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Abstract

Integrated photoelsticity is a method for determining stress distribution in
photoelastic materials by polarized optical techniques. An important model
describes the imaging process is truncated transverse ray transform (TTRT)
proposed by Sharafutdinov. In this article, we use this model to fit the recon-
struction problem into a TV-L2 minimization.scheme and propose a nhumeri-
cal reconstruction method combining al‘gebraic reconstruction technique and
augmented Lagrangian method.

Keyworks: augmented Lagrangigir‘l\-'method, photoelastic tomography,
polarized light, reconstructio‘nj, trun:cated transverse ray transform, TV

regularization
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Chapter 1

| ntroduction

In some situations, a ray of light split into two when passing through certain anisotropic
materials. This phenomonon is callbilefringenceor double refraction. Materials pos-
sess this property can be found naturally,.especially in crystals. Besides, many non-
crystalline transparant materials, e.g+glass; Which are ordinarily optically isotropic, also
display such property under stress. This phenomenon, is knowrtiisial double re-
fraction now and was first observed by?ﬁcottish physicist David Brewster in 1816. Such
materials are callephotoelastic materia'l'sj

The reason why stress changes the"()ptical property of photoelastic materials is be-

cause it induces a perturbation on-dieléctric_permittivity. The relation between them is

described by the following formula given by Maxwell'in 1852:
1
e =¢e090 + Cy(o — 3 tr(o)d) + Ctr(o)d. (1.0.1)

Here,c is the dielectric permittivity tensog; is the stress tensof;is the Kroneker 3-by-3
identity tensorC, and(C'; are positive constants.

Photoelasticity is a method for determining the dielectric permittivity (thereby the
stress distribution) of a photoelastic material via polarized optical techniquesinThe
tegrated photoelasticity, proposed (n [1], measures the changes of polarization of EM
waves passing through the object at various positions and angles. These changes can be
characterized by so-callgduncated transverse ray transfor(@ TRT)[6], from which,
the trace-free part of the dielectric permittivity tensor is constructed. Although the trans-
verse ray transform is similar to the ray transform in X-ray CT, it involves reconstruction

of tensor fileds instead of scalar fields and remains much less explored.
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In this paper, we adopt the forementioned TTRT imaging moddl farmulate the
above reconstruction problem as a TV-L2 minimization problem. Both the gradient-
descent method and the augmented Lagrangian method are implemented for solving the
minimization problems and results are compared. This paper is organized as follows:

In Section 2, we introduce the principle of photoelasticity, and then, following [6], we
derive the TTRT model for integrated photoelasticity.

In Section 3, we review some existing reconstruction methods.

In Section 4, we introduce augmented Lagragian method, and apply it to the recon-
struction problem given by integrated photoelasticity. Our numerical method would be
also presented in this section.

In Section 5, we will show our humerical results.

Finally, we summarise and-give comments.



Chapter 2

Photoelasticity

2.1 Stress-Optic Law

Birefringence, or double refraction, is the phenomenon that a ray is decomposed into two
when it passes through certain materials, see Figure 2.1. Naturally, this optical anisotropy
can be found in most crystals. Besides crystals, many non-crystalline materials, which are
ordinarily optically isotropic; also display such, property-under stress. This adventitious
anisotropy is known for artificial doubli%,f:;efraction and was first observed by Sir David
Brewster in 1816, and this kind of matefiitals is|called photoelastic materials.

In fact, in photoelastic materials, stress influences its optical property by changing
its dielectric permittivity. Whef-ahisotropy is-taken into consideration, both stress and
permittivity are modeled by second erder. symmetric tensors, see Higure 2.2. In 1852,
Maxwell proposed atress-optic law, which gave a relation between these two tensor

fields:
e — eo0 + Colo — %tr(c)é) + €y tr(0)9. 2.1.1)

Here is the Kronecker delta, andyd represents the original isotropic permittivity;
ande are stress and the result permittivity, respectivélyandC’, are positive constants
depend only on materials.

Stress-optic law states that stress induces a perturbation on permittivity in a photoe-
lastic materials, and this “perturbation” is the linear combination of the trace part and
the trace-free part of the stress tensor. Photoelasticity is a method which uses polarized

optical techniques to reconstruct the permittivity, and thereby the stress distribution of a



photoelastic material.
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(b) A calcite crystal laid upon a paper with all letters shayvthe double refrac-
tion(from Wikipedia)

Figure 2.1: Birefringence



Polarized by an applied electric field
i i o o e e o o o S o .

(b) In a dielectric medium, permittivity is the linear traosh between the
external electric field and the induced polarization.(from Wikipedia)

Figure 2.2: Two kinds of tensor fields



2.2 Polarization of Light waves

In a transverse wave, polarization is the property describing the orientation of its oscilla-
tion. For a light wave, it consists of electric field vectband magnetic field vectd;
the former is chosen to define the state of polarization since physical interactions with the
wave involve the electric field in most optical media.

