, tasks T4, 15, T3, Ty, and T5 is assigned with processors
P, P, P;, P, and P; respectively to satisfy the group order. At time %, the

execution path of 7% hits the boundary of P, Event F occurs. Therefore, T}

40

and P, are removed from the feasible set, and the remaining tasks 15, T3, T},
and Ty are assigned with processors P, P3, P», and Ps respectively to satisfy
the group order. At the time instance t;, we see that it requires at least three

tasks migrations as indicated by a cross bar in figure 4.4.

4.6 The Preprocessed Precaution Group Merge Algorithm

Based on the PGM scheduling algorithm, we develop the Preprocessed Precau-
tion Group Merge (PPGM) scheduling algorithm. The only distinction between
the PPGM and the PGM algorithnisis that we-change the way of making group

by first preprocessed the tasks'and processorssets as shown in algorithm 5.

Unlike the make group algoritgn.én “‘algorithm 2, the preprocessed make
group algorithm would scan thro’uigh t%e efiltire processors set to make the best
processors groups to reducs tasks migratioﬁsj.rﬂRather then simply grouping the
faster processors into prior groﬁps, while the preprocessed make group algorithm
is making a processor group for a task group, the algorithm would count the
number of processors with local computing capacity larger than the boundary
processor of the task group, and make the most efficient use of these processors.
For example, in figure 4.4, the original make group algorithm 2 generates the
processor groups of {P}, {P}, and {Ps, Py, Ps}. But in fact, there are three
processors (i.e. P, P, and P3) with local computing capacity larger than

the local remaining execution requirement of 77, and the most efficient way is

41

Algorithm 5. Preprocessed Make Group

10.
11.
12.
13.
14.
15.
16.

© 00 N o ok W

Input : An independent feasible set {7, P} of n tasks and m

uniform processors

Output: Tasks groups G and processors groups H

// Initialize

11,51, k<1
Stack <+ ¢

// Scan T and P to make group

while 7 < n do

Stack.push(Py) , K%+ k 41

Gi ¢, Hi ¢ —
while [; > e; 1y and ji<n dof

Gi < G UT] ‘ .
if Stack.empty(). then
Hi— H;UP, , k4k+1
else
H; < H; U Stack.pop()
end if
Jjg+1
end while
11+ 1

end while

42

to assign 17 with P3 and Ty with P;. Therefore, the preprocessed make group

algorithm would instead generate processor groups { P3}, { P,}, and { Py, Py, Ps}.

The Preprocessed Precaution Group Merge scheduling algorithm is shown

in algorithm 6.

Algorithm 6. Preprocessed Precaution Group Merge

Input: A set T of n tasks {11, 75, ...,T,} with utilization uy, us, ..., u,.
A set P of m processors { Py, P, ..., Py} with speed s1, so, ..., S

1. repeat

2. if B event occurs then

3. remove the task withflocal remaining execution requirement
equals to 0 ‘ Yl

4. assign another ready task It:“_&'theidle processor

5. else ‘ﬂ 1 i |

6. separate {7, P} into ihdependent feasible sets

7. for each independent feagible set; rr;ake group by algorithm 5

8. for each independent feasible set, assign tasks with processors in a

group order

9. end if
10. until any [C|F|B] event occurs

As mentioned earlier, the only distinction between PGM and PPGM al-
gorithms is the make group algorithm. By making different processors group,

the task schedule would be different among these two scheduling algorithms.

43

We use the same feasible set in figure 4.4 as an example to demonstrate the
execution of PPGM scheduling algorithm. The example is shown in figure 4.5.
Initially, algorithm 5 make tasks groups {71}, {T>}, and {73, Ty, T5}, and pro-
cessor groups {3}, { P4}, and { Py, P», Ps} respectively. Hence we assign 11, 15,
T3, Ty, and T; with Ps, Py, Py, P», and P;5 respectively. While at time ¢;, Event
F occurs and the local remaining execution requirement of 77 is equal to the
local computing capacity of Py. Therefore, 77 and P, would be removed from
the feasible set, and now 15 is assigned with idle processor P;. Again at time
ty, another Event F occurs when the local remaining execution requirement of
T, is equal to the local computing capacity of Pg. Therefore T5 and Ps would be
removed from the feasible “set, and %_isaésigned with idle processor P;. And
the we will keep this order until !tPe'-ElI'Ei"bf ;;he T-L., plane.

!

