國立臺灣大學電機資訊學院資訊工程學系

碩士論文
Department of Computer Science and Information Engineering College of Electrical Engineering and Computer Science National Taiwan University Master Thesis

制式多處理器下即時排程的增進
 Improvements on On－Line UniformMultiprocessors Scheduting
 咮百號
 Bie－I Chu

指導教授：薛智文 博士

Advisor：Chih－Wen Hsueh，Ph．D．

中華民國99年8月

August， 2010

制式多處理器下即時排程的增進

指導教授：薛智文

研究生：朱百一

國立台灣大學資訊工程學研究所

摘要

在硬性即時環境下，處理週期性任務在多處理器平台上的排程，是電腦科學中一個基礎的問題。在這篇論文中，我們要考慮問題是對一個由 n 個埸迹的任務和 m 個制式多處理器所形成的集合作線上排程。我們提出了一個最佳演算法，它能多對所有可行的集合進行排程，並且保證所有的任務都能多在期限內完成。在以往的成果中，過去的最佳演算法在每一次重新排程時，他的時間複雜度是 $O(n \lg n)$ ，䉕會產生至多 $O(n)$ 的工作遷移；但是我們的演算法在每一次重新排程時，除了改進時間複雜度，將之減少為 $O(\lg n)$ 之外，亦將工作遷移的數量減少至 $O(1)$ 。除此之外，若是對非週期性任務在制式多處理器下進行排程，我們的演算法亦可保證他的排程長度是最短的。

關鍵字：即時，制式，多處理器，最佳，線上，演算法，排程

Improvements on On-Line Uniform Multiprocessors Scheduling

Abstract

Scheduling periodic tasks on multiprocessor platform in a hard-real-time environment is one of the fundamental problems in computer science. In this thesis, we consider the problem of on-line scheduling a set of n independent periodic tasks on m uniform processors. We present an optimal scheduling algorithm in the sense that the algorithm is able to schedule any feasible set to meet all deadlines. From previous works, the optimal algorithm gave an $O(n)$ bound for number of task migration and an $O(n \lg n)$ bound for time complexity on each rescheduling. But fôr our algorithm, we reduc̊e both number of task migration and time complexity to $O(1)$ and $O(\lg n)$ arespectively. Our algorithm also guarantees minimal schedule length for scheduling non-periodic tasks on uniform multiprocessors.

Keyword: real-time, uniform, multiprocessor, optimal, on-line, algorithm, scheduling.

Contents

1 Introduction 1
1.1 Background 1
1.1.1 Multiprocessor Platforms 1
1.1.2 Optimal Scheduler 2
1.1.3 On-line Scheduling 2
1.2 Motivations 3
1.3 Contributions and Organizations 3
2 Definitions, Assumptions, and Feasibility Condition for Uniform Multipro- cessors 5
2.1 Definitions and Assumptions 5
2.2 Feasibility Condition for Uniform Multiprocessors? 7
2.3 Independent Feasible Sets 7
2.4 Separability of Feasible Sets 8
3 Precaution Cut Greedy Algorithm and The T- $\mathrm{L}_{e r}$ Plane 12
3.1 T-L Ler $_{e r}$ Planes 12
3.2 Definitions in One T- $\mathrm{L}_{e r}$ Plane 15
3.3 Events in One T- $\mathrm{L}_{e r}$ Plane 16
3.4 The Precaution Cut Greedy Algorithm 18
4 Optimal Scheduling Algorithm for Uniform Processors 21
4.1 Task Groups and Group Order 21
4.2 The Random Divide Algorithm 24
4.3 Proof of Optimality of RD Scheduling Algorithm 27
4.4 The Precaution Group Merge Algorithm 31
4.5 Proof of Optimality of PGM Scheduling Algorithm 34
4.6 The Preprocessed Precaution Group Merge Algorithm 41
4.7 Proof of Optimality of PPGM Scheduling Algorithm 44
5 Complexity Analysis 49
5.1 Analysis of RD Scheduling Algorithm 49
5.2 Analysis of PGM Scheduling Algorithm 51
5.3 Analysis of PPGM Scheduling Algorithm 52
6 Conclusions 54
Bibliography 55

List of Figures

3.1 The $\mathrm{T}-\mathrm{L}_{e r}$ plane 13
$3.2 \mathrm{~T}-\mathrm{L}_{e r}$ plane 14
$3.3 k$ th $\mathrm{T}_{-} \mathrm{L}_{e r}$ plane 15
4.1 An Example of Tasks Groups and Processors Groups 22
4.2 RD Scheduling Algorithm 27
4.3 Example of PGM Scheduling Algorithm 33
4.4 Yet Another Example of PGM Scheduling Algorithm 40
4.5 Example of PPGM Scheduling Algorithm. 45

List of Algorithms

1 Precaution Cut Greedy, Chen et al. [2] 19
2 Make Group 24
3 Random Divide 25
4 Precaution Group Merge 31
5 Preprocessed Make Group 42
6 Preprocessed Precaution Group Merge 43
$7 \quad$ Separate Feasible Set 50
8
Next EventS53

Chapter 1

Introduction

1.1 Background

1.1.1 Multiprocessor Platforms.

The scheduling of a set of tasks on parallel multiprocessors platform is a basic problem in computer science with a large number of applications. From previous works [5] [2], there are at least three different kinds of multiprocessors platforms that scheduling theorists are interested in:

- Identical multiprocessors platform. All processors are identical. In other words, all processors have the same computing capacity.
- Uniform multiprocessors platform. Each processor in the platform is characterized by its own computing capacity. Once a task is scheduled onto a uniform processor with speed s for t time units, then $s \times t$ units of execution requirements are completed.
- Unrelated multiprocessors platform. There exists an execution rate $r_{i, j}$ be-
tween each pairs of processor P_{i} and task T_{j}. Once a task T_{j} is scheduled onto processor P_{i} for t time units, then $r_{i, j} \times t$ units of execution requirements are completed.

1.1.2 Optimal Scheduler

The time to finish a given set of tasks on multiprocessor platform provides a measure for the performance of scheduling algorithms. Therefore, in general, a scheduling algorithm is optimal if and only if the algorithm can schedule tasks on multiprocessor platform with nimils schedule length (or finish time) [7]. But for periodic tasks, the schedule will not finish. Hence, we cannot use the schedule length to measure the performance of scheduling algorithms. In stead, a scheduling algorithm is said to be optimal if and only if the algorithm can schedule all feasible set of periodic task on multiprocessor platforms that all task complete by their deadlines [2] [5].

There are still other criterions for measuring the performance of scheduling algorithm such as numbers of task migrations and time complexity.

1.1.3 On-line Scheduling

On-line scheduling algorithms make scheduling decisions at each time-instant based upon the characteristics of the tasks that have arrived thus far [5]. An example of on-line scheduling algorithm would be the earliest deadline first (EDF) scheduling algorithm [8].

1.2 Motivations

There were many works had been done under different platforms. In 1969, Muntz and Coffman [11] had presented an optimal static level algorithm for scheduling tasks on identical multiprocessors platforms. Then in 2006, Cho et al. [3] based on P-fair [1] and L-C plane [4], created the Time and Local Execution Time Planes (or T-L planes) model and provided the Largest Local Remaining Execution Time First (or LLREF) optimal on-line scheduling algorithm for scheduling tasks on identical multiprocessors platforms. Finally in 2008, Chen et al. [2] extended the T-L-plane model, created the Time and Local Execution Requïrementplane (or T- $\mathrm{D}_{\text {er }}$ plane) model and presented the Precaution Cut Greedy (or PCG) optimal on-line scheduling algorithm for scheduling tasks on uniform multiprocessors platforms, which is the first on-line optimal scheduling algorithm for uniform multiprocessors platforms. Although the problem of scheduling a set of periodic tasks on uniform multiprocessors platform had been solved by the PCG algorithm, the scheduling cost of the PCG algorithm is high. We are interested in developing another optimal online scheduling algorithm that would solve the problem efficiently and with lower time complexities and task migration costs.

1.3 Contributions and Organizations

Our contributions are as follows:

- We present an optimal on-line scheduling algorithm for uniform multiprocessors called Random Divide scheduling algorithm, which uses a divide-and-conquer method to solve the problem.
- We present an optimal on-line scheduling algorithm for uniform multiprocessors called Precaution Group Merge scheduling algorithm, which is based on the Random Divide and the PCG algorithm and reduces both the time complexity and the number of task migrations.
- We present an optimal on-line scheduling algorithm for uniform multiprocessors called Preprocessèd-Precaution Group Merge scheduling algorithm, which is based on the PGM algorithm and guarantees an $O(1)$ bound for the number of task migrations and an $O(\lg n)$ bound for time complexity on each rescheduling.

The remainder of this thesis is organized as follows. In chapter 2, we describe our problems, definitions and assumptions, and the feasibility conditions for uniform multiprocessors. In chapter 3 , we introduce the $\mathrm{T}-\mathrm{L}_{e r}$ plane model and the PCG scheduling algorithm [2] presented by Chen as they are the basis of our work. In chapter 4, we present the Random Divide (RD), the Precaution Group Merge (PGM), and the Preprocessed Group Merge (PPGM) scheduling algorithms and prove their optimalities. In chapter 5 , we analyze the performances and complexities of our scheduling algorithms. This thesis is concluded in chapter 6 .

Chapter 2

Definitions, Assumptions, and Feasibility Condition for Uniform Multiprocessors

Before we discuss about the detaits of the scheduling algorithms, we introduce the basic definitions and assumptions of uniform multiprocessor scheduling.

