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摘要摘要摘要摘要 

 

在硬性即時環境下，處理週期性任務在多處理器平台上的排程，是電腦科學中一個基礎

的問題。在這篇論文中，我們要考慮問題是對一個由 n 個獨立的任務和 m 個制式多處理器所

形成的集合作線上排程。我們提出了一個最佳演算法，它能夠對所有可行的集合進行排程，

並且保證所有的任務都能夠在期限內完成。在以往的成果中，過去的最佳演算法在每一次重

新排程時，他的時間複雜度是 O(n lg n)，並會產生至多 O(n)的工作遷移；但是我們的演算法

在每一次重新排程時，除了改進時間複雜度，將之減少為 O(lg n)之外，亦將工作遷移的數量

減少至 O(1)。除此之外，若是對非週期性任務在制式多處理器下進行排程，我們的演算法亦

可保證他的排程長度是最短的。 
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Abstract

Scheduling periodic tasks on multiprocessor platform in a hard-real-time envi-

ronment is one of the fundamental problems in computer science. In this thesis,

we consider the problem of on-line scheduling a set of n independent periodic

tasks on m uniform processors. We present an optimal scheduling algorithm

in the sense that the algorithm is able to schedule any feasible set to meet all

deadlines. From previous works, the optimal algorithm gave an O(n) bound

for number of task migration and an O(n lg n) bound for time complexity on

each rescheduling. But for our algorithm, we reduce both number of task mi-

gration and time complexity to O(1) and O(lg n) respectively. Our algorithm

also guarantees minimal schedule length for scheduling non-periodic tasks on

uniform multiprocessors.

Keyword: real-time, uniform, multiprocessor, optimal, on-line, algorithm,

scheduling.
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Chapter 1

Introduction

1.1 Background

1.1.1 Multiprocessor Platforms

The scheduling of a set of tasks on parallel multiprocessors platform is a basic

problem in computer science with a large number of applications. From previous

works [5] [2], there are at least three different kinds of multiprocessors platforms

that scheduling theorists are interested in:

• Identical multiprocessors platform. All processors are identical. In other

words, all processors have the same computing capacity.

• Uniform multiprocessors platform. Each processor in the platform is char-

acterized by its own computing capacity. Once a task is scheduled onto a

uniform processor with speed s for t time units, then s×t units of execution

requirements are completed.

• Unrelated multiprocessors platform. There exists an execution rate ri,j be-
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tween each pairs of processor Pi and task Tj. Once a task Tj is scheduled

onto processor Pi for t time units, then ri,j × t units of execution require-

ments are completed.

1.1.2 Optimal Scheduler

The time to finish a given set of tasks on multiprocessor platform provides a

measure for the performance of scheduling algorithms. Therefore, in general, a

scheduling algorithm is optimal if and only if the algorithm can schedule tasks

on multiprocessor platform with minimal schedule length (or finish time) [7].

But for periodic tasks, the schedule will not finish. Hence, we cannot use the

schedule length to measure the performance of scheduling algorithms. In stead,

a scheduling algorithm is said to be optimal if and only if the algorithm can

schedule all feasible set of periodic task on multiprocessor platforms that all

task complete by their deadlines [2] [5].

There are still other criterions for measuring the performance of scheduling

algorithm such as numbers of task migrations and time complexity.

1.1.3 On-line Scheduling

On-line scheduling algorithms make scheduling decisions at each time-instant

based upon the characteristics of the tasks that have arrived thus far [5]. An

example of on-line scheduling algorithm would be the earliest deadline first

(EDF) scheduling algorithm [8].
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1.2 Motivations

There were many works had been done under different platforms. In 1969,

Muntz and Coffman [11] had presented an optimal static level algorithm for

scheduling tasks on identical multiprocessors platforms. Then in 2006, Cho

et al. [3] based on P-fair [1] and L-C plane [4], created the Time and Local

Execution Time Planes (or T-L planes) model and provided the Largest Lo-

cal Remaining Execution Time First (or LLREF) optimal on-line scheduling

algorithm for scheduling tasks on identical multiprocessors platforms. Finally

in 2008, Chen et al. [2] extended the T-L plane model, created the Time

and Local Execution Requirement plane (or T-Ler plane) model and presented

the Precaution Cut Greedy (or PCG) optimal on-line scheduling algorithm for

scheduling tasks on uniform multiprocessors platforms, which is the first on-line

optimal scheduling algorithm for uniform multiprocessors platforms. Although

the problem of scheduling a set of periodic tasks on uniform multiprocessors

platform had been solved by the PCG algorithm, the scheduling cost of the

PCG algorithm is high. We are interested in developing another optimal on-

line scheduling algorithm that would solve the problem efficiently and with

lower time complexities and task migration costs.

1.3 Contributions and Organizations

Our contributions are as follows:

3



• We present an optimal on-line scheduling algorithm for uniform multipro-

cessors called Random Divide scheduling algorithm, which uses a divide-

and-conquer method to solve the problem.

• We present an optimal on-line scheduling algorithm for uniform multipro-

cessors called Precaution Group Merge scheduling algorithm, which is based

on the Random Divide and the PCG algorithm and reduces both the time

complexity and the number of task migrations.

• We present an optimal on-line scheduling algorithm for uniform multipro-

cessors called Preprocessed Precaution Group Merge scheduling algorithm,

which is based on the PGM algorithm and guarantees an O(1) bound for

the number of task migrations and an O(lgn) bound for time complexity

on each rescheduling.

The remainder of this thesis is organized as follows. In chapter 2, we de-

scribe our problems, definitions and assumptions, and the feasibility conditions

for uniform multiprocessors. In chapter 3, we introduce the T-Ler plane model

and the PCG scheduling algorithm [2] presented by Chen as they are the basis

of our work. In chapter 4, we present the Random Divide (RD), the Precaution

Group Merge (PGM), and the Preprocessed Group Merge (PPGM) scheduling

algorithms and prove their optimalities. In chapter 5, we analyze the perfor-

mances and complexities of our scheduling algorithms. This thesis is concluded

in chapter 6.
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Chapter 2

Definitions, Assumptions, and

Feasibility Condition for Uniform

Multiprocessors

Before we discuss about the details of the scheduling algorithms, we introduce

the basic definitions and assumptions of uniform multiprocessor scheduling.

2.1 Definitions and Assumptions

We discuss the problem of dynamic-priority scheduling of hard-real-time sys-

tems on a uniform multiprocessors platform of m processors and n tasks.

For processors and tasks, we have the following definitions:

Definition 1. A processor Pi = (si) is characterized by a positive constant si,

where si represents the computing capacity (or speed) of Pi.

Definition 2. A task Ti = (ci, pi) is characterized by two positive constants

5



ci and pi, where ci represents the execution requirement and pi represents the

period of Ti. We define the utilization of a task Ti to be ui = ci/pi.

Moreover, for tasks, we have the following assumptions:

• All tasks are periodic and the deadline is equal to the end of the period.

• All tasks are independent that tasks do not share resources or have any

precedence.

• Each task can be assigned with only one processor at a time.

• Tasks are allowed to arbitrarily migrate across processors during their exe-

cution.