4.7 Proof of Optimality:of PPGM S"cflr‘l.eduling Algorithm

Theorem 7 and theorem 8 shows thatthere must be at least one Event C, Event
B, or Event F occurs before Event V if we schedule using PGM algorithm.
For PPGM scheduling algorithm, the only distinction from PGM scheduling
algorithm is the algorithm of making groups. Therefore, as long as we can
prove that the tasks and processors groups generated by algorithm 5 would
hold the same properties as generated by algorithm 2, we can prove that the

PPGM scheduling is optimal.

44

Py

P,

T
Py

15

Py
T3, Ty, T5

.l - :‘.-.‘ :‘ I.. ..:n
hedu ’g ‘é‘i.glorithm
_,,. ‘.____5,:- o =y e Y “"
TR, i s Al |
Theorem 10. For a feasible set. of n'tas'ksh and m processors scheduled using

Sy o oy e
PPGM scheduling algorithm, there must be at least one Event C, Event B, or

Event F occurs before Event V.

Proof. We start the proof first by examining algorithm 5. While generating
any tasks group G; = {T}j|e; > l; > e;41}, suppose there are k processors that
have been pushed into the stack by algorithm 5. Let G; contain g tasks, then

according to algorithm 5, there are two cases:

45

e If £ > g, then g processors would be popped out from the stack and grouped
into H;. In this case, all g processors in H; would have local computing

capacity larger than the local remaining execution requirement of tasks in
Gi.

o If £ < g, then the algorithm would group k£ processors in the stack and
g — k consecutive processors into H;. In this case, the first k processors
in ‘H; would have local computing capacity larger than the local remaining

execution requirement of tasksqin G;.

For the first case, the feasibility constgaints would hold because all proces-
sors in the processors group havedoctal computing'capacity larger than the local
remaining execution requirément of tasks|in the tasks group. For the second

Il m 1l

e

case, it is obvious that the procves{sorsém the processor group generated by al-
gorithm 5 is always faster thén tlhe processcl‘)rj‘s_.‘in the processor group generated
by algorithm 2. Therefore, for both cases, thefeasibility constraints would hold
for each tasks group and processors group. Therefore, according to theorem 8,
the initial conditions are the same. Hence we concluded that for any feasible
set of n tasks and m processors scheduled using PPGM scheduling algorithm,

there must be at least one Event C, Event B, or Event F occurs before Event

V.

[l

Theorem 11. For a feasible set of n tasks and m processors, the PPGM

46

scheduling algorithm is optimal and feasible for uniform multiprocessors.

Proof. Since the set of tasks and processors is feasible, it follows the feasibility
conditions. Since PPGM reschedules at any event, according to theorem 8,
the new task set is still feasible in the T-L., plane. Since each T-L,, plane is
independent, the entire schedule is feasible. Therefore, any feasible tasks set

can be scheduled to meet all deadlines using PPGM algorithm, and PPGM

scheduling algorithm is optimal.]

Theorem 12. For a set of miindependent nonsperiodic tasks and m uniform

processors, the PPGM schedulingtalgorithmwis<optimal.

Proof. Non-periodic tasks are chara&er‘ized by their execution requirements.

"" = |

Therefore, similar to the deﬁmtlb S m] chapter 2, we can define a non-periodic

task T; = (¢;, 00) by simply: chaqgmg the perlod to infinity.

Early works [7], [10], [9] showed that the optimal finish time w of scheduling
a set of n independent tasks with execution requirement ¢ > ¢y > ... > ¢, on

m uniform processors with speed s; > s9 > ... > s, would be

where C; = Z; ¢ and S; = Zj | Si-

We schedule the set by first construct a T-L., plane with corresponding

time interval [0,t7) = [0,w). That is, if we can schedule the set in the T-L,,

47

plane, we can finish the schedule in optimal finish time. Then by definition, for

each non-periodic task T;, the utilization can be calculated by u; = ¢;/w.

According to PPGM algorithm, for a set of n tasks and m uniform proces-
sors, if the feasibility constraint would hold at the beginning of the T-L,, plane,
the set would be schedulable by PPGM scheduling algorithm. Therefore, for

all 1 < k < m, the kth feasibility constraint of the problem becomes

k
Uk = Zulzéxgcl

IA
I
-
%
I.M?r
¢

<[Ns ok (4.11)

e |

Similarly, the mth feasibility: codsrraiﬂ:l}becomes

S

W i
3

Zus | (4.12)

Equation 4.11 and equation 4.12 show that the kth feasibility constraint
would hold for all 1 < k£ < m. Therefore, PPGM algorithm is able to schedule
the set of n non-periodic tasks on m uniform processors in time interval [0, w).
Hence PPGM scheduling algorithm is also optimal for scheduling non-periodic

tasks on uniform multiprocessors.