2.1 Definitions and Assumptions

We discuss the problem of dynamic-priority scheduling of hard-real-time systems on a uniform multiprocessors platform of m processors and n tasks.

For processors and tasks, we have the following definitions:
Definition 1. A processor $P_{i}=\left(s_{i}\right)$ is characterized by a positive constant s_{i}, where s_{i} represents the computing capacity (or speed) of P_{i}.

Definition 2. A task $T_{i}=\left(c_{i}, p_{i}\right)$ is characterized by two positive constants
c_{i} and p_{i}, where c_{i} represents the execution requirement and p_{i} represents the period of T_{i}. We define the utilization of a task T_{i} to be $u_{i}=c_{i} / p_{i}$.

Moreover, for tasks, we have the following assumptions:

- All tasks are periodic and the deadline is equal to the end of the period.
- All tasks are independent that tasks do not share resources or have any precedence.
- Each task can be assigned with only one processor at a time.
- Tasks are allowed to arbitrarily migrate across processors during their execution.

Throughout this thesis, we will use the $\operatorname{set} \boldsymbol{\mathcal { P }}=\left\{P_{i} \mid 1 \leq i \leq m\right\}$ to represent the m-processor iniform multiprocessor platform and the set $\mathcal{T}=$ $\left\{T_{i} \mid 1 \leq i \leq n\right\}$ to represent n periôdic tasks system. Without loss of generality, we assume that both \mathcal{P} and \mathcal{T} are indexed in a non-increasing manner that $s_{i} \geq s_{i+1}$ for all $1 \leq i<m$ and $u_{i} \geq u_{i+1}$ for all $1 \leq i<n$.

We further assume $m \leq n$, because when $m>n$, the slower processors will never be used.

2.2 Feasibility Condition for Uniform Multiprocessors

Many works had been done for uniform multiprocessors scheduling. Funk et al. [5] presented the feasibility condition for uniform multiprocessors. We introduce their theorems here.

Theorem 1. (Funk et al. [5]) Consider a set $\mathcal{T}=\left\{T_{i} \mid 1 \leq i \leq n\right\}$ of n periodic tasks indexed according to non-increasing utilization and a set $\mathcal{P}=\left\{P_{i} \mid 1 \leq i \leq\right.$ $m\}$ of $m \leq n$ uniform processors indexed according to non-increasing speed. Let $S_{k}=\sum_{i=1}^{k} s_{i}$ for all $1 \leq i \leq m$ and let $U_{k \equiv}=\sum_{i=1}^{k} u_{i}$ for all $1 \leq i \leq n$. Periodic tasks system \mathcal{T} can be scheduled to meet all deadlines on uniform multiprocessor platform \mathcal{P} if and only if the following constraints hold
$S_{k} \geq U_{k}, \forall 1 \leq k \leq m$

We call the set $\{\mathcal{T}, \mathcal{P}\}$ a feasible set.

2.3 Independent Feasible Sets

Based on feasibility conditions, we introduce independent feasible sets:
Definition 3. An independent feasible set is a feasible set of n tasks and m uniform processors such that

$$
\begin{equation*}
\text { if } 1<m \leq n, s_{i} \neq u_{j}, \forall 1 \leq i \leq m, 1 \leq j \leq n, \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
S_{k}>U_{k}, \forall 1 \leq k \leq m-1, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{m} \geq U_{n} \tag{2.5}
\end{equation*}
$$

In other words, an independent feasible set is a feasible set with stricter constraints: $S_{k}>U_{k}$, for all $1 \leq k \leq m-1 ; s_{i} \neq u_{j}$, for all $1 \leq i \leq m$ and $1 \leq j \leq n$, if $1<m \leq n$.

We call $S_{k}>U_{k}$ the k th feasibility constraint and $S_{m} \geq U_{n}$ the m th feasibility constraint for an independent feasible set.

There are two reasons that the set is named independent:

- Each independent feasible set can bescheduled independently that no context switch would occur across independent feasible sets. In other words, context switch would only occur on the tasks whithin an independent feasible set.
- Each task in an independent feasible set can be scheduled onto processor independently in an arbitrary order.

We will prove the above properties in the following chapters.

2.4 Separability of Feasible Sets

Lemma 1. For a feasible set of n tasks and m uniform processors, if there exist k such that $S_{k}=U_{k}$, then the set can be reduced into one independent feasible
set containing k^{\prime} tasks and k^{\prime} processors and one feasible set containing $n-k^{\prime}$ tasks and $m-k^{\prime}$ processors, where k^{\prime} is the least k such that $S_{k}=U_{k}$.

Proof. Suppose $S_{k^{\prime}}=U_{k^{\prime}}$ for the original set. We separate the original set into $\mathcal{S}_{1}=\left\{\mathcal{T}_{1}, \mathcal{P}_{1}\right\}$ and $\mathcal{S}_{2}=\left\{\mathcal{T}_{2}, \mathcal{P}_{2}\right\}$ where $\mathcal{T}_{1}=\left\{T_{i} \mid 1 \leq i \leq k^{\prime}\right\}, \mathcal{P}_{1}=\left\{P_{i} \mid 1 \leq i \leq\right.$ $\left.k^{\prime}\right\}, \mathcal{T}_{2}=\left\{T_{i} \mid k^{\prime}<i \leq n\right\}$, and $\mathcal{P}_{2}=\left\{P_{i} \mid k^{\prime}<i \leq m\right\}$.

That is, we make the first k^{\prime} tasks and first k^{\prime} processors form one set and the rest tasks and processors form the other set. Since k^{\prime} is the least k such that $S_{k}=U_{k}$, we have

$$
S_{i}^{\prime}>U_{i}, \forall 1 \leq i \leq \mathbb{k}^{\prime \prime}-1
$$

Therefore \mathcal{S}_{1} is an independent feasible set by definition.
For \mathcal{S}_{2}, the j th, $1 \leq j \leq m-k$, feasibility constraints becomes

$$
S_{j}=\sum_{i=k^{\prime}+1}^{k^{\prime}+j} s_{i}=S_{k^{\prime}+2,2}^{2}-S_{k^{\prime}} \geq U_{k}+j-\theta_{k^{\prime}}=\sum_{i=k^{\prime}+1}^{k^{\prime}+j} u_{i}=U_{j} .
$$

For all $1 \leq j \leq m-k^{\prime}$, the inequality would hold, thus \mathcal{S}_{2} is a feasible set.

Lemma 2. For a feasible set of n tasks and m uniform processors, if there exist $s_{k}=u_{k^{\prime}}$, where $1 \leq k \leq m$ and $1 \leq k^{\prime} \leq n$ (i.e. the speed of a processor is equal to the utilization of a task), then the set can be reduced into one feasible set containing $n-1$ tasks and $m-1$ processors and one independent feasible set containing one task and one processor.

Proof. Suppose $s_{k}=u_{k^{\prime}}$ for the original set, we separate the original set into
$\mathcal{S}_{1}=\left\{\mathcal{T}_{1}, \mathcal{P}_{1}\right\}$ and $\mathcal{S}_{2}=\left\{\mathcal{T}_{2}, \mathcal{P}_{2}\right\}$ where $\mathcal{T}_{1}=\left\{T_{k^{\prime}}\right\}, \mathcal{P}_{1}=\left\{P_{k}\right\}, \mathcal{T}_{2}=\left\{T_{i} \mid 1 \leq\right.$ $i \leq n$ where $\left.i \neq k^{\prime}\right\}$, and $\mathcal{P}_{2}=\left\{P_{i} \mid 1 \leq i \leq m\right.$ where $\left.i \neq k\right\}$.
\mathcal{S}_{1} is an independent feasible set by definition since $S_{1}=s_{k} \geq u_{k^{\prime}}=U_{1}$.
For \mathcal{S}_{2}, there are two cases: if $k \leq k^{\prime}$, then the j th, $1 \leq j \leq m-1$, feasibility constraints becomes

$$
\begin{gathered}
S_{j}=\sum_{i=1}^{j} s_{i} \geq \sum_{i=1}^{j} u_{i}=U_{j}, \text { for } 1 \leq j<k, \\
S_{j}=\sum_{i=1}^{k^{\prime}} s_{i}-s_{k}-\sum_{i=j+2 j}^{k^{\prime}} s_{i} \geq \sum_{i=1}^{k^{\prime}} u_{i} \sum_{i=j \neq 1}^{k^{\prime}} u_{i}=U_{j}, \text { for } k \leq j<k^{\prime},
\end{gathered}
$$

and

$$
S_{j}=\sum_{i=1}^{j} s_{i}-s_{k} \geq \sum_{i=1}^{j} u_{i} \text {, for } k^{\prime} \leq j \leq m-1 \text {. }
$$

Otherwise, if $k \geq k^{\prime}$, then the j th, $1 \leq j \leq m-1$, feas

$$
\begin{gathered}
S_{j}=\sum_{i=1}^{j} s_{i} \geqslant \sum_{i=1}^{j} u_{i}=U_{j}, \text { for } 1 \leq j<k^{\prime}, \\
S_{j}=\sum_{i=1}^{j} s_{i} \geq \sum_{i=1}^{k^{\prime}-1} u_{i}+\sum_{i=k^{\prime}+1}^{j+1} u_{i}=U_{j}, \text { for } k^{\prime} \leq j<k,
\end{gathered}
$$

and

$$
S_{j}=\sum_{i=1}^{j} s_{i}-s_{k} \geq \sum_{i=1}^{j} u_{i}-u_{k^{\prime}}=U_{j}, \text { for } k \leq j \leq m-1 .
$$

For both cases, all j th, $1 \leq j \leq m-1$, feasibility constraints would hold, thus \mathcal{S}_{2} is a feasible set.