Throughout this thesis, we will use the set P = {Pi|1 ≤ i ≤ m} to

represent the m-processor uniform multiprocessor platform and the set T =

{Ti|1 ≤ i ≤ n} to represent n periodic tasks system. Without loss of generality,

we assume that both P and T are indexed in a non-increasing manner that

si ≥ si+1 for all 1 ≤ i < m and ui ≥ ui+1 for all 1 ≤ i < n.

We further assume m ≤ n, because when m > n, the slower processors

will never be used.

6



2.2 Feasibility Condition for Uniform Multiprocessors

Many works had been done for uniform multiprocessors scheduling. Funk et al.

[5] presented the feasibility condition for uniform multiprocessors. We introduce

their theorems here.

Theorem 1. (Funk et al. [5]) Consider a set T = {Ti|1 ≤ i ≤ n} of n periodic

tasks indexed according to non-increasing utilization and a set P = {Pi|1 ≤ i ≤

m} of m ≤ n uniform processors indexed according to non-increasing speed. Let

Sk =
∑k

i=1 si for all 1 ≤ i ≤ m and let Uk =
∑k

i=1 ui for all 1 ≤ i ≤ n. Periodic

tasks system T can be scheduled to meet all deadlines on uniform multiprocessor

platform P if and only if the following constraints hold

Sk ≥ Uk, ∀1 ≤ k ≤ m (2.1)

Sm ≥ Un (2.2)

We call the set {T ,P} a feasible set.

2.3 Independent Feasible Sets

Based on feasibility conditions, we introduce independent feasible sets:

Definition 3. An independent feasible set is a feasible set of n tasks and m

uniform processors such that

if 1 < m ≤ n, si 6= uj, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n, (2.3)

7



Sk > Uk, ∀1 ≤ k ≤ m− 1, (2.4)

and

Sm ≥ Un. (2.5)

In other words, an independent feasible set is a feasible set with stricter

constraints: Sk > Uk, for all 1 ≤ k ≤ m − 1; si 6= uj, for all 1 ≤ i ≤ m and

1 ≤ j ≤ n, if 1 < m ≤ n.

We call Sk > Uk the kth feasibility constraint and Sm ≥ Un the mth

feasibility constraint for an independent feasible set.

There are two reasons that the set is named independent:

• Each independent feasible set can be scheduled independently that no con-

text switch would occur across independent feasible sets. In other words,

context switch would only occur on the tasks within an independent feasible

set.

• Each task in an independent feasible set can be scheduled onto processor

independently in an arbitrary order.

We will prove the above properties in the following chapters.

2.4 Separability of Feasible Sets

Lemma 1. For a feasible set of n tasks and m uniform processors, if there exist

k such that Sk = Uk, then the set can be reduced into one independent feasible

8



set containing k′ tasks and k′ processors and one feasible set containing n− k′

tasks and m− k′ processors, where k′ is the least k such that Sk = Uk.

Proof. Suppose Sk′ = Uk′ for the original set. We separate the original set into

S1 = {T1,P1} and S2 = {T2,P2} where T1 = {Ti|1 ≤ i ≤ k′}, P1 = {Pi|1 ≤ i ≤

k′}, T2 = {Ti|k
′ < i ≤ n}, and P2 = {Pi|k

′ < i ≤ m}.

That is, we make the first k′ tasks and first k′ processors form one set and

the rest tasks and processors form the other set. Since k′ is the least k such

that Sk = Uk, we have

Si > Ui, ∀1 ≤ i ≤ k′ − 1.

Therefore S1 is an independent feasible set by definition.

For S2, the jth, 1 ≤ j ≤ m− k, feasibility constraints becomes

Sj =

k′+j
∑

i=k′+1

si = Sk′+j − Sk′ ≥ Uk′+j − Uk′ =

k′+j
∑

i=k′+1

ui = Uj.

For all 1 ≤ j ≤ m− k′, the inequality would hold, thus S2 is a feasible set.

Lemma 2. For a feasible set of n tasks and m uniform processors, if there exist

sk = uk′, where 1 ≤ k ≤ m and 1 ≤ k′ ≤ n (i.e. the speed of a processor is

equal to the utilization of a task), then the set can be reduced into one feasible

set containing n − 1 tasks and m − 1 processors and one independent feasible

set containing one task and one processor.

Proof. Suppose sk = uk′ for the original set, we separate the original set into

9



S1 = {T1,P1} and S2 = {T2,P2} where T1 = {Tk′}, P1 = {Pk}, T2 = {Ti|1 ≤

i ≤ n where i 6= k′}, and P2 = {Pi|1 ≤ i ≤ m where i 6= k}.

S1 is an independent feasible set by definition since S1 = sk ≥ uk′ = U1.

For S2, there are two cases: if k ≤ k′, then the jth, 1 ≤ j ≤ m − 1,

feasibility constraints becomes

Sj =

j
∑

i=1

si ≥

j
∑

i=1

ui = Uj, for 1 ≤ j < k,

Sj =
k′
∑

i=1

si − sk −
k′
∑

i=j+2

si ≥
k′
∑

i=1

ui −
k′
∑

i=j+1

ui = Uj, for k ≤ j < k′,

and

Sj =

j
∑

i=1

si − sk ≥

j
∑

i=1

ui − uk′ = Uj, for k′ ≤ j ≤ m− 1.

Otherwise, if k ≥ k′, then the jth, 1 ≤ j ≤ m−1, feasibility constraints becomes

Sj =

j
∑

i=1

si ≥

j
∑

i=1

ui = Uj, for 1 ≤ j < k′,

Sj =

j
∑

i=1

si ≥
k′−1
∑

i=1

ui +

j+1
∑

i=k′+1

ui = Uj, for k′ ≤ j < k,

and

Sj =

j
∑

i=1

si − sk ≥

j
∑

i=1

ui − uk′ = Uj, for k ≤ j ≤ m− 1.

For both cases, all jth, 1 ≤ j ≤ m− 1, feasibility constraints would hold, thus

S2 is a feasible set.

Theorem 2. All feasible sets of n tasks and m processors can be reduced into

10



independent feasible sets that scheduling these independent feasible sets is equiv-

alent of scheduling the original feasible set.

Proof. According to lemma 1 and lemma 2, for any given feasible set, if there

exists k such that Ek = Lk or any j, i such that ej = li, we can recursively

apply the reduction algorithm to the separate the set until all of the sets are

not reducible. That is, all sets become independent feasible sets. Furthermore,

since independent feasible sets are by definition feasible sets, these independent

feasible sets can schedule independently. Therefore, no context switch would

occur across independent feasible sets.

11



Chapter 3

Precaution Cut Greedy Algorithm and

The T-Ler Plane

Our works are mainly based on the Precaution Cut Greedy (PCG) algorithm

and the T-Ler planes presented by Chen et al. [2]. Therefore in this chapter,

we will introduce the PCG algorithm and the T-Ler plane model.