48

Chapter 5

Complexity Analysis

5.1 Analysis of RD Scheduling;Algorithm

The RD scheduling algorithm would assign tasks with processors in a random
order and reschedule af the occutrence of any Event B or Event V. Once Event
B occurs, the algorithm simply r(?mo{;e:a?the taskawith local remaining execution
requirement equals to 0 and assigh anz)'thelr ready task with the idle processor,
which is obvious an O(1) niannérn for time c‘:omplexity. But if Event V occurs,
the algorithm will re-separate the set. of tasks'and processors into independent
feasible sets and re-assign processors to tasks in a random order. According to

algorithm 7, once Event V occurs, both the time complexity and the complexity

of task migrations would be O(n) for one rescheduling.

The RD scheduling algorithm is hard to implement because the algorithm
detects Event V as the time instance for rescheduling. Event V is hard to detect
because the execution paths of tasks would intersect with each others at any

time, and the rank of local remaining execution requirements would change.

49

Algorithm 7. Separate Feasible Set

—_
<

11.
12.
13.
14.
15.
16.
17.
18.

© o NS ot W

Input : A set 7 of n tasks {11,T5,...,T,}. A set P of m processors

{P, Ps, ..., P}

Output: An independent feasible set or empty set ¢ on the end

// Scan for s; = uy,

g1, k+1
while 7 <m and k <n do
if s; = uy then
return {{73}, {P}}
else if s; < u; then
E+—k+1
else
Jg+1
end if

end while
// Scan for s; = uy,

Q¢ R ¢
for k =1 tom do
Q+— QUTL R+ RUP,
if Sy = Uy then
return {Q, R}
end if
end for

return ¢

50

Therefore, only if we can simulate the behaviors of all tasks, we are unable to
decide L! because we can not decide the local remaining execution requirements

of all tasks.

5.2 Analysis of PGM Scheduling Algorithm

Unlike the RD algorithm, the PGM scheduling algorithm detects the first oc-
currence of Event B, Event C, or Event F for rescheduling. By algorithm 8, we
see that the time complexity deereases significantly to O(1) for each task, and

hence O(n) for the entire task-set:

While rescheduling, sifice the algori‘ghm would assign tasks with processors
in a group order, which is,a tandom éir'aé;;.inthe same task group, the algorithm
would require at most O(my) ta!bsi{k rﬁ%graﬁiions tomove tasks and processors
among different groups. Th"ereflbre, while I@r'}ej.s.“cheduling, the algorithm has an

O(n) bound for time complexity and an O(m) bound for task migration.

If we applied the PGM algorithm to an identical multiprocessors platform,
the complexity decreases significantly. Because there the computing capacity
are the same for all processors in identical multiprocessors platform, there is only

one task group and the rescheduling would only cost O(1) for task migration.

o1

5.3 Analysis of PPGM Scheduling Algorithm

The PPGM scheduling algorithm is similar to PGM but making tasks and
processors groups by preprocessed make group algorithm. The preprocessed
make group algorithm would divide the processors set into a structure that for
any task group G;, the boundary processors P; and P,,1 would be grouped into
processors groups H;_1, H;, or H;11. Therefore, whenever an event occurs, the
removal of task and processor would not lead to a change to the structure of
the tasks groups and processors groups. rJ\.“herefore, once a processor is removed,
we can thought it as a merge betvveén neighboring tasks groups and processors
groups. Since the structure/of thestasks groups ‘ahd processors groups is not
changed, the removal can be simpl};.?jﬂ-ehe ‘Hby a gontext switch, which leads to
at most 2 task migrations: Thelleiforel}fthe PPGMscheduling algorithm would
cause only O(1) task migratiéns‘cc)n cach resltfl@duling, and at most 2(m—1) task
migrations in a T-L., plane.” Also; because there are only one context switch
on each rescheduling, the overhead of calculation for the next event becomes
O(1). We can simply maintain a heap structure sorted by time for all events
to get the first occurrence of any events. Since it takes O(lgn) to complete an
insertion to a heap, the time complexity for PPGM algorithm becomes O(lgn)

on each rescheduling.

52

Algorithm 8. Next Fvent

G S
w o= O

© o N o ok W N

Input : A task Tj, a processor P; that is assigned to Tj, two
processors P, and P, that represents the upper and lower
boundaries for 7;.