Theorem 2. All feasible sets of n tasks and m processors can be reduced into
independent feasible sets that scheduling these independent feasible sets is equivalent of scheduling the original feasible set.

Proof. According to lemma 1 and lemma 2, for any given feasible set, if there exists k such that $E_{k}=L_{k}$ or any j, i such that $e_{j}=l_{i}$, we can recursively apply the reduction algorithm to the separate the set until all of the sets are not reducible. That is, all sets become independent feasible sets. Furthermore, since independent feasible sets are by definition feasible sets, these independent feasible sets can schedule independently. Therefore, no context switch would occur across independent feasible sets.

Chapter 3

Precaution Cut Greedy Algorithm and The $\mathbf{T}^{-} \mathbf{L}_{e r}$ Plane

Our works are mainly based on the Precaution Cut Greedy (PCG) algorithm and the $\mathrm{T}_{-} \mathrm{L}_{e r}$ planes presented by Chencet al. 22 Therefore in this chapter, we will introduce the PCG algorithmand the T- $\mathrm{L}_{e r}$ plane model.

3.1 T- $\mathrm{L}_{e r}$ Planes

Chen extended the T-L plane model [3] and the L-C plane model [4], created the T- $\mathrm{L}_{e r}$ plane model [2]. T- $\mathrm{L}_{e r}$ planes stands for Time and Local Execution Requirement planes, which models the behaviors of tasks in uniform multiprocessor platform. As shown in figure 3.1, task T_{i} arrives at time t and its deadline is $t+p_{i}$. Also, as the figure shows, T_{i} is assigned with processors P_{1} and P_{2} alternatively in different time intervals. Since P_{1} is faster than P_{2}, task T_{i} would have higher execution rate on P_{1} than P_{2}. Therefore, as shown in figure 3.1, the

Figure 3.1: The $\mathrm{T}_{-} \mathrm{L}_{e r}$ plane
slope of the execution path is larger while the task is assigned with P_{1}. Finally, the fluid schedule of T_{i} represents the average execution rate during the entire period, which is shown infigure 3.1 by a dotted tine. The average execution rate of T_{i} can be easily calculated by c_{i} / p_{i}, which is equal to the utilization of T_{i}.

While n tasks are considered together, their fluid schedules can be constructed as shown in figure 3.2. Similar to the T-L plane [3], a right triangle can be found between every two consecutive end of periods and these right triangles would divide the $\mathrm{T}-\mathrm{L}_{\text {er }}$ plane into contiguous time intervals. We called the k th right triangle as the k th $\mathrm{T}-\mathrm{L}_{e r}$ plane and let the length of the corresponding time interval be t_{f}^{k}. Since no two right triangle would overlapped with each other, we could schedule in one k th $\mathrm{T}-\mathrm{L}_{e r}$ plane without considering the deadline of each task [6] - just to consider the local remaining execution requirement in time interval of length t_{f}^{k}. Since the local remaining execution requirement

Figure 3.2: $\mathrm{T}_{-} \mathrm{L}_{e r}$ plane
of each task is proportional to the average execution rate and the length of the time interval, all k th $\mathrm{T}-\mathrm{L}_{e r}$ planes are similar to each other. As long as we can finish all the jobs before the end of the $\mathrm{T}-\mathrm{L}_{e r}$ plane, we could give an optimal scheduling algorithm.

3.2 Definitions in One T-L ${ }_{e r}$ Plane

In the k th T - $\mathrm{L}_{e r}$ plane at time $0 \leq t \leq t_{f}^{k}$, we define the local computing capacity for processor P_{i} to be $e_{i}^{t}=s_{i} \times\left(t_{f}^{k}-t\right)$ and $E_{k}^{t}=\sum_{i=1}^{k} e_{i}^{t}$. The local computing capacity represents the actual computing capacity of a processor in the T- $\mathrm{L}_{e r}$ plane. For simplicity, we define $e_{i}=e_{i}^{0}$ and $E_{k}=E_{k}^{0}$.

Chen defined $l_{i, j}$ to represent the local remaining execution requirement of $\operatorname{task} T_{i}$ at time t_{j}. The value of $l_{i, 0}$ is equal to $u_{k} \times t_{f}^{k}$. Chen also defined the local
utilization $r_{i, j}=l_{i, j} /\left(t_{f}^{k}-t_{j}\right)$ of task T_{i} at time t_{j} in the $\mathrm{T}-\mathrm{L}_{e r}$ plane. But for simplicity, we rewrite t_{j} as t and define the remaining execution requirement of task T_{i} at time t as $l_{i, t}$ and the local utilization of task T_{i} at time t as $r_{i, t}=l_{i, t} /\left(t_{f}^{k}-t\right)$ in the $\mathrm{T}-\mathrm{L}_{e r}$ plane.

As shown in figure 3.3, during the execution, the execution paths of tasks might intersect with each others. Thus in a T- $\mathrm{L}_{e r}$ plane, at time $t, l_{i, t} \geq l_{i+1, t}$ would not guaranteed to hold unless $t=0$. Therefore, to distinguish with Chen, we define l_{i}^{t} to be the i th largest local remaining execution requirement at time t and $L_{k}^{t}=\sum_{i=1}^{k} l_{i}^{t}$. Also, we define $l_{i} \xlongequal{=} l_{i}^{0}$ and $L_{k}=L_{k}^{0}$ for simplicity. Note that here l_{i}^{t} do not guaranteed to be the local remaining execution requirement of T_{i} at time t unless $t=0$. Also note that $l_{i}=l_{i}^{0}=l_{i, 0}$.

3.3 Events in One $T-L_{e r}$ Plane

In $T-L_{e r}$ plane, Chen observed three kinds of time instances (or events) that rescheduling is needed. These events are bottom hitting events (or Event B), ceiling hitting events (or Event C), and floor hitting events (or Event F).

Definition 4. (Chen et al. [2]) Event B occurs when the local remaining execution requirement of a task T_{i} is equal to 0 , and the execution path of the task would hit the bottom of the T - $L_{\text {er }}$ plane.

Definition 5. (Chen et al. [2]) Event C occurs when the local remaining execution requirement of a task T_{i} is equal to e_{1} (i.e. the computing capacity of
processor P_{1}), and the execution path of the task would hit the ceiling (i.e. the processor boundary of P_{1}) of the T - $L_{e r}$ plane.

Definition 6. (Chen et al. [2]) Event F occurs when the local remaining execution requirement of a task T_{i} is equal to the computing capacity of a processor P_{j}, and the execution path of the task T_{i} would hit the processor boundary of processor P_{j} in the T - $L_{e r}$ plane.

Note that there are two situations for Event F. If the local remaining execution requirement of task T_{i} is originally greater than the local computing capacity of processor P_{j}, then the execution path of T_{i} would hit the processor boundary of P_{j} from topse Otherwise, if the local remaining execution requirement of task T_{i} is less than the local computing capacity of processor P_{j}, then the execution path of T_{i} would hit the processor boundary of P_{j} from bottom.

Whenever Event B or Event C occurs, it is apparent that a rescheduling is required. For Event F, Chen stated that [2]: Although, when event F occurs, it is not necessary to reschedule to satisfy $F G$ condition (i.e. the feasibility conditions), it is the precaution time instance to reschedule for our optimal scheduling algorithm. Whenever any of these three events occurs, we will reschedule all the tasks in our optimal scheduling algorithm.

In our work, we defined a new time instance called Event V:

Definition 7. For a feasible set of n tasks and m processors, in a T - $L_{e r}$ plane, Event V happens at time t whenever $E_{k}^{t}=L_{k}^{t}, k \neq m$, holds.

In other words, Event V is the time instance that the k th feasibility constraint is about to be violated. It is apparent that whenever Event V occurs, a rescheduling is required. Otherwise the feasibility conditions would be violated and the set would become infeasible and non-schedulable.

3.4 The Precaution Cut Greedy Algorithm

The Precaution Cut Greedy (PCG) scheduling algorithm is a work-conserving algorithm [5] based on the idea of "precaution." The algorithm always assigns the task with largest remaining execution requirement to the fastest processor, and will reschedule on the occurrence of any C, F, or B event.

When any event occurs, there must be a task on a processor boundary in T- $\mathrm{L}_{e r}$ plane otherwise the execution requirement of the tasks is equal to 0 . PCG will remove the task and the processor associate with the event and reschedule by greedily assigning the task withlargestremaining execution requirement to the fastest processor.

Algorithm 1. Precaution Cut Greedy, Chen et al. [2]
Input: A set τ of n tasks $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ with utilization $u_{1}, u_{2}, \ldots, u_{n}$. A set π of m processors $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ with speed $s_{1}, s_{2}, \ldots, s_{m}$.

1. while any event $[C|F| B]$ occurs at time t do
2. if $s_{i}=r_{j, t}$ then
3. assign T_{j} to P_{i} until the end of the T- $\mathrm{L}_{e r}$ plane
4. remove P_{i} from π, remove T_{j} from τ
5. else if $r_{j, k}=0$ then
6. remove T_{j} from τ
7. while there are ready tasks do
8. assign task with largest remaining execution requirement to the fastest idle processor
9. end while
10. end while

Chen proved that the set of tasks and processors is feasible while any event occurs.

Theorem 3. (Chen et al. [2]) When any event occurs, the set of tasks and processors is feasible by PG and PCG scheduling algorithm.

Moreover, Chen proved that when any event occurs, the removal of the task and the processor associated with the event will not lead to the violation of feasibility conditions.