3.1 T-Ler Planes

Chen extended the T-L plane model [3] and the L-C plane model [4], created

the T-Ler plane model [2]. T-Ler planes stands for Time and Local Execution

Requirement planes, which models the behaviors of tasks in uniform multipro-

cessor platform. As shown in figure 3.1, task Ti arrives at time t and its deadline

is t + pi. Also, as the figure shows, Ti is assigned with processors P1 and P2

alternatively in different time intervals. Since P1 is faster than P2, task Ti would

have higher execution rate on P1 than P2. Therefore, as shown in figure 3.1, the

12



P1 P2
P1Ti

t t+ pi

ci

fluid schedule

time

Execution path

Figure 3.1: The T-Ler plane

slope of the execution path is larger while the task is assigned with P1. Finally,

the fluid schedule of Ti represents the average execution rate during the entire

period, which is shown in figure 3.1 by a dotted line. The average execution

rate of Ti can be easily calculated by ci/pi, which is equal to the utilization of

Ti.

While n tasks are considered together, their fluid schedules can be con-

structed as shown in figure 3.2. Similar to the T-L plane [3], a right triangle can

be found between every two consecutive end of periods and these right triangles

would divide the T-Ler plane into contiguous time intervals. We called the kth

right triangle as the kth T-Ler plane and let the length of the corresponding

time interval be tkf . Since no two right triangle would overlapped with each

other, we could schedule in one kth T-Ler plane without considering the dead-

line of each task [6] – just to consider the local remaining execution requirement

in time interval of length tkf . Since the local remaining execution requirement

13



...

c1

...

...
cn

c2

T1

T2

Tn

time

time

time

kth TLer plane (k + 1)th TLer plane

t1 t2 t3

overlapped

Fluid Schedule

Fluid Schedule

Fluid Schedule

...

Figure 3.2: T-Ler plane

of each task is proportional to the average execution rate and the length of the

time interval, all kth T-Ler planes are similar to each other. As long as we can

finish all the jobs before the end of the T-Ler plane, we could give an optimal

scheduling algorithm.
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P1

P2

T1

T2

T3

lt
1

lt
2

lt
3

t tk
f

processor boundary of P1

Event C

execution path

Event F

processor boundary of P2

Even B

fluid schedule path

l1

l2

l3

Figure 3.3: kth T-Ler plane

3.2 Definitions in One T-Ler Plane

In the kth T-Ler plane at time 0 ≤ t ≤ tkf , we define the local computing

capacity for processor Pi to be eti = si × (tkf − t) and Et
k =

∑k
i=1 e

t
i. The local

computing capacity represents the actual computing capacity of a processor in

the T-Ler plane. For simplicity, we define ei = e0i and Ek = E0
k.

Chen defined li,j to represent the local remaining execution requirement of

task Ti at time tj. The value of li,0 is equal to uk×t
k
f . Chen also defined the local

15



utilization ri,j = li,j/(t
k
f − tj) of task Ti at time tj in the T-Ler plane. But for

simplicity, we rewrite tj as t and define the remaining execution requirement

of task Ti at time t as li,t and the local utilization of task Ti at time t as

ri,t = li,t/(t
k
f − t) in the T-Ler plane.

As shown in figure 3.3, during the execution, the execution paths of tasks

might intersect with each others. Thus in a T-Ler plane, at time t, li,t ≥ li+1,t

would not guaranteed to hold unless t = 0. Therefore, to distinguish with Chen,

we define lti to be the ith largest local remaining execution requirement at time

t and Lt
k =

∑k
i=1 l

t
i. Also, we define li = l0i and Lk = L0

k for simplicity. Note

that here lti do not guaranteed to be the local remaining execution requirement

of Ti at time t unless t = 0. Also note that li = l0i = li,0.

3.3 Events in One T-Ler Plane

In T-Ler plane, Chen observed three kinds of time instances (or events) that

rescheduling is needed. These events are bottom hitting events (or Event B),

ceiling hitting events (or Event C), and floor hitting events (or Event F).

Definition 4. (Chen et al. [2]) Event B occurs when the local remaining exe-

cution requirement of a task Ti is equal to 0, and the execution path of the task

would hit the bottom of the T-Ler plane.

Definition 5. (Chen et al. [2]) Event C occurs when the local remaining ex-

ecution requirement of a task Ti is equal to e1 (i.e. the computing capacity of

16



processor P1), and the execution path of the task would hit the ceiling (i.e. the

processor boundary of P1) of the T-Ler plane.

Definition 6. (Chen et al. [2]) Event F occurs when the local remaining exe-

cution requirement of a task Ti is equal to the computing capacity of a processor

Pj, and the execution path of the task Ti would hit the processor boundary of

processor Pj in the T-Ler plane.

Note that there are two situations for Event F. If the local remaining ex-

ecution requirement of task Ti is originally greater than the local computing

capacity of processor Pj , then the execution path of Ti would hit the processor

boundary of Pj from top. Otherwise, if the local remaining execution require-

ment of task Ti is less than the local computing capacity of processor Pj, then

the execution path of Ti would hit the processor boundary of Pj from bottom.

Whenever Event B or Event C occurs, it is apparent that a rescheduling is

required. For Event F, Chen stated that [2]: Although, when event F occurs, it

is not necessary to reschedule to satisfy FG condition (i.e. the feasibility condi-

tions), it is the precaution time instance to reschedule for our optimal scheduling

algorithm. Whenever any of these three events occurs, we will reschedule all the

tasks in our optimal scheduling algorithm.

In our work, we defined a new time instance called Event V:

Definition 7. For a feasible set of n tasks and m processors, in a T-Ler plane,

Event V happens at time t whenever Et
k = Lt

k, k 6= m, holds.
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In other words, Event V is the time instance that the kth feasibility con-

straint is about to be violated. It is apparent that whenever Event V occurs, a

rescheduling is required. Otherwise the feasibility conditions would be violated

and the set would become infeasible and non-schedulable.

3.4 The Precaution Cut Greedy Algorithm

The Precaution Cut Greedy (PCG) scheduling algorithm is a work-conserving

algorithm [5] based on the idea of “precaution.” The algorithm always assigns

the task with largest remaining execution requirement to the fastest processor,

and will reschedule on the occurrence of any C, F, or B event.

When any event occurs, there must be a task on a processor boundary in

T-Ler plane otherwise the execution requirement of the tasks is equal to 0. PCG

will remove the task and the processor associate with the event and reschedule

by greedily assigning the task with largest remaining execution requirement to

the fastest processor.

18



Algorithm 1. Precaution Cut Greedy, Chen et al. [2]

Input: A set τ of n tasks {T1, T2, ..., Tn} with utilization u1, u2, ..., un.

A set π of m processors {P1, P2, ..., Pm} with speed s1, s2, ..., sm.

1. while any event [C|F|B] occurs at time t do

2. if si = rj,t then

3. assign Tj to Pi until the end of the T-Ler plane

4. remove Pi from π, remove Tj from τ

5. else if rj,k = 0 then

6. remove Tj from τ

7. while there are ready tasks do

8. assign task with largest remaining execution requirement to the

fastest idle processor

9. end while

10. end while

Chen proved that the set of tasks and processors is feasible while any event

occurs.

Theorem 3. (Chen et al. [2]) When any event occurs, the set of tasks and

processors is feasible by PG and PCG scheduling algorithm.

Moreover, Chen proved that when any event occurs, the removal of the

task and the processor associated with the event will not lead to the violation

of feasibility conditions.

Theorem 4. (Chen et al. [2]) When any event occurs, there exists a task on a
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processor boundary in T-Ler plane or the execution requirement of this task is

equal to 0. If we remove the task and the processor, the remaining set of tasks

and processors will still be feasible.