Output: Occurrence time, type, and associated task and processor of

the next event
// Scan for Event B
tp < ¢
// Scan for Event F

if s; > s, then
tp < Lizep

S5—5Sb

P+ B,

else
tp %
P+ P,
end if
if tp > tp then
return {tp, ”FEvent B”,T;, P}
else
return {tp,”Event F”,T;, P}

end if

53

Chapter 6

Conclusions

Although in 2008, Chen presentéd the PCG sgheduling algorithm, which is the
first optimal on-line dynamic—priorify scﬂéduling algorithm for uniform multi-
processors systems, the cost of the. algorithm is“high. In this thesis, first, we
introduce the idea of independent feéféiﬁ;e‘—“ sgts and theidea of group order. Fur-
thermore, based on the ideas and ‘the"t:l_“—LeT plane model for uniform multipro-
cessors platform, we extendthe P.recaution“‘ C‘ut Gteedy algorithm, and present
three optimal on-line dynamié—priority scheduling algorithms for uniform mul-

tiprocessors systems with lower time complexities and less task migration costs.

The first algorithm presented is the RD scheduling algorithm. The RD
scheduling algorithm is optimal, but is hard to implement. The RD algorithm
could be thought as an one-directional proof of Funk’s theorem that once the
set of periodic tasks and uniform processors satisfies the feasibility condition,

the set i1s schedulable to meet all deadlines.

The second algorithm would be the PGM scheduling algorithm. The al-

54

gorithm is similar to PCG scheduling algorithm but assigns tasks with proces-
sors in a group order, which generalize the concept of PCG algorithm. The
algorithm is optimal, with O(n) time complexity and O(m) task migrations
on each rescheduling for an uniform multiprocessors platform. But if the al-
gorithm is applied to an identical multiprocessors platform, the performance
would raise significantly to O(n) time complexity and O(1) task migrations on

each rescheduling.

Finally, we present the PPGMyscheduling algorithm, which is based on
the PGM algorithm but with a few ‘modiﬁcations. The algorithm is also opti-
mal, and gives an O(lgn). time'complexity'but O(1) task migrations on each
rescheduling for an uniform multipl;gf:essors platférm. Comparing to others,

| 2= |
currently the PPGM algorithm i{s‘uan"@p—lil}e dynamic-priority scheduling algo-

rithm with the least task migration cost aﬁlpng all algorithms.

In addition to periodic tasks, the PPGM 'secheduling algorithm is also opti-
mal for scheduling non-periodic tasks.” The algorithm would generate a schedule
for n non-periodic tasks on m uniform processors with optimal finish time and

at most 2(m — 1) task migrations.

Because of the simplicity and the low task migration cost of the PPGM
scheduling algorithm, we believe that the PPGM algorithm could be applied to
many asymmetric multicore platforms that are similar to uniform multiproces-

sor platform.

55

Bibliography

[1] S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,

15(6):600-625, June 1996.

[2] Shih-Ying Chen and Chih-Wen Hsueh: ©ptimal dynamic-priority real-time
scheduling algorithms for uniform multiproceésors. In Proc. IEEE Real-

Time Systems Sympostum, pagg-é'" 711564 Barcelona, Spain, December
| | !I “
2008. || ==

[3] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An optimal
real-time scheduling algorithmfor multiprocessors. RTSS, pages 101-110,
Oct. 2006.

[4] M.L. Dertouzos and A.K Mok. Multiprocessor online scheduling of hard-
real-time tasks. IEEE Transcation on Software Engineering, 15(12):1497—
1506, Dec. 1989.

[5] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on uniform mul-

tiprocessors. IEEE Real-Time Systems Symposium, pages 183192, Dec.

56

2001.

[6] K.S. Hong and J.Y.-T. Leung. On-line scheduling of real-time tasks. RTSS,
pages 244-250, Dec. 1988.

[7] Edward C. Horvath, Shui Lam, and Ravi Sethi. A level algorithm for
preemptive scheduling. Journal of the ACM, 24(1):32-43, January 1977.

[8] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 10(1):46-61, 1973.

9] Jane W. S. Liu and @ L. Liu. Performance analysis of heterogeneous

multiprocessor computing systems. C’omputer Architectures and Networks,

1974.

i — u
[10] Jane W. S. Liu and Ai-T sth Y&mg @ptlmal scheduling of independent
tasks on heterogeneous computlng systems ACM Annual Conference, 1:38—

45, 1974.

[11] R.R. Muntz and E.G. Coffman. Optimal preemptive scheduling on two-
processor systems. IEEE Transactions on Computers, (11):1014-1020, Nov.
1969.

57

	thesis-topcover-2.pdf
	thesis-abstract-cn.pdf
	thesis-final.pdf