Theorem 4. (Chen et al. [2]) When any event occurs, there exists a task on a
processor boundary in T - $L_{e r}$ plane or the execution requirement of this task is equal to 0. If we remove the task and the processor, the remaining set of tasks and processors will still be feasible.

Actually, theorem 4 can be explained by the separation of feasible set of theorem 2 in chapter 2. Therefore theorem 2 is a generalized form for Chen's theorem. Furthermore, we will state another generalized form of Chen's theorem 3 in the next chapter.

Chapter 4

Optimal Scheduling Algorithm for Uniform Processors

In this chapter, we will present the three scheduling algorithms: the Random Divide (RD) algorithm, the Precaution Group Merge (PGM) algorithm, and the Preprocessed Precaution Group Merge (PPGM) algorithm in the following sections.

4.1 Task Groups and Group Order

Before introducing our scheduling algorithms, three terms must be defined: task groups, processor groups, and group order.

Definition 8. For a feasible set of n tasks and m uniform processors, we define task group $\mathcal{G}_{i}=\left\{T_{j} \mid e_{i}<l_{j}<e_{i+1}, \forall 1 \leq i<m, 1 \leq j \leq n\right\}$.

In other words, a task group is a set of tasks that all tasks in the set are bounded by the same pair of consecutive processors in the same T- $\mathrm{L}_{e r}$ plane.

Figure 4.1: An Example of Tasks Groups and Processors Groups
Similar to task groups, a set $\mathcal{\mathcal { R }}$ of"processors can be divided into processor groups:

Definition 9. For a feasible set of n tasks and m uniform processors, we define processor group $\mathcal{H}_{i}=\left\{P_{j}\right\}$ to be a set of processors where $\left|\mathcal{H}_{i}\right|=\left|\mathcal{G}_{i}\right|$, for all $1 \leq i<m$.

Note here that we did not specify the construction of processor group \mathcal{H}_{i}. As long as $\left|\mathcal{H}_{i}\right|=\left|\mathcal{G}_{i}\right|$ would hold for all $1 \leq i<m$, we consider the processor groups as valid.

Definition 10. A group order is an order on scheduling tasks onto processors that task T_{i} would be assigned processor P_{j} if and only if $T_{i} \in \mathcal{G}_{k}$ and $P_{j} \in \mathcal{H}_{k}$.

In other words, we would schedule tasks and processors according to their group index: tasks would be assigned processors if and only if they have the same group index. If there are more than one tasks and processors have the same index, then the assignment is a random order for these tasks and processors.

The simplest way to form processor groups is to make faster processors into prior groups as shown in algorithm 2. As mentioned in the previous chapter, PCG scheduling algorithm is)a work-conserving algorithm that would always assign processors to tasksin an order that the task with largest remaining execution requirement always gets the fastest processor. In other words, in a $\mathrm{T}-\mathrm{L}_{e r}$ plane, if we make processor groups according to the computing capacity of processors, then the PCG algorithm would assign processors to tasks firstly in a group order for tasks in different groups, then secondly in a greedy order that the task with largest remaining execution requirement would get the fastest processor for tasks in the same group. Hence we can view the order of assignment of PCG algorithm as a subset of group order.

Algorithm 2. Make Group
Input : An independent feasible set $\{\mathcal{T}, \mathcal{P}\}$ of n tasks and m uniform processors

Output: Tasks groups \mathcal{G} and processors groups \mathcal{H}
// Initialize

1. $i \leftarrow 1, j \leftarrow 1$
// Scan \mathcal{T} and \mathcal{P} to make group
2. while $i<n$ do
3. $\quad \mathcal{G}_{i} \leftarrow \phi$
4. $\quad \mathcal{H}_{i} \leftarrow \phi$
5. while $l_{j}>e_{i+1}$ and $j<n$ do
6. $\quad \mathcal{G}_{i} \leftarrow \mathcal{G}_{i} \cup T_{j}$ 。
7.
8. $\quad j \leftarrow j+1$
9. end while
10. $\quad i \leftarrow i+1$

11. end while

4.2 The Random Divide Algorithm

The Random Divide (RD) scheduling algorithm is a divide-and-conquer algorithm that is shown in algorithm 3.

The RD scheduling algorithm takes a feasible set as input. Initially the

Algorithm 3. Random Divide
Input: A set \mathcal{T} of n tasks $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ with utilization $u_{1}, u_{2}, \ldots, u_{n}$.
A set \mathcal{P} of m processors $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ with speed $s_{1}, s_{2}, \ldots, s_{m}$.

1. repeat
2. if B event occurs then
3. remove the task with local remaining execution requirement equals to 0
4. assign another ready task to the idle processor
5. else
6. separate $\{\mathcal{T}, \mathcal{P}\}$ into independent feasible sets
7. for each independent feasible set, assign processors to tasks in a random order
8. end if
9. until Event B or Event V occurs
algorithm would separate the feasible set into independent feasible sets, then for each independent feasible set, the algorithm would schedule tasks onto processors in a random order. The algorithm would keep this random order until Event V or Event B occurs. If Event B occurs, the task associates with the event is removed since its remaining execution requirement equals to 0 , and then another ready task would be assigned to the idle processor. Otherwise, Event V occurs, then the RD algorithm will again separate those feasible sets associated with the event into independent feasible sets, and will reassign processors to tasks in a random order.

We give an example of execution in figure 4.2 that in the $\mathrm{T}-\mathrm{L}_{e r}$ plane, initially the feasible set contains three processors P_{1}, P_{2}, and P_{3} with local computing capacity $e_{1}=1, e_{2}=1 / 2, e_{3}=1 / 4$ respectively and three tasks T_{1}, T_{2}, and T_{3} with local remaining execution requirement $l_{1}=3 / 4, l_{2}=5 / 8$, and $l_{3}=3 / 8$ respectively. At the beginning, all the feasibility constraints holds, and T_{1}, T_{2}, and T_{3} are scheduled onto P_{1}, P_{2}, and P_{3} respectively in a random order. Then at time t_{1}, Event V occurs that $E_{1}^{t_{1}}=L_{1}^{t_{1}}$. Hence we separate the original feasible set into independent feasible sets $\mathcal{S}_{1}=\left\{\left\{T_{1}\right\},\left\{P_{1}\right\}\right\}$ and $\mathcal{S}_{2}=\left\{\left\{T_{2}, T_{3}\right\},\left\{P_{2}, P_{3}\right\}\right\}$ and again reschedule these two sets by assigning P_{1} to T_{1}, P_{2} to T_{3}, and P_{3} to T_{2}. Note here that \mathcal{S}_{1} contains only one processor and one task, so it would not need to be rescheduled until the end of the $\mathrm{T}-\mathrm{L}_{e r}$ plane. Then finally at time t_{2}, another Event V occurs in \mathcal{S}_{2} that both $E_{1}^{t_{2}}=L_{1}^{t_{2}}$ and $E_{2}^{t_{2}}=L_{2}^{t_{2}}$. Therefore, we further separate \mathcal{S}_{2} into independent feasible sets

$\left\{\left\{T_{2}\right\},\left\{P_{2}\right\}\right\}$ and $\left\{\left\{T_{3}\right\},\left\{P_{3}\right\}\right\}$. Now ${ }^{*}$ ooth independent feasible sets contain only one processor and one task, so they would not need to be rescheduled until the end of the $\mathrm{T}-\mathrm{L}_{e r}$ plane. Hence we finish the schedule.

4.3 Proof of Optimality of RD Scheduling Algorithm

We will prove the optimality of RD scheduling algorithm in this section.
Theorem 5. For a feasible set of n tasks and m uniform processors, in a $T-L_{e r}$ plane, as long as all processors are fully utilized, the mth feasibility condition
will always hold.

Proof. The proof is straight forward. Since the set is feasible at the beginning, at time $t=0$ in the T- $\mathrm{L}_{e r}$ plane, we have the m th feasibility condition hold at the time. That is,

$$
S_{m} \geq U_{n}
$$

or equivalently,

$$
E_{m} \geq L_{n}
$$

Now since we keep all processors to be fully utilized, we assign all m processors to tasks and there are no idle processors. Therefore, at any time t, in the same T- $\mathrm{L}_{e r}$ plane, the m th feasiblecondition becomes

$$
\begin{equation*}
E_{m}^{t}=E_{m}-t \times \sum_{i=1}^{m} s_{t}^{n} L_{n}-t \times \sum_{\Delta<i=1}^{m} s_{i}=L_{n}^{t} \tag{4.1}
\end{equation*}
$$

The inequality $E_{m}^{t} \geq L_{n}^{t}$ will always hold regardless of t, thus we finish the proof.

Theorem 6. For a feasible set of n tasks and m processors, the $R D$ scheduling algorithm is optimal and feasible for uniform multiprocessors.

Proof. We prove by showing that in a T- $\mathrm{L}_{e r}$ plane, whenever an Event V occurs, we can reschedule by reseparating the feasible sets into independent feasible sets, so that no feasibility constraints would be violated during the schedule.

According to the algorithm, we initially separate the given feasible set into independent feasible sets. Therefore, for each independent feasible set \mathcal{S}_{i}, initially we have

$$
\begin{gathered}
s_{j} \neq u_{k}, \forall 1 \leq j \leq m_{i}, 1 \leq k \leq n_{i}, \\
S_{k}>U_{k}, \forall 1 \leq k \leq m_{i}-1,
\end{gathered}
$$

and

$$
S_{m_{i}} \geq U_{n_{i}}
$$

or equivalently,
and

Where m_{i} and n_{i} represent the number of processors and the number of tasks of an independent feasible set \mathcal{S}_{i}. Note that here we assume $m_{i}>1$ because if $m_{i}=1$, then the independent feasible set would contain only one processor. Moreover, due to the feasibility constraints of independent feasible sets, it is apparent that the set is always feasible.