Actually, theorem 4 can be explained by the separation of feasible set of

theorem 2 in chapter 2. Therefore theorem 2 is a generalized form for Chen’s

theorem. Furthermore, we will state another generalized form of Chen’s theorem

3 in the next chapter.
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Chapter 4

Optimal Scheduling Algorithm for

Uniform Processors

In this chapter, we will present the three scheduling algorithms: the Random

Divide (RD) algorithm, the Precaution Group Merge (PGM) algorithm, and

the Preprocessed Precaution Group Merge (PPGM) algorithm in the following

sections.

4.1 Task Groups and Group Order

Before introducing our scheduling algorithms, three terms must be defined: task

groups, processor groups, and group order.

Definition 8. For a feasible set of n tasks and m uniform processors, we define

task group Gi = {Tj|ei < lj < ei+1, ∀1 ≤ i < m, 1 ≤ j ≤ n}.

In other words, a task group is a set of tasks that all tasks in the set are

bounded by the same pair of consecutive processors in the same T-Ler plane.
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Figure 4.1: An Example of Tasks Groups and Processors Groups

Similar to task groups, a set P of processors can be divided into processor

groups:

Definition 9. For a feasible set of n tasks and m uniform processors, we define

processor group Hi = {Pj} to be a set of processors where |Hi| = |Gi|, for all

1 ≤ i < m.

Note here that we did not specify the construction of processor group Hi.

As long as |Hi| = |Gi| would hold for all 1 ≤ i < m, we consider the processor

groups as valid.
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Definition 10. A group order is an order on scheduling tasks onto processors

that task Ti would be assigned processor Pj if and only if Ti ∈ Gk and Pj ∈ Hk.

In other words, we would schedule tasks and processors according to their

group index: tasks would be assigned processors if and only if they have the

same group index. If there are more than one tasks and processors have the same

index, then the assignment is a random order for these tasks and processors.

The simplest way to form processor groups is to make faster processors into

prior groups as shown in algorithm 2. As mentioned in the previous chapter,

PCG scheduling algorithm is a work-conserving algorithm that would always

assign processors to tasks in an order that the task with largest remaining ex-

ecution requirement always gets the fastest processor. In other words, in a

T-Ler plane, if we make processor groups according to the computing capacity

of processors, then the PCG algorithm would assign processors to tasks firstly

in a group order for tasks in different groups, then secondly in a greedy or-

der that the task with largest remaining execution requirement would get the

fastest processor for tasks in the same group. Hence we can view the order of

assignment of PCG algorithm as a subset of group order.
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Algorithm 2. Make Group

Input : An independent feasible set {T ,P} of n tasks and m

uniform processors

Output: Tasks groups G and processors groups H

// Initialize

1. i← 1, j ← 1

// Scan T and P to make group

2. while i < n do

3. Gi ← φ

4. Hi ← φ

5. while lj > ei+1 and j < n do

6. Gi ← Gi ∪ Tj

7. Hi ←Hi ∪ Pj

8. j ← j + 1

9. end while

10. i← i+ 1

11. end while

4.2 The Random Divide Algorithm

The Random Divide (RD) scheduling algorithm is a divide-and-conquer algo-

rithm that is shown in algorithm 3.

The RD scheduling algorithm takes a feasible set as input. Initially the
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Algorithm 3. Random Divide

Input: A set T of n tasks {T1, T2, ..., Tn} with utilization u1, u2, ..., un.

A set P of m processors {P1, P2, ..., Pm} with speed s1, s2, ..., sm.

1. repeat

2. if B event occurs then

3. remove the task with local remaining execution requirement

equals to 0

4. assign another ready task to the idle processor

5. else

6. separate {T ,P} into independent feasible sets

7. for each independent feasible set, assign processors to tasks in a

random order

8. end if

9. until Event B or Event V occurs
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algorithm would separate the feasible set into independent feasible sets, then

for each independent feasible set, the algorithm would schedule tasks onto pro-

cessors in a random order. The algorithm would keep this random order until

Event V or Event B occurs. If Event B occurs, the task associates with the

event is removed since its remaining execution requirement equals to 0, and then

another ready task would be assigned to the idle processor. Otherwise, Event V

occurs, then the RD algorithm will again separate those feasible sets associated

with the event into independent feasible sets, and will reassign processors to

tasks in a random order.

We give an example of execution in figure 4.2 that in the T-Ler plane,

initially the feasible set contains three processors P1, P2, and P3 with local

computing capacity e1 = 1, e2 = 1/2, e3 = 1/4 respectively and three tasks T1,

T2, and T3 with local remaining execution requirement l1 = 3/4, l2 = 5/8, and

l3 = 3/8 respectively. At the beginning, all the feasibility constraints holds,

and T1, T2, and T3 are scheduled onto P1, P2, and P3 respectively in a random

order. Then at time t1, Event V occurs that Et1
1 = Lt1

1 . Hence we separate

the original feasible set into independent feasible sets S1 = {{T1}, {P1}} and

S2 = {{T2, T3}, {P2, P3}} and again reschedule these two sets by assigning P1

to T1, P2 to T3, and P3 to T2. Note here that S1 contains only one processor

and one task, so it would not need to be rescheduled until the end of the T-Ler

plane. Then finally at time t2, another Event V occurs in S2 that both Et2
1 = Lt2

1

and Et2
2 = Lt2

2 . Therefore, we further separate S2 into independent feasible sets
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Figure 4.2: RD Scheduling Algorithm

{{T2}, {P2}} and {{T3}, {P3}}. Now both independent feasible sets contain

only one processor and one task, so they would not need to be rescheduled until

the end of the T-Ler plane. Hence we finish the schedule.

4.3 Proof of Optimality of RD Scheduling Algorithm

We will prove the optimality of RD scheduling algorithm in this section.

Theorem 5. For a feasible set of n tasks and m uniform processors, in a T-Ler

plane, as long as all processors are fully utilized, the mth feasibility condition
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will always hold.

Proof. The proof is straight forward. Since the set is feasible at the beginning,

at time t = 0 in the T-Ler plane, we have the mth feasibility condition hold at

the time. That is,

Sm ≥ Un,

or equivalently,

Em ≥ Ln.

Now since we keep all processors to be fully utilized, we assign all m

processors to tasks and there are no idle processors. Therefore, at any time t,

in the same T-Ler plane, the mth feasible condition becomes

Et
m = Em − t×

m
∑

i=1

si ≥ Ln − t×

m
∑

i=1

si = Lt
n (4.1)

The inequality Et
m ≥ Lt

n will always hold regardless of t, thus we finish the

proof.

Theorem 6. For a feasible set of n tasks and m processors, the RD scheduling

algorithm is optimal and feasible for uniform multiprocessors.

Proof. We prove by showing that in a T-Ler plane, whenever an Event V occurs,

we can reschedule by reseparating the feasible sets into independent feasible sets,

so that no feasibility constraints would be violated during the schedule.