Since the scheduling algorithm would always assign all processors to tasks, all processors are kept fully utilized during the schedule. Therefore, according to theorem 5, we know for all independent feasible sets, the m th feasibility constraint would always hold.

We now focus on the independent feasible set \mathcal{S}_{j} that Event V occurs during the schedule. Because $E_{k}>L_{k} \forall 1 \leq k \leq m_{j}-1$, would hold for all independent feasible set \mathcal{S}_{j}, no matter that how the order of assigning processors to tasks is, before any of the feasibility constraints of \mathcal{S}_{j} is violated, at time $t>0$, there must be that

$$
\begin{equation*}
\exists k, 1 \leq k \leq m_{i}-1, E_{k}^{t}=L_{k}^{t} \tag{4.5}
\end{equation*}
$$

In other words, at time t, Event V occurs and independent feasible set \mathcal{S}_{i} becomes feasible sets at this moment.

We then separate \mathcal{S}_{j} again by algorithm described in theorem 2 . Therefore at time t, we would have another set of independent feasible sets and the initial conditions would be invařiant.

In a T- $\mathrm{L}_{e r}$ plane, by nomore than $m-1$ reseparations, the original set will be separated into m independent feasible sets with each set containing only one processor, which is the base case of tasks seheduling, and is apparently to be feasible and schedulable as mentioned before. Therefore, any feasible set can be schedulable using RD scheduling algorithm. That is, RD scheduling algorithm is optimal.

4.4 The Precaution Group Merge Algorithm

Based on the RD and PCG scheduling algorithm, we develop the Precaution Group Merge (PGM) scheduling algorithm as shown in algorithm 4.

Algorithm 4. Precaution Group Merge
Input: A set \mathcal{T} of n tasks $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ with utilization $u_{1}, u_{2}, \ldots, u_{n}$. A set \mathcal{P} of m processors $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ with speed $s_{1}, s_{2}, \ldots, s_{m}$.
repeat
2. if B event occurs then
3. remove the task with-local remaining execution requirement equals to 0
4. assign another ready task to the idle processor
5. else
6. separate $\{\mathcal{T}, \mathcal{P}\}$ into independent feasible sets
7. for each independent feasible set, make group by algorithm 2
8. for each independent feasible set, assign tasks with processors in a group order
9. end if
10. until any $[C|F| B]$ event occurs

The PGM scheduling algorithm borrows the idea of precaution of PCG algorithm, and would reschedule at the occurrence of any C, F, or B event.

The algorithm takes a feasible set as input. Initially the algorithm would
separate the feasible set into independent feasible sets. Then for each independent feasible set, the algorithm would make task groups and processor groups and would assign tasks with processors in a group order.

The algorithm would keep this order until that any C, F, or B event to occur. When B event occurs, the algorithm simply removes the task associated with the event and reschedules another ready task to the idle processor. When C or F event occurs, we know there must be at least one task on a processor boundary in $\mathrm{T}-\mathrm{L}_{e r}$ plane, that is, we have remaining execution requirement of a task equal to the computing eapacity of a processor. Therefore, we can apply the separation algorithm in theorem 2 to remove (or simply we say cut) the task and processor associated with the event from the current $\mathrm{T}-\mathrm{L}_{e r}$ plane. After such removal, the number of processors and tasks in the $\mathrm{T}-\mathrm{L}_{e r}$ plane both decreases by one, and we expect a merge of twotask groups whose processor boundary is the same as the removed processor.

We use the same feasible set in the previous section for $R D$ scheduling algorithm as an example to demonstrate the execution of PGM scheduling algorithm. The example is shown in figure 4.3.

At the beginning, all the feasibility constraints holds. Since $s_{1}>u_{1}>u_{2}>$ $s_{2}>u_{3}>s_{3}$, we make task groups by $\mathcal{G}_{1}=\left\{T_{1}, T_{2}\right\}, \mathcal{G}_{2}=\left\{T_{3}\right\}$ and processor groups by $\mathcal{H}_{1}=\left\{P_{1}, P_{2}\right\}, \mathcal{H}_{2}=\left\{P_{3}\right\}$. Following the group order, T_{1} and T_{2} would be assigned with P_{1} and P_{2}, and T_{3} would be assigned with P_{3}, thus we

Figure 4.3: Example of PGM Scheduling Algorithm
assign T_{1}, T_{2}, and T_{3} with P_{2}, P_{1}, and ${ }^{*} P_{3}$ respectively. Then, at time t_{1}, Event F occurs that the local remaining execution requirement of T_{2} is equal to the local computing capacity of P_{2}, therefore, we separate the original feasible set into independent feasible sets $\mathcal{S}_{1}=\left\{\left\{T_{1}, T_{3}\right\},\left\{P_{1}, P_{3}\right\}\right\}$ and $\mathcal{S}_{2}=\left\{\left\{T_{2}\right\},\left\{P_{2}\right\}\right\}$. Now for \mathcal{S}_{2}, it is an independent feasible set with only one processor and one task, therefore as long as we assign P_{2} to T_{2}, it would not need to be reschedule until the end of the $\mathrm{T}-\mathrm{L}_{e r}$ plane. For \mathcal{S}_{1}, it is the original feasible set with T_{2} and P_{2} removed, and we assign P_{1} to T_{1} and P_{3} to T_{3} to satisfy the group order.

Finally at time t_{2}, another Event F occurs when the execution path of T_{1} hits the boundary of P_{3} (note that at this time, the execution path of T_{3} also hits the boundary of P_{1}). Now we again reschedule by remove $\mathcal{S}_{3}=\left\{\left\{T_{1}\right\},\left\{P_{3}\right\}\right\}$ from \mathcal{S}_{1}. Hence both \mathcal{S}_{1} and \mathcal{S}_{3} contain only one processor, so as long as we $\operatorname{assign} P_{3}$ to T_{1} and P_{1} to T_{3}, they would not require further rescheduling until the end of the $\mathrm{T}-\mathrm{L}_{e r}$ plane, and we finish the schedule.

4.5 Proof of Optimality of PGM Scheduling Algorithm

The PGM scheduling algorithm is similar to the PCG scheduling algorithm except that PGM would assign processors to tasks in a group order. But in another point of view, as long as we can prove that the violation of feasibility constraint (or Event V) would occur no earlier than the first occurrence of any C, F, or B event, PGM scheduling algorithm ean be thought as a subset of the RD scheduling algorithm because group order is a subset of random order. Hence the PGM scheduling algorithm is feasible and optimal.

Theorem 7. For an independent feasible set of n tasks and m processors, if we schedule using PGM algorithm, then Event V would occur no earlier than Event F in the first task group.

Proof. Suppose there are n^{\prime} tasks in the first task group, we have $\mathcal{G}_{1}=\left\{T_{i} \mid 1 \leq\right.$ $\left.i \leq n^{\prime}\right\}, \mathcal{H}_{1}=\left\{P_{i} \mid 1 \leq i \leq n^{\prime}\right\}$, and $s_{1}>u_{1} \geq u_{2} \geq \ldots \geq u_{n^{\prime}}>s_{2} \geq$ $s_{3} \geq \ldots \geq s_{n^{\prime}}$. Also, the feasibility constraints should hold, therefore, we have
$E_{k} \geq L_{k}, \forall 1 \leq k \leq n^{\prime}$.

Since we assign the fastest n^{\prime} processors to tasks in the first task group， according to theorem 5 ，the n^{\prime} th feasibility constraint would never be violated． Hence it would be no need to prove the occurrence of the violation of the n^{\prime} th feasibility constraint．

Suppose t is the time that k th feasibility constraint is about to be violated， that is $E_{k}^{t}=L_{k}^{t}$ ，for all $1 \leq k<n^{\prime}$ ．Because processors are assigned to tasks in a group order，it is actually a random order for tasks in the same group． Therefore，we assume initially at time 0 ，we assign processor P_{i}^{\prime} to tasks T_{i}^{\prime} ， and now at time t ，the local remaining execution requirement of T_{i}^{\prime} is $l_{i, t}^{\prime}$ and $l_{i, t}^{\prime} \geq l_{i+1, t}^{\prime}$ for $1 \leq i<n_{\infty}^{\prime}$ ．Let s^{\prime} be the speed of processor P_{i}^{\prime} ，then t can be calculated as follow：

$$
E_{k}^{t}=L_{k}^{t},
$$

$$
E_{k}^{t}=E_{k}-t-\sum_{i=1}^{k} s_{i}=E_{k}-t \times S_{k},
$$

$$
L_{k}^{t}=\sum_{i=1}^{k} l_{i, 0}^{\prime}-t \times \sum_{i=1}^{k} s^{\prime}{ }_{i}=L_{k}^{\prime}-t \times \sum_{i=1}^{k} s^{\prime}{ }_{i}=L_{k}^{\prime}-t \times S_{k}^{\prime} .
$$

Therefore，

$$
\begin{equation*}
t=\frac{E_{k}-L_{k}^{\prime}}{S_{k}-S_{k}^{\prime}} \tag{4.6}
\end{equation*}
$$

where $1 \leq k<n^{\prime}$ ．

Suppose initially T_{j} is the task that is assigned with P_{1} ，then the time of
occurrence of Event F can be calculated as

$$
\begin{equation*}
\frac{l_{j}-e_{2}}{s_{1}-s_{2}} \tag{4.7}
\end{equation*}
$$