28



According to the algorithm, we initially separate the given feasible set

into independent feasible sets. Therefore, for each independent feasible set Si,

initially we have

sj 6= uk, ∀1 ≤ j ≤ mi, 1 ≤ k ≤ ni,

Sk > Uk, ∀1 ≤ k ≤ mi − 1,

and

Smi
≥ Uni

,

or equivalently,

ej 6= lk, ∀1 ≤ j ≤ mi, 1 ≤ k ≤ ni, (4.2)

Ek > Lk, ∀1 ≤ k ≤ mi − 1, (4.3)

and

Emi
≥ Lni

. (4.4)

Where mi and ni represent the number of processors and the number of

tasks of an independent feasible set Si. Note that here we assume mi > 1

because if mi = 1, then the independent feasible set would contain only one

processor. Moreover, due to the feasibility constraints of independent feasible

sets, it is apparent that the set is always feasible.

Since the scheduling algorithm would always assign all processors to tasks,

all processors are kept fully utilized during the schedule. Therefore, according

to theorem 5, we know for all independent feasible sets, the mth feasibility

constraint would always hold.
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We now focus on the independent feasible set Sj that Event V occurs

during the schedule. Because Ek > Lk∀1 ≤ k ≤ mj − 1, would hold for all

independent feasible set Sj , no matter that how the order of assigning processors

to tasks is, before any of the feasibility constraints of Sj is violated, at time

t > 0, there must be that

∃k, 1 ≤ k ≤ mi − 1, Et
k = Lt

k. (4.5)

In other words, at time t, Event V occurs and independent feasible set Si

becomes feasible sets at this moment.

We then separate Sj again by algorithm described in theorem 2. Therefore

at time t, we would have another set of independent feasible sets and the initial

conditions would be invariant.

In a T-Ler plane, by no more than m−1 reseparations, the original set will

be separated into m independent feasible sets with each set containing only one

processor, which is the base case of tasks scheduling, and is apparently to be

feasible and schedulable as mentioned before. Therefore, any feasible set can be

schedulable using RD scheduling algorithm. That is, RD scheduling algorithm

is optimal.
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4.4 The Precaution Group Merge Algorithm

Based on the RD and PCG scheduling algorithm, we develop the Precaution

Group Merge (PGM) scheduling algorithm as shown in algorithm 4.

Algorithm 4. Precaution Group Merge

Input: A set T of n tasks {T1, T2, ..., Tn} with utilization u1, u2, ..., un.

A set P of m processors {P1, P2, ..., Pm} with speed s1, s2, ..., sm.

1. repeat

2. if B event occurs then

3. remove the task with local remaining execution requirement

equals to 0

4. assign another ready task to the idle processor

5. else

6. separate {T ,P} into independent feasible sets

7. for each independent feasible set, make group by algorithm 2

8. for each independent feasible set, assign tasks with processors in a

group order

9. end if

10. until any [C|F|B] event occurs

The PGM scheduling algorithm borrows the idea of precaution of PCG

algorithm, and would reschedule at the occurrence of any C, F, or B event.

The algorithm takes a feasible set as input. Initially the algorithm would
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separate the feasible set into independent feasible sets. Then for each indepen-

dent feasible set, the algorithm would make task groups and processor groups

and would assign tasks with processors in a group order.

The algorithm would keep this order until that any C, F, or B event to

occur. When B event occurs, the algorithm simply removes the task associated

with the event and reschedules another ready task to the idle processor. When

C or F event occurs, we know there must be at least one task on a processor

boundary in T-Ler plane, that is, we have remaining execution requirement

of a task equal to the computing capacity of a processor. Therefore, we can

apply the separation algorithm in theorem 2 to remove (or simply we say cut)

the task and processor associated with the event from the current T-Ler plane.

After such removal, the number of processors and tasks in the T-Ler plane both

decreases by one, and we expect a merge of two task groups whose processor

boundary is the same as the removed processor.

We use the same feasible set in the previous section for RD scheduling

algorithm as an example to demonstrate the execution of PGM scheduling al-

gorithm. The example is shown in figure 4.3.

At the beginning, all the feasibility constraints holds. Since s1 > u1 > u2 >

s2 > u3 > s3, we make task groups by G1 = {T1, T2}, G2 = {T3} and processor

groups by H1 = {P1, P2}, H2 = {P3}. Following the group order, T1 and T2

would be assigned with P1 and P2, and T3 would be assigned with P3, thus we
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Figure 4.3: Example of PGM Scheduling Algorithm

assign T1, T2, and T3 with P2, P1, and P3 respectively. Then, at time t1, Event

F occurs that the local remaining execution requirement of T2 is equal to the

local computing capacity of P2, therefore, we separate the original feasible set

into independent feasible sets S1 = {{T1, T3}, {P1, P3}} and S2 = {{T2}, {P2}}.

Now for S2, it is an independent feasible set with only one processor and one

task, therefore as long as we assign P2 to T2, it would not need to be reschedule

until the end of the T-Ler plane. For S1, it is the original feasible set with T2

and P2 removed, and we assign P1 to T1 and P3 to T3 to satisfy the group order.
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Finally at time t2, another Event F occurs when the execution path of T1 hits

the boundary of P3 (note that at this time, the execution path of T3 also hits

the boundary of P1). Now we again reschedule by remove S3 = {{T1}, {P3}}

from S1. Hence both S1 and S3 contain only one processor, so as long as we

assign P3 to T1 and P1 to T3, they would not require further rescheduling until

the end of the T-Ler plane, and we finish the schedule.

4.5 Proof of Optimality of PGM Scheduling Algorithm

The PGM scheduling algorithm is similar to the PCG scheduling algorithm

except that PGM would assign processors to tasks in a group order. But in

another point of view, as long as we can prove that the violation of feasibility

constraint (or Event V) would occur no earlier than the first occurrence of any

C, F, or B event, PGM scheduling algorithm can be thought as a subset of

the RD scheduling algorithm because group order is a subset of random order.

Hence the PGM scheduling algorithm is feasible and optimal.

Theorem 7. For an independent feasible set of n tasks and m processors, if

we schedule using PGM algorithm, then Event V would occur no earlier than

Event F in the first task group.

Proof. Suppose there are n′ tasks in the first task group, we have G1 = {Ti|1 ≤

i ≤ n′}, H1 = {Pi|1 ≤ i ≤ n′}, and s1 > u1 ≥ u2 ≥ ... ≥ un′ > s2 ≥

s3 ≥ ... ≥ sn′. Also, the feasibility constraints should hold, therefore, we have
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Ek ≥ Lk, ∀1 ≤ k ≤ n′.

Since we assign the fastest n′ processors to tasks in the first task group,

according to theorem 5, the n′th feasibility constraint would never be violated.

Hence it would be no need to prove the occurrence of the violation of the n′th

feasibility constraint.

Suppose t is the time that kth feasibility constraint is about to be violated,

that is Et
k = Lt

k, for all 1 ≤ k < n′. Because processors are assigned to tasks

in a group order, it is actually a random order for tasks in the same group.

Therefore, we assume initially at time 0, we assign processor P ′i to tasks T ′i ,

and now at time t, the local remaining execution requirement of T ′i is l
′
i,t and

l′i,t ≥ l′i+1,t for 1 ≤ i < n′. Let s′i be the speed of processor P ′i , then t can be

calculated as follow:

Et
k = Lt

k,

Et
k = Ek − t×

k
∑

i=1

si = Ek − t× Sk,

Lt
k =

k
∑

i=1

l′i,0 − t×
k

∑

i=1

s′i = L′k − t×
k

∑

i=1

s′i = L′k − t× S ′k.