Furthermore, we know for $1 \leq k<n^{\prime}$,

$$
\begin{aligned}
S_{k}-S_{k}^{\prime} & =\left(s_{1}+s_{2}+\ldots+s_{k}\right)-\left(s_{1}^{\prime}+s_{2}^{\prime}+\ldots+s_{k}^{\prime}\right) \\
& \leq\left(s_{1}+s_{2}+\ldots+s_{k}\right)-\left(s_{n^{\prime}}+s_{n^{\prime}-1}+\ldots+s_{n^{\prime}-k+1}\right) \\
& =S_{k}-\sum_{i=n^{\prime}-k+1}^{n^{\prime}} s_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{k}-L_{k}^{\prime} & =\left(e_{1}+e_{2}+\ldots+e_{k}\right)-\left(l_{1}^{\prime}+l_{2}^{\prime}+\ldots+l_{k}^{\prime}\right) \\
& \geq\left(e_{1}+e_{2}+\ldots e_{k}\right)-\left(l_{1}+l_{2}+\ldots+l_{k}\right) \\
& =E_{k}-L_{k} \cdot \text { 白 }
\end{aligned}
$$

Now we consider two cases. If $U_{k} \leq S_{k}^{\prime}$, then

$$
\begin{align*}
\frac{E_{k}-L_{k}^{\prime}}{S_{k}-S_{k}^{\prime}} & \geq t_{f} \times \frac{S_{k}-U_{k}}{S_{k}-S_{k}^{\prime}} \\
& \geq t_{f} \times 1 \\
& \geq t_{f} \times \frac{u_{j}-s_{2}}{s_{1}-s_{2}} \\
& =\frac{l_{j}-e_{2}}{s_{1}-s_{2}} \tag{4.8}
\end{align*}
$$

Otherwise, $U_{k}>S_{k}^{\prime}$ implies $j>k$ because if $j \leq k$, we have

$$
\begin{aligned}
U_{k} & =u_{1}+u_{2}+\ldots+u_{k} \\
& \leq u_{1}+u_{2}+\ldots+u_{k}+\left(u_{k+1}+u_{k+2}+\ldots+u_{n^{\prime}}\right)-\left(s_{k+1}^{\prime}+s_{k+2}^{\prime}+\ldots+s_{n^{\prime}}^{\prime}\right) \\
& \leq\left(s_{1}^{\prime}+s_{2}^{\prime}+\ldots+s_{j-1}^{\prime}\right)+s_{1}+\left(s_{j+1}^{\prime}+s_{j+2}^{\prime}+\ldots+s_{k}^{\prime}\right) \\
& =S_{k}^{\prime}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \frac{E_{k}-L_{k}^{\prime}}{S_{k}-S_{k}^{\prime}} \geq t_{f} \times \frac{S_{k}-U_{k}}{S_{k}-\sum_{i=n^{\prime}-k+1}^{n^{\prime}} s_{i}^{\prime}} \\
& \geq t_{f} \times \frac{\sum_{i=k+1}^{n^{\prime} x} u_{i}-\sum_{i=k+1}^{n^{\prime}} s_{i}^{\prime}}{\sum_{i=1}^{k} s_{i}-\sum_{i=n^{\prime}-k+1}^{n^{\prime}} s_{i}} \\
& \geq t_{f} \times \frac{\sum_{i=k+1}^{n^{\prime}} u_{i} \sum_{i=k+1}^{n^{\prime}} s_{i}-\sum_{i=2}^{k} s_{i}+\sum_{i=n^{\prime}-k+1}^{n^{\prime}-1} s_{i}}{\sum_{i=1}^{k} s_{i}-\sum_{j=n^{n}}^{n^{\prime}-k+1} s_{i}-\sum_{i=2}^{k} s_{i}+\sum_{i=n^{\prime}-k+1}^{n^{\prime}-1} s_{i}} \\
& =t_{f} \times \frac{\sum_{i=k+1}^{n^{\prime}} u_{i}-\sum_{i=2}^{n^{\prime}} s_{i}+\sum_{i=n^{\prime}-k+1}^{n^{\prime}-1} s_{i}}{s_{1}-s_{n^{\prime}}} \\
& =t_{f} \times \frac{\sum_{i=k+1}^{n^{\prime}} u_{i=2}^{\prime 2} \sum_{i=2}^{n} s_{i}^{\prime}-s_{n^{\prime}}}{s_{1}-s_{n^{\prime}}} \\
& \geq t_{f} \times \frac{u_{k+1}-s_{n^{\prime}}}{s_{1}-s_{n^{\prime}}} \\
& =\frac{l_{k+1}-e_{n^{\prime}}}{s_{1}-s_{n^{\prime}}} \\
& \geq \frac{l_{j}-e_{n^{\prime}}}{s_{1}-s_{n^{\prime}}} \\
& \geq \frac{l_{j}-e_{2}}{s_{1}-s_{2}} \tag{4.9}
\end{align*}
$$

Both cases implies the occurrence of Event F is earlier than the occurrence of Event V for all $1 \leq k<n^{\prime}$, therefore we finish the proof.

Theorem 8. For a feasible set of n tasks and m processors scheduled using PGM scheduling algorithm, there must be at least one Event C, Event B, or Event F occurs before Event V.

Proof. Theorem 7 shows that Event V would occur no earlier' than Event F in the first task group. Therefore, we now consider the groups other than the first group.

Suppose at time t Event Voecurs, and the k th feasibility constraint is about to be violated. Because at time $t, E_{k-1}^{t} \geq L_{k-1}^{t}, E_{k}^{t}=L_{k}^{t}$, and $E_{k+1}^{t} \geq$ L_{k+1}^{t}, we have $e_{k}^{t} \leq l_{k}^{t}$ and $e_{k+1}^{t} \geq l_{k+1}^{t}$. Now we consider three cases at time 0 before time t :

- Case 1: Suppose initially at time $0, e_{k} \geq \hat{c}_{k}$. Then there must be an intersection at time $0 \leq t^{\prime} \leq t\left(\frac{1}{1}\right.$.e. $\left.e_{k}^{t^{\prime}}=l_{k}^{t^{\prime}}\right)$, hence F event occurs.
- Case 2: Suppose initially at time $0, e_{k+1} \leq l_{k+1}$. Then there must be an intersection at time $0 \leq t^{\prime} \leq t$ (i.e. $e_{k+1}^{t^{\prime}}=l_{k+1}^{t^{\prime}}$), hence F event occurs.
- Case 3: Suppose initially at time $0, e_{k}<l_{k}$ and $e_{k+1}>l_{k+1}$. Then $E_{k}^{t}=$ $E_{k-1}^{t}+e_{k}^{t}<L_{k-1}^{t}+l_{k}^{t}=L_{k}^{t}$, which leads to a contradiction indicating that the k th feasibility constraint is not the one that is about to be violated. Therefore, there must exist $k^{\prime}<k$ such that the k^{\prime} th feasibility constraint has already been violated at time $t^{\prime}<t$. Then we move to time t^{\prime} and the
problem becomes the same except that $k^{\prime}<k$. By such reduction, the case 3 will be recursively reduced to either case 1 , case 2 , or the base case (i.e. first group), and turn out that there must be an event to occur earlier than the feasibility conditions is violated.

Therefore we finish the proof.

As mentioned in earlier chapters, PCG scheduling algorithm assigns processors to tasks in a greedy manner that the task with largest local remaining execution requirement will get the fastest processor and the order of assignment of PCG scheduling algorithm is a subset of group order. Therefore, theorem 8 is a generalized theorem of Chen's theorem in theorem 3.

Theorem 9. For a feasibleset of n tasks and m processors, the PGM scheduling algorithm is optimal and feasible for uniform multiprocessors.

Proof. Since the set of tasks and processors is feasible, it follows the feasibility conditions. Since PGM reschedules at any event, according to theorem 8, the new task set is still feasible in the $\mathrm{T}-\mathrm{L}_{e r}$ plane. Since each $\mathrm{T}-\mathrm{L}_{e r}$ plane is independent, the entire schedule is feasible. Therefore, any feasible tasks set can be scheduled to meet all deadlines using PGM algorithm, and PGM scheduling algorithm is optimal.

The main drawback of PGM algorithm is that the algorithm would not

Figure 4.4: Yet Another Example of PGM Scheduling Algorithm
guarantee a constant bound for task migrations while rescheduling. An example is shown in figure 4.4 where initially the feasible set contains five processors P_{1}, P_{2}, P_{3}, P_{4}, and P_{5} with local computing capacity $e_{1}=1, e_{2}=0.85, e_{3}=0.7$, $e_{4}=0.5$, and $e_{5}=0.3$ respectively and five tasks $T_{1}, T_{2}, T_{3}, T_{4}$, and T_{5} with local remaining execution requirement $l_{1}=0.55, l_{2}=0.4$, and $l_{3}=l_{4}=l_{5}=0.25$ respectively. Initially, tasks $T_{1}, T_{2}, T_{3}, T_{4}$, and T_{5} is assigned with processors $P_{1}, P_{2}, P_{3}, P_{4}$, and P_{5} respectively to satisfy the group order. At time t_{1}, the execution path of T_{1} hits the boundary of P_{4}, Event F occurs. Therefore, T_{1}
and P_{4} are removed from the feasible set, and the remaining tasks T_{2}, T_{3}, T_{4}, and T_{5} are assigned with processors P_{1}, P_{3}, P_{2}, and P_{5} respectively to satisfy the group order. At the time instance t_{1}, we see that it requires at least three tasks migrations as indicated by a cross bar in figure 4.4.