Therefore,

t =
Ek − L′k
Sk − S ′k

, (4.6)

where 1 ≤ k < n′.

Suppose initially Tj is the task that is assigned with P1, then the time of
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occurrence of Event F can be calculated as

lj − e2
s1 − s2

. (4.7)

Furthermore, we know for 1 ≤ k < n′,

Sk − S ′k = (s1 + s2 + ...+ sk)− (s′1 + s′2 + ...+ s′k)

≤ (s1 + s2 + ...+ sk)− (sn′ + sn′−1 + ...+ sn′−k+1)

= Sk −
n′

∑

i=n′−k+1

si,

and

Ek − L′k = (e1 + e2 + ...+ ek)− (l′1 + l′2 + ...+ l′k)

≥ (e1 + e2 + ...+ ek)− (l1 + l2 + ...+ lk)

= Ek − Lk.

Now we consider two cases. If Uk ≤ S ′k, then

Ek − L′k
Sk − S ′k

≥ tf ×
Sk − Uk

Sk − S ′k
≥ tf × 1

≥ tf ×
uj − s2
s1 − s2

=
lj − e2
s1 − s2

. (4.8)
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Otherwise, Uk > S ′k implies j > k because if j ≤ k, we have

Uk = u1 + u2 + ...+ uk

≤ u1 + u2 + ...+ uk + (uk+1 + uk+2 + ...+ un′)− (s′k+1 + s′k+2 + ...+ s′n′)

≤ (s′1 + s′2 + ...+ s′j−1) + s1 + (s′j+1 + s′j+2 + ...+ s′k)

= S ′k.

Hence,

Ek − L′k
Sk − S ′k

≥ tf ×
Sk − Uk

Sk −
∑n′

i=n′−k+1 si

≥ tf ×

∑n′

i=k+1 ui −
∑n′

i=k+1 si
∑k

i=1 si −
∑n′

i=n′−k+1 si

≥ tf ×

∑n′

i=k+1 ui −
∑n′

i=k+1 si −
∑k

i=2 si +
∑n′−1

i=n′−k+1 si
∑k

i=1 si −
∑n′

i=n′−k+1 si −
∑k

i=2 si +
∑n′−1

i=n′−k+1 si

= tf ×

∑n′

i=k+1 ui −
∑n′

i=2 si +
∑n′−1

i=n′−k+1 si

s1 − sn′

= tf ×

∑n′

i=k+1 ui −
∑n′−k

i=2 si − sn′

s1 − sn′

≥ tf ×
uk+1 − sn′

s1 − sn′

=
lk+1 − en′

s1 − sn′

≥
lj − en′

s1 − sn′

≥
lj − e2
s1 − s2

(4.9)

Both cases implies the occurrence of Event F is earlier than the occurrence

of Event V for all 1 ≤ k < n′, therefore we finish the proof.
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Theorem 8. For a feasible set of n tasks and m processors scheduled using

PGM scheduling algorithm, there must be at least one Event C, Event B, or

Event F occurs before Event V.

Proof. Theorem 7 shows that Event V would occur no earlier‘ than Event F in

the first task group. Therefore, we now consider the groups other than the first

group.

Suppose at time t Event V occurs, and the kth feasibility constraint is

about to be violated. Because at time t, Et
k−1 ≥ Lt

k−1, E
t
k = Lt

k, and Et
k+1 ≥

Lt
k+1, we have etk ≤ ltk and etk+1 ≥ ltk+1. Now we consider three cases at time 0

before time t:

• Case 1: Suppose initially at time 0, ek ≥ lk. Then there must be an

intersection at time 0 ≤ t′ ≤ t (i.e. et
′

k = lt
′

k ), hence F event occurs.

• Case 2: Suppose initially at time 0, ek+1 ≤ lk+1. Then there must be an

intersection at time 0 ≤ t′ ≤ t (i.e. et
′

k+1 = lt
′

k+1), hence F event occurs.

• Case 3: Suppose initially at time 0, ek < lk and ek+1 > lk+1. Then Et
k =

Et
k−1 + etk < Lt

k−1 + ltk = Lt
k, which leads to a contradiction indicating that

the kth feasibility constraint is not the one that is about to be violated.

Therefore, there must exist k′ < k such that the k′th feasibility constraint

has already been violated at time t′ < t. Then we move to time t′ and the
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problem becomes the same except that k′ < k. By such reduction, the case

3 will be recursively reduced to either case 1, case 2, or the base case (i.e.

first group), and turn out that there must be an event to occur earlier than

the feasibility conditions is violated.

Therefore we finish the proof.

As mentioned in earlier chapters, PCG scheduling algorithm assigns pro-

cessors to tasks in a greedy manner that the task with largest local remaining

execution requirement will get the fastest processor, and the order of assignment

of PCG scheduling algorithm is a subset of group order. Therefore, theorem 8

is a generalized theorem of Chen’s theorem in theorem 3.

Theorem 9. For a feasible set of n tasks and m processors, the PGM scheduling

algorithm is optimal and feasible for uniform multiprocessors.

Proof. Since the set of tasks and processors is feasible, it follows the feasibility

conditions. Since PGM reschedules at any event, according to theorem 8, the

new task set is still feasible in the T-Ler plane. Since each T-Ler plane is

independent, the entire schedule is feasible. Therefore, any feasible tasks set can

be scheduled to meet all deadlines using PGM algorithm, and PGM scheduling

algorithm is optimal.

The main drawback of PGM algorithm is that the algorithm would not
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Figure 4.4: Yet Another Example of PGM Scheduling Algorithm

guarantee a constant bound for task migrations while rescheduling. An example

is shown in figure 4.4 where initially the feasible set contains five processors P1,

P2, P3, P4, and P5 with local computing capacity e1 = 1, e2 = 0.85, e3 = 0.7,

e4 = 0.5, and e5 = 0.3 respectively and five tasks T1, T2, T3, T4, and T5 with local

remaining execution requirement l1 = 0.55, l2 = 0.4, and l3 = l4 = l5 = 0.25

respectively. Initially, tasks T1, T2, T3, T4, and T5 is assigned with processors

P1, P2, P3, P4, and P5 respectively to satisfy the group order. At time t1, the

execution path of T1 hits the boundary of P4, Event F occurs. Therefore, T1
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and P4 are removed from the feasible set, and the remaining tasks T2, T3, T4,

and T5 are assigned with processors P1, P3, P2, and P5 respectively to satisfy

the group order. At the time instance t1, we see that it requires at least three

tasks migrations as indicated by a cross bar in figure 4.4.

4.6 The Preprocessed Precaution Group Merge Algorithm

Based on the PGM scheduling algorithm, we develop the Preprocessed Precau-

tion Group Merge (PPGM) scheduling algorithm. The only distinction between

the PPGM and the PGM algorithms is that we change the way of making group

by first preprocessed the tasks and processors sets as shown in algorithm 5.

Unlike the make group algorithm in algorithm 2, the preprocessed make

group algorithm would scan through the entire processors set to make the best

processors groups to reduce tasks migrations. Rather then simply grouping the

faster processors into prior groups, while the preprocessed make group algorithm

is making a processor group for a task group, the algorithm would count the

number of processors with local computing capacity larger than the boundary

processor of the task group, and make the most efficient use of these processors.

For example, in figure 4.4, the original make group algorithm 2 generates the

processor groups of {P1}, {P2}, and {P3, P4, P5}. But in fact, there are three

processors (i.e. P1, P2, and P3) with local computing capacity larger than

the local remaining execution requirement of T1, and the most efficient way is
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Algorithm 5. Preprocessed Make Group

Input : An independent feasible set {T ,P} of n tasks and m

uniform processors

Output: Tasks groups G and processors groups H

// Initialize

1. i← 1, j ← 1, k ← 1

2. Stack ← φ

// Scan T and P to make group

3. while i < n do

4. Stack.push(Pk) , k ← k + 1

5. Gi ← φ , Hi ← φ

6. while lj > ei+1 and j < n do

7. Gi ← Gi ∪ Tj

8. if Stack.empty() then

9. Hi ← Hi ∪ Pk , k ← k + 1

10. else

11. Hi ← Hi ∪ Stack.pop()

12. end if

13. j ← j + 1

14. end while

15. i← i+ 1

16. end while
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to assign T1 with P3 and T2 with P4. Therefore, the preprocessed make group

algorithm would instead generate processor groups {P3}, {P4}, and {P1, P4, P5}.

The Preprocessed Precaution Group Merge scheduling algorithm is shown

in algorithm 6.

Algorithm 6. Preprocessed Precaution Group Merge

Input: A set T of n tasks {T1, T2, ..., Tn} with utilization u1, u2, ..., un.

A set P of m processors {P1, P2, ..., Pm} with speed s1, s2, ..., sm.

1. repeat

2. if B event occurs then

3. remove the task with local remaining execution requirement

equals to 0

4. assign another ready task to the idle processor

5. else

6. separate {T ,P} into independent feasible sets

7. for each independent feasible set, make group by algorithm 5

8. for each independent feasible set, assign tasks with processors in a

group order

9. end if

10. until any [C|F|B] event occurs

As mentioned earlier, the only distinction between PGM and PPGM al-

gorithms is the make group algorithm. By making different processors group,

the task schedule would be different among these two scheduling algorithms.
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We use the same feasible set in figure 4.4 as an example to demonstrate the

execution of PPGM scheduling algorithm. The example is shown in figure 4.5.

Initially, algorithm 5 make tasks groups {T1}, {T2}, and {T3, T4, T5}, and pro-

cessor groups {P3}, {P4}, and {P1, P2, P5} respectively. Hence we assign T1, T2,

T3, T4, and T5 with P3, P4, P1, P2, and P5 respectively. While at time t1, Event

F occurs and the local remaining execution requirement of T1 is equal to the

local computing capacity of P4. Therefore, T1 and P4 would be removed from

the feasible set, and now T2 is assigned with idle processor P3. Again at time

t2, another Event F occurs when the local remaining execution requirement of

T2 is equal to the local computing capacity of P5. Therefore T2 and P5 would be

removed from the feasible set, and T5 is assigned with idle processor P3. And

the we will keep this order until the end of the T-Ler plane.

4.7 Proof of Optimality of PPGM Scheduling Algorithm

Theorem 7 and theorem 8 shows that there must be at least one Event C, Event

B, or Event F occurs before Event V if we schedule using PGM algorithm.

For PPGM scheduling algorithm, the only distinction from PGM scheduling

algorithm is the algorithm of making groups. Therefore, as long as we can

prove that the tasks and processors groups generated by algorithm 5 would

hold the same properties as generated by algorithm 2, we can prove that the

PPGM scheduling is optimal.
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Figure 4.5: Example of PPGM Scheduling Algorithm

Theorem 10. For a feasible set of n tasks and m processors scheduled using

PPGM scheduling algorithm, there must be at least one Event C, Event B, or

Event F occurs before Event V.

Proof. We start the proof first by examining algorithm 5. While generating

any tasks group Gi = {Tj|ei > lj > ei+1}, suppose there are k processors that

have been pushed into the stack by algorithm 5. Let Gi contain g tasks, then

according to algorithm 5, there are two cases:
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• If k ≥ g, then g processors would be popped out from the stack and grouped

into Hi. In this case, all g processors in Hi would have local computing

capacity larger than the local remaining execution requirement of tasks in

Gi.

• If k < g, then the algorithm would group k processors in the stack and

g − k consecutive processors into Hi. In this case, the first k processors

in Hi would have local computing capacity larger than the local remaining

execution requirement of tasks in Gi.

For the first case, the feasibility constraints would hold because all proces-

sors in the processors group have local computing capacity larger than the local

remaining execution requirement of tasks in the tasks group. For the second

case, it is obvious that the processors in the processor group generated by al-

gorithm 5 is always faster than the processors in the processor group generated

by algorithm 2. Therefore, for both cases, the feasibility constraints would hold

for each tasks group and processors group. Therefore, according to theorem 8,

the initial conditions are the same. Hence we concluded that for any feasible

set of n tasks and m processors scheduled using PPGM scheduling algorithm,

there must be at least one Event C, Event B, or Event F occurs before Event

V.

Theorem 11. For a feasible set of n tasks and m processors, the PPGM

46



scheduling algorithm is optimal and feasible for uniform multiprocessors.

Proof. Since the set of tasks and processors is feasible, it follows the feasibility

conditions. Since PPGM reschedules at any event, according to theorem 8,

the new task set is still feasible in the T-Ler plane. Since each T-Ler plane is

independent, the entire schedule is feasible. Therefore, any feasible tasks set

can be scheduled to meet all deadlines using PPGM algorithm, and PPGM

scheduling algorithm is optimal.

Theorem 12. For a set of n independent non-periodic tasks and m uniform

processors, the PPGM scheduling algorithm is optimal.

Proof. Non-periodic tasks are characterized by their execution requirements.

Therefore, similar to the definitions in chapter 2, we can define a non-periodic

task Ti = (ci,∞) by simply changing the period to infinity.

Early works [7], [10], [9] showed that the optimal finish time ω of scheduling

a set of n independent tasks with execution requirement c1 ≥ c2 ≥ ... ≥ cn on

m uniform processors with speed s1 ≥ s2 ≥ ... ≥ sm would be

ω = max

(

max
1≤i≤m

(

Ci

Si

)

,
Cn

Sm

)

, (4.10)

where Ci =
∑i

j=1 cj and Si =
∑i

j=1 si.

We schedule the set by first construct a T-Ler plane with corresponding

time interval [0, tf) = [0, ω). That is, if we can schedule the set in the T-Ler

47



plane, we can finish the schedule in optimal finish time. Then by definition, for

each non-periodic task Ti, the utilization can be calculated by ui = ci/ω.

According to PPGM algorithm, for a set of n tasks and m uniform proces-

sors, if the feasibility constraint would hold at the beginning of the T-Ler plane,

the set would be schedulable by PPGM scheduling algorithm. Therefore, for

all 1 ≤ k ≤ m, the kth feasibility constraint of the problem becomes

Uk =
k

∑

i=1

ui =
1

ω
×

k
∑

i=1

ci

≤

∑k
i=1 si

∑k
i=1 ci

×

k
∑

i=1

ci

≤

k
∑

i=1

si = Sk. (4.11)

Similarly, the mth feasibility constraint becomes

Un =
1

ω
× Cn ≤

Sm

Cn

× Cn

≤ Sm. (4.12)

Equation 4.11 and equation 4.12 show that the kth feasibility constraint

would hold for all 1 ≤ k ≤ m. Therefore, PPGM algorithm is able to schedule

the set of n non-periodic tasks on m uniform processors in time interval [0, ω).