4.6 The Preprocessed Precaution Group Merge Algorithm

Based on the PGM scheduling algorithm, we develop the Preprocessed Precaution Group Merge (PPGM) scheduling algorithm. The only distinction between the PPGM and the PGM algorithms is that we change the way of making group by first preprocessed the tasks and processors sets as shown in algorithm 5 .

Unlike the make group algorithm in algorithm 2, the preprocessed make group algorithm would scan through the entire processors set to make the best processors groups to reduce tasks migrations. Rather then simply grouping the faster processors into prior groups, while the preprocessed make group algorithm is making a processor group for a task group, the algorithm would count the number of processors with local computing capacity larger than the boundary processor of the task group, and make the most efficient use of these processors. For example, in figure 4.4, the original make group algorithm 2 generates the processor groups of $\left\{P_{1}\right\},\left\{P_{2}\right\}$, and $\left\{P_{3}, P_{4}, P_{5}\right\}$. But in fact, there are three processors (i.e. P_{1}, P_{2}, and P_{3}) with local computing capacity larger than the local remaining execution requirement of T_{1}, and the most efficient way is

Algorithm 5. Preprocessed Make Group
Input : An independent feasible set $\{\mathcal{T}, \mathcal{P}\}$ of n tasks and m

uniform processors

Output: Tasks groups \mathcal{G} and processors groups \mathcal{H}
// Initialize

1. $i \leftarrow 1, j \leftarrow 1, k \leftarrow 1$
2. Stack $\leftarrow \phi$
// Scan \mathcal{T} and \mathcal{P} to make group
3. while $i<n$ do
4. Stack.push $\left(P_{k}\right)$
5. $\quad \mathcal{G}_{i} \leftarrow \phi, \mathcal{H}_{i} \leftarrow \phi$ 。
6. while $l_{j}>e_{i+1}$ and $j<n$ dod
7. $\quad \mathcal{G}_{i} \leftarrow \mathcal{G}_{i} \cup T_{j}$
8. if Stack.empty() then
9. $\quad \mathcal{H}_{i} \leftarrow \mathcal{H}_{i} \cup P_{k}, k \leftarrow k+1^{\circ}$
10. else
11. $\mathcal{H}_{i} \leftarrow \mathcal{H}_{i} \cup$ Stack.pop ()
12. end if
13. $\quad j \leftarrow j+1$
14. end while
15. $\quad i \leftarrow i+1$
16. end while
to assign T_{1} with P_{3} and T_{2} with P_{4}. Therefore, the preprocessed make group algorithm would instead generate processor groups $\left\{P_{3}\right\},\left\{P_{4}\right\}$, and $\left\{P_{1}, P_{4}, P_{5}\right\}$.

The Preprocessed Precaution Group Merge scheduling algorithm is shown in algorithm 6.

Algorithm 6. Preprocessed Precaution Group Merge
Input: A set \mathcal{T} of n tasks $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ with utilization $u_{1}, u_{2}, \ldots, u_{n}$.
A set \mathcal{P} of m processors $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ with speed $s_{1}, s_{2}, \ldots, s_{m}$.

1. repeat
2. if B event occurs then
3. remove the task with local remaining execution requirement equals to 0
4. assign another ready task to the idle processor
5. else
6. separate $\{\mathcal{T}, \mathcal{P}\}$ into independent feasible sets
7. for each independent feasible set make group by algorithm 5
8. for each independent feasible set, assign tasks with processors in a group order
9. end if
10. until any $[C|F| B]$ event occurs

As mentioned earlier, the only distinction between PGM and PPGM algorithms is the make group algorithm. By making different processors group, the task schedule would be different among these two scheduling algorithms.

We use the same feasible set in figure 4.4 as an example to demonstrate the execution of PPGM scheduling algorithm. The example is shown in figure 4.5. Initially, algorithm 5 make tasks groups $\left\{T_{1}\right\},\left\{T_{2}\right\}$, and $\left\{T_{3}, T_{4}, T_{5}\right\}$, and processor groups $\left\{P_{3}\right\},\left\{P_{4}\right\}$, and $\left\{P_{1}, P_{2}, P_{5}\right\}$ respectively. Hence we assign T_{1}, T_{2}, T_{3}, T_{4}, and T_{5} with $P_{3}, P_{4}, P_{1}, P_{2}$, and P_{5} respectively. While at time t_{1}, Event F occurs and the local remaining execution requirement of T_{1} is equal to the local computing capacity of P_{4}. Therefore, T_{1} and P_{4} would be removed from the feasible set, and now T_{2} is assigned with idle processor P_{3}. Again at time t_{2}, another Event F occurs when the local remaining execution requirement of T_{2} is equal to the local computing capacity of P_{5}. Therefore T_{2} and P_{5} would be removed from the feasible set, and T_{5} is assigned with idle processor P_{3}. And the we will keep this order until the end of the T- $\mathrm{L}_{e r}^{*}$ plane.

4.7 Proof of Optimality of PPGM Scheduling Algorithm

Theorem 7 and theorem 8 shows that there must be at least one Event C, Event B, or Event F occurs before Event V if we schedule using PGM algorithm. For PPGM scheduling algorithm, the only distinction from PGM scheduling algorithm is the algorithm of making groups. Therefore, as long as we can prove that the tasks and processors groups generated by algorithm 5 would hold the same properties as generated by algorithm 2 , we can prove that the PPGM scheduling is optimal.

Figure 4.5: Example of PPGM Scheduling Algorithm
Theorem 10. For a feasible set of n tasks and m processors scheduled using PPGM scheduling algorithm, there must be at least one Event C, Event B, or Event F occurs before Event V.

Proof. We start the proof first by examining algorithm 5. While generating any tasks group $\mathcal{G}_{i}=\left\{T_{j} \mid e_{i}>l_{j}>e_{i+1}\right\}$, suppose there are k processors that have been pushed into the stack by algorithm 5. Let \mathcal{G}_{i} contain g tasks, then according to algorithm 5 , there are two cases:

- If $k \geq g$, then g processors would be popped out from the stack and grouped into \mathcal{H}_{i}. In this case, all g processors in \mathcal{H}_{i} would have local computing capacity larger than the local remaining execution requirement of tasks in \mathcal{G}_{i}.
- If $k<g$, then the algorithm would group k processors in the stack and $g-k$ consecutive processors into \mathcal{H}_{i}. In this case, the first k processors in \mathcal{H}_{i} would have local computing capacity larger than the local remaining execution requirement of tasks in \mathcal{G}_{i}.

For the first case, the feasibility constraints would hold because all processors in the processors group havelocal computing capacity larger than the local remaining execution requirement oftasks in the tasks group. For the second case, it is obvious that the processors in the processor group generated by algorithm 5 is always faster than the processors in the processor group generated by algorithm 2. Therefore, for bothic cases, the feasibility constraints would hold for each tasks group and processors group. Therefore, according to theorem 8, the initial conditions are the same. Hence we concluded that for any feasible set of n tasks and m processors scheduled using PPGM scheduling algorithm, there must be at least one Event C, Event B, or Event F occurs before Event V.

Theorem 11. For a feasible set of n tasks and m processors, the PPGM
scheduling algorithm is optimal and feasible for uniform multiprocessors.

Proof. Since the set of tasks and processors is feasible, it follows the feasibility conditions. Since PPGM reschedules at any event, according to theorem 8, the new task set is still feasible in the $\mathrm{T}-\mathrm{L}_{e r}$ plane. Since each $\mathrm{T}-\mathrm{L}_{e r}$ plane is independent, the entire schedule is feasible. Therefore, any feasible tasks set can be scheduled to meet all deadlines using PPGM algorithm, and PPGM scheduling algorithm is optimal.

Theorem 12. For a set of n independent non-periodic tasks and m uniform processors, the PPGM scheduting algorithm is optimal.

Proof. Non-periodic tasks are characterized by their execution requirements. Therefore, similar to the definitions in chapter 2 , we can define a non-periodic task $T_{i}=\left(c_{i}, \infty\right)$ by simplyehanging the period to infinity.

Early works [7], [10], [9] showed that the optimal finish time ω of scheduling a set of n independent tasks with execution requirement $c_{1} \geq c_{2} \geq \ldots \geq c_{n}$ on m uniform processors with speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$ would be

$$
\begin{equation*}
\omega=\max \left(\max _{1 \leq i \leq m}\left(\frac{C_{i}}{S_{i}}\right), \frac{C_{n}}{S_{m}}\right) \tag{4.10}
\end{equation*}
$$

where $C_{i}=\sum_{j=1}^{i} c_{j}$ and $S_{i}=\sum_{j=1}^{i} s_{i}$.
We schedule the set by first construct a $\mathrm{T}-\mathrm{L}_{e r}$ plane with corresponding time interval $\left[0, t_{f}\right)=[0, \omega)$. That is, if we can schedule the set in the $T-L_{e r}$
plane, we can finish the schedule in optimal finish time. Then by definition, for each non-periodic task T_{i}, the utilization can be calculated by $u_{i}=c_{i} / \omega$.

According to PPGM algorithm, for a set of n tasks and m uniform processors, if the feasibility constraint would hold at the beginning of the T- $\mathrm{L}_{e r}$ plane, the set would be schedulable by PPGM scheduling algorithm. Therefore, for all $1 \leq k \leq m$, the k th feasibility constraint of the problem becomes

Similarly, the m th feasibility constraint becomes , ,

Equation 4.11 and equation 4.12 show that the k th feasibility constraint would hold for all $1 \leq k \leq m$. Therefore, PPGM algorithm is able to schedule the set of n non-periodic tasks on m uniform processors in time interval $[0, \omega)$. Hence PPGM scheduling algorithm is also optimal for scheduling non-periodic tasks on uniform multiprocessors.