Hence PPGM scheduling algorithm is also optimal for scheduling non-periodic

tasks on uniform multiprocessors.
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Chapter 5

Complexity Analysis

5.1 Analysis of RD Scheduling Algorithm

The RD scheduling algorithm would assign tasks with processors in a random

order and reschedule at the occurrence of any Event B or Event V. Once Event

B occurs, the algorithm simply removes the task with local remaining execution

requirement equals to 0 and assign another ready task with the idle processor,

which is obvious an O(1) manner for time complexity. But if Event V occurs,

the algorithm will re-separate the set of tasks and processors into independent

feasible sets and re-assign processors to tasks in a random order. According to

algorithm 7, once Event V occurs, both the time complexity and the complexity

of task migrations would be O(n) for one rescheduling.

The RD scheduling algorithm is hard to implement because the algorithm

detects Event V as the time instance for rescheduling. Event V is hard to detect

because the execution paths of tasks would intersect with each others at any

time, and the rank of local remaining execution requirements would change.
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Algorithm 7. Separate Feasible Set

Input : A set T of n tasks {T1, T2, ..., Tn}. A set P of m processors

{P1, P2, ..., Pm}.

Output: An independent feasible set or empty set φ on the end

// Scan for sj = uk

1. j ← 1, k ← 1

2. while j ≤ m and k ≤ n do

3. if sj = uk then

4. return {{Tk}, {Pj}}

5. else if sj < uk then

6. k ← k + 1

7. else

8. j ← j + 1

9. end if

10. end while

// Scan for sj = uk

11. Q ← φ, R ← φ

12. for k = 1 to m do

13. Q ← Q∪ Tk, R ← R∪ Pk

14. if Sk = Uk then

15. return {Q,R}

16. end if

17. end for

18. return φ

50



Therefore, only if we can simulate the behaviors of all tasks, we are unable to

decide Lt
k because we can not decide the local remaining execution requirements

of all tasks.

5.2 Analysis of PGM Scheduling Algorithm

Unlike the RD algorithm, the PGM scheduling algorithm detects the first oc-

currence of Event B, Event C, or Event F for rescheduling. By algorithm 8, we

see that the time complexity decreases significantly to O(1) for each task, and

hence O(n) for the entire task set.

While rescheduling, since the algorithm would assign tasks with processors

in a group order, which is a random order in the same task group, the algorithm

would require at most O(m) task migrations to move tasks and processors

among different groups. Therefore, while rescheduling, the algorithm has an

O(n) bound for time complexity and an O(m) bound for task migration.

If we applied the PGM algorithm to an identical multiprocessors platform,

the complexity decreases significantly. Because there the computing capacity

are the same for all processors in identical multiprocessors platform, there is only

one task group and the rescheduling would only cost O(1) for task migration.
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5.3 Analysis of PPGM Scheduling Algorithm

The PPGM scheduling algorithm is similar to PGM but making tasks and

processors groups by preprocessed make group algorithm. The preprocessed

make group algorithm would divide the processors set into a structure that for

any task group Gi, the boundary processors Pi and Pi+1 would be grouped into

processors groups Hi−1, Hi, or Hi+1. Therefore, whenever an event occurs, the

removal of task and processor would not lead to a change to the structure of

the tasks groups and processors groups. Therefore, once a processor is removed,

we can thought it as a merge between neighboring tasks groups and processors

groups. Since the structure of the tasks groups and processors groups is not

changed, the removal can be simply done by a context switch, which leads to

at most 2 task migrations. Therefore, the PPGM scheduling algorithm would

cause only O(1) task migrations on each rescheduling, and at most 2(m−1) task

migrations in a T-Ler plane. Also, because there are only one context switch

on each rescheduling, the overhead of calculation for the next event becomes

O(1). We can simply maintain a heap structure sorted by time for all events

to get the first occurrence of any events. Since it takes O(lg n) to complete an

insertion to a heap, the time complexity for PPGM algorithm becomes O(lg n)

on each rescheduling.
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Algorithm 8. Next Event

Input : A task Ti, a processor Pj that is assigned to Ti, two

processors Pa and Pb that represents the upper and lower

boundaries for Ti.

Output: Occurrence time, type, and associated task and processor of

the next event

// Scan for Event B

1. tB ←
li
sj

// Scan for Event F

2. if sj > sb then

3. tF ←
li−eb
sj−sb

4. P ← Pb

5. else

6. tF ←
ea−li
sa−sj

7. P ← Pa

8. end if

9. if tF > tB then

10. return {tB,”Event B”, Ti, P}

11. else

12. return {tF ,”Event F”, Ti, P}

13. end if
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Chapter 6

Conclusions

Although in 2008, Chen presented the PCG scheduling algorithm, which is the

first optimal on-line dynamic-priority scheduling algorithm for uniform multi-

processors systems, the cost of the algorithm is high. In this thesis, first, we

introduce the idea of independent feasible sets and the idea of group order. Fur-

thermore, based on the ideas and the T-Ler plane model for uniform multipro-

cessors platform, we extend the Precaution Cut Greedy algorithm, and present

three optimal on-line dynamic-priority scheduling algorithms for uniform mul-

tiprocessors systems with lower time complexities and less task migration costs.

The first algorithm presented is the RD scheduling algorithm. The RD

scheduling algorithm is optimal, but is hard to implement. The RD algorithm

could be thought as an one-directional proof of Funk’s theorem that once the

set of periodic tasks and uniform processors satisfies the feasibility condition,

the set is schedulable to meet all deadlines.

The second algorithm would be the PGM scheduling algorithm. The al-
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gorithm is similar to PCG scheduling algorithm but assigns tasks with proces-

sors in a group order, which generalize the concept of PCG algorithm. The

algorithm is optimal, with O(n) time complexity and O(m) task migrations

on each rescheduling for an uniform multiprocessors platform. But if the al-

gorithm is applied to an identical multiprocessors platform, the performance

would raise significantly to O(n) time complexity and O(1) task migrations on

each rescheduling.

Finally, we present the PPGM scheduling algorithm, which is based on

the PGM algorithm but with a few modifications. The algorithm is also opti-

mal, and gives an O(lg n) time complexity but O(1) task migrations on each

rescheduling for an uniform multiprocessors platform. Comparing to others,

currently the PPGM algorithm is an on-line dynamic-priority scheduling algo-

rithm with the least task migration cost among all algorithms.

In addition to periodic tasks, the PPGM scheduling algorithm is also opti-

mal for scheduling non-periodic tasks. The algorithm would generate a schedule

for n non-periodic tasks on m uniform processors with optimal finish time and

at most 2(m− 1) task migrations.

Because of the simplicity and the low task migration cost of the PPGM

scheduling algorithm, we believe that the PPGM algorithm could be applied to

many asymmetric multicore platforms that are similar to uniform multiproces-

sor platform.
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