Chapter 5

Complexity Analysis

5.1 Analysis of RD Scheduling Algorithm

The RD scheduling algorithm would assign tasks with processors in a random order and reschedule at the occurrence of any Event B or Event V. Once Event B occurs, the algorithm simply removes the task with local remaining execution requirement equals to 0 and assign another ready task with the idle processor, which is obvious an $O(1)$ manner for time complexity. But if Event V occurs, the algorithm will re-separate the set of tasks and processors into independent feasible sets and re-assign processors to tasks in a random order. According to algorithm 7, once Event V occurs, both the time complexity and the complexity of task migrations would be $O(n)$ for one rescheduling.

The RD scheduling algorithm is hard to implement because the algorithm detects Event V as the time instance for rescheduling. Event V is hard to detect because the execution paths of tasks would intersect with each others at any time, and the rank of local remaining execution requirements would change.

Algorithm 7. Separate Feasible Set
Input : A set \mathcal{T} of n tasks $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$. A set \mathcal{P} of m processors

$$
\left\{P_{1}, P_{2}, \ldots, P_{m}\right\} .
$$

Output: An independent feasible set or empty set ϕ on the end
$/ /$ Scan for $s_{j}=u_{k}$

1. $j \leftarrow 1, k \leftarrow 1$
2. while $j \leq m$ and $k \leq n$ do
3. if $s_{j}=u_{k}$ then
4. return $\left\{\left\{T_{k}\right\},\left\{P_{j}\right\}\right\}$
5. else if $s_{j}<u_{k}$ then \nmid
6. $\quad k \leftarrow k+1$
7. else
8. $\quad j \leftarrow j+1$
9. end if
10. end while

$$
/ / \text { Scan for } s_{j}=u_{k}
$$

11. $\mathcal{Q} \leftarrow \phi, \mathcal{R} \leftarrow \phi$
12. for $k=1$ to m do
13. $\mathcal{Q} \leftarrow \mathcal{Q} \cup T_{k}, \mathcal{R} \leftarrow \mathcal{R} \cup P_{k}$
14. if $S_{k}=U_{k}$ then
15. return $\{\mathcal{Q}, \mathcal{R}\}$
16. end if
17. end for
18. return ϕ

Therefore, only if we can simulate the behaviors of all tasks, we are unable to decide L_{k}^{t} because we can not decide the local remaining execution requirements of all tasks.

5.2 Analysis of PGM Scheduling Algorithm

Unlike the RD algorithm, the PGM scheduling algorithm detects the first occurrence of Event B, Event C, or Event F for rescheduling. By algorithm 8, we see that the time complexity decreases significantly to $O(1)$ for each task, and hence $O(n)$ for the entire taskset?

While rescheduling, since the algorithn would assign tasks with processors in a group order, which is a random order in the same task group, the algorithm would require at most $\theta(m)$ task migrations tormove tasks and processors among different groups. Therefore, while rescheduling, the algorithm has an $O(n)$ bound for time complexity and an $O(m)$ bound for task migration.

If we applied the PGM algorithm to an identical multiprocessors platform, the complexity decreases significantly. Because there the computing capacity are the same for all processors in identical multiprocessors platform, there is only one task group and the rescheduling would only cost $O(1)$ for task migration.

5.3 Analysis of PPGM Scheduling Algorithm

The PPGM scheduling algorithm is similar to PGM but making tasks and processors groups by preprocessed make group algorithm. The preprocessed make group algorithm would divide the processors set into a structure that for any task group \mathcal{G}_{i}, the boundary processors P_{i} and P_{i+1} would be grouped into processors groups $\mathcal{H}_{i-1}, \mathcal{H}_{i}$, or \mathcal{H}_{i+1}. Therefore, whenever an event occurs, the removal of task and processor would not lead to a change to the structure of the tasks groups and processors groups. Therefore, once a processor is removed, we can thought it as a merge between neighboring tasks groups and processors groups. Since the structure of the task groups and processors groups is not changed, the removal can be simply done by a context switch, which leads to at most 2 task migrations. Therefore, the PPGMascheduling algorithm would cause only $O(1)$ task migrations on each rescheduling, and at most $2(m-1)$ task migrations in a T- $\mathrm{L}_{e r}$ plane. Also because there are only one context switch on each rescheduling, the overhead of calculation for the next event becomes $O(1)$. We can simply maintain a heap structure sorted by time for all events to get the first occurrence of any events. Since it takes $O(\lg n)$ to complete an insertion to a heap, the time complexity for PPGM algorithm becomes $O(\lg n)$ on each rescheduling.

Algorithm 8. Next Event
Input : A task T_{i}, a processor P_{j} that is assigned to T_{i}, two processors P_{a} and P_{b} that represents the upper and lower boundaries for T_{i}.
Output: Occurrence time, type, and associated task and processor of the next event
// Scan for Event B

1. $t_{B} \leftarrow \frac{l_{i}}{s_{j}}$
// Scan for Event F
2. if $s_{j}>s_{b}$ then
3. $t_{F} \leftarrow \frac{l_{i}-e_{b}}{s_{j}-s_{b}}$
4. $\quad P \leftarrow P_{b}$
5. else
6. $\quad t_{F} \leftarrow \frac{e_{a}-l_{i}}{s_{a}-s_{j}}$
7. $\quad P \leftarrow P_{a}$
8. end if
9. if $t_{F}>t_{B}$ then
10. return $\left\{t_{B}\right.$, "Event $\left.B ", T_{i}, P\right\}$
11. else
12. return $\left\{t_{F}\right.$, "Event $\left.F^{\prime \prime}, T_{i}, P\right\}$
13. end if

Chapter 6

Conclusions

Although in 2008, Chen presented the PCG scheduling algorithm, which is the first optimal on-line dynamiépriority scheduling algorithm for uniform multiprocessors systems, the cost of the algorithm is high. In this thesis, first, we introduce the idea of independent feasible sets and the idea of group order. Furthermore, based on the ideas and the T-Ler plane model for uniform multiprocessors platform, we extend the Precaution Cut Greedy algorithm, and present three optimal on-line dynamic-priority scheduling algorithms for uniform multiprocessors systems with lower time complexities and less task migration costs.

The first algorithm presented is the RD scheduling algorithm. The RD scheduling algorithm is optimal, but is hard to implement. The RD algorithm could be thought as an one-directional proof of Funk's theorem that once the set of periodic tasks and uniform processors satisfies the feasibility condition, the set is schedulable to meet all deadlines.

The second algorithm would be the PGM scheduling algorithm. The al-
gorithm is similar to PCG scheduling algorithm but assigns tasks with processors in a group order, which generalize the concept of PCG algorithm. The algorithm is optimal, with $O(n)$ time complexity and $O(m)$ task migrations on each rescheduling for an uniform multiprocessors platform. But if the algorithm is applied to an identical multiprocessors platform, the performance would raise significantly to $O(n)$ time complexity and $O(1)$ task migrations on each rescheduling.

Finally, we present the PPGM scheduling algorithm, which is based on the PGM algorithm but with a fewmodifications. The algorithm is also optimal, and gives an $O(\lg n)$ time complexity but $O(1)$ task migrations on each rescheduling for an uniform multiprocessors platform. Comparing to others, currently the PPGM algorithm is an on-line dynamic-priority scheduling algorithm with the least task migration cost among all algorithms.

In addition to periodic tasks, the PPGM scheduling algorithm is also optimal for scheduling non-periodic tasks. The algorithm would generate a schedule for n non-periodic tasks on m uniform processors with optimal finish time and at most $2(m-1)$ task migrations.

Because of the simplicity and the low task migration cost of the PPGM scheduling algorithm, we believe that the PPGM algorithm could be applied to many asymmetric multicore platforms that are similar to uniform multiprocessor platform.

Bibliography

[1] S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600-625, June 1996.
[2] Shih-Ying Chen and Chih-Wen Hsueh. Optimal dynamic-priority real-time scheduling algorithms for uniform multiprocessors. In Proc. IEEE RealTime Systems Symposium, pages 147 -156, Bårcelona, Spain, December 2008.
[3] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An optimal real-time scheduling algorithm for multiprocessors. RTSS, pages 101-110, Oct. 2006.
[4] M.L. Dertouzos and A.K Mok. Multiprocessor online scheduling of hard-real-time tasks. IEEE Transcation on Software Engineering, 15(12):14971506, Dec. 1989.
[5] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on uniform multiprocessors. IEEE Real-Time Systems Symposium, pages 183-192, Dec.
2001.
[6] K.S. Hong and J.Y.-T. Leung. On-line scheduling of real-time tasks. RTSS, pages 244-250, Dec. 1988.
[7] Edward C. Horvath, Shui Lam, and Ravi Sethi. A level algorithm for preemptive scheduling. Journal of the ACM, 24(1):32-43, January 1977.
[8] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM, 10(1):46-61, 1973.
[9] Jane W. S. Liu and C. L. Livi. Performance analysis of heterogeneous multiprocessor computing systems. Computer Architectures and Networks, 1974.
[10] Jane W. S. Liu and Ai-Tsung Yang. Optimal scheduling of independent tasks on heterogeneous čomputing systems. ACM Annual Conference, 1:3845, 1974.
[11] R.R. Muntz and E.G. Coffman. Optimal preemptive scheduling on twoprocessor systems. IEEE Transactions on Computers, (11):1014-1020, Nov. 1969.