The polarization of light waves is specified by the electric field ve€tar, t) at posi-
tionx = (x,y, z) and timet. The time variation of of a monochromatic wave is exactly
sinusoidal, that is, it oscillate at a definite frequency. If we assume the light is propagat-
ing in thez direction, the electric field vector will lie on they plane, furthermore, the
component and thg component of canjoscillate independently at a definite frequency.
This is completely analogous to the classical motion of a two dimensional harmonic os-
cillator whose general motion‘is.an ellipse. Correspondingly, if we fix a poskjan
general, the trace of the end of the“electricfield vectorforms an ellipseadves. We
will derive this general paolarization andé-:é_how some special cases of it.

In the complex-function repreSe‘ntati“én, thelelectric:field vector of a monochromatic

plane wave propagating in thedirection is giveh by.
E(z, 1= Ae'@=F) (2.2.1)

where A is a complex vector which lies in the-y plane. It is the real part of has

physical meaning
€ = Reé, (2.2.2)
which is called thdight vector. Now suppose
A =A%+ gAe, (2.2.3)

whereA, and A, are positive numbers; andy are unit vectors, then the coordinate form

of € = (&,,&,) can be written as

E, = A, cos(wt — kz + 6,)
(2.2.4)

£, = A,cos(wt —kz+4,).



The curve described by the end pointés time evolves can be obtained by eliminating

wt — kz between the equations in_(Z.P2.4), we have

LN\ 2 N
& &y cosd 5 s 9
— =1 -2 = 2.2.
(Am> + (Ay> AxAySggc‘fy sin” 9 (2.2.5)
where
0 =0, — 0. (2.2.6)

All the phase angles are defined in the rarge< § < .

Whenéd = 0 or m, (2.2.5) is a line segment; it is callditiear polarization. When
d = +r/2andA, = A,, (2.2.5) is a circle; it is calledircular polarization. In other
cases,[(2.2]5) is an ellipse; it.is callellipticalpolarization. In general, all these cases
can be viewed as elliptical polarization, see Fig@ 2.3add 2.4.

By using a rotation, weare/able to diagonalize (2.2:5)

g 2_;'_,‘5 2
() L= —y> —1 (2.2.7)
a p b

wherez’ andy’ are new set of axeé alonb the principal axes of the ellipsmdb are

the principal axes of the ellipse. \We denote-the:angle fiota =’ by ¢. This gives a
complete description of elliptical polarzation: its size is describeg/by + b2; its shape
is described by/a; its orientation is described by angleits sense of revolution f is
described by the sign ain ¢: the electric vector will revolve in a colckwise direction if
sind > 0 and in counterclockwise directiondfn § < 0.

When a polarized ray passes through a transparant speciman, its optical property will
reflect on the change of polarization. On this fundation, we can extract informations of
premittivity in a photoelastic material by polarized rays, see Figuie 2.5. An implementa-

tion is calledintegrated photoelasticitgnd will be introduced in the following section.
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(a) linear (b) circular (c) elliptical

Figure 2.3: Different types of polarizations (section by a plane)

(a) linear (b) circular (c) elliptical

Figure 2.4: Different types of polarization



Figure 2.5: lllustration of the change of polarization
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2.3 Integrated Photoelasticity

Consider a photoelastic material in three dimensions. We can apply transverse EM wave
(light ray) to it to measure the change of its polarization from various angles and positions
to extract the information of its permittivity. This method is callategrated photoelas-
ticity. Although it is similar to X-ray CT, it involves reconstruction of tensor fields instead

of scaler fields and much geometry knowledge is needed.

We begin with the dimensionless Maxwell’'s equations

(

vxHn-19p
c ot
VxE—i—lgB =0
c ol (2.3.1)
V-D =0
VB =0

In the equaitons abové{ is the magnetic fields is the'electric fieldD is the electric

displacement field an8l is,the magnetiéff;m,uction. They satisfy the constitutive relation

| 17258,‘

(2.3.2)
o N
wheree is the permittivity tensor.ang‘is the magnetic'permeability tensor.
Let us consider high frequency monochromatic EM wave of the form:
E(x,t) = E(x)e ™!
D(x,t) = D(x)e ™t
(2.3.3)
H(x,t) = H(x)e ™!
B(x,t) = B(x)e ™.
wherew > 1 is the frequency. In addition, we assume
1
e=¢e90 + —f. (2.3.4)
ko

whereg, is a constantk, = w/c > 1 is the wave number anflis a second order sym-
metric tensor. This assumption, which is caltgdasi-isotropic, assumes that the photoe-

lastic material is approximately isotropic and homogeneous, and the stress-induced part

11



of permittivity is relatively small. On the other hand, sinb@st photoelastic materials

are non-magnetic, we assume
0= (2.3.5)

Introducing [(2.3.B)(2.314)(2.3.5) intb (2.8.1), we get

1
V x H + ik0(€05 + —f)E =0
ko (2.3.6)

V x B —ikoH = 0.

For a quasi-isotropic material, it is natural to consider the WKB approximation. The

ansatz is

: F(m)
E@" sdh 0" (x)

= (tko)m

, ™ (x)
H(x 4 6zkm'(x) : ;

wherer(z) is a phase function. By mtroﬂﬂcu’@CZB 7), we can decomposel(2.3.6) into an

(2.3.7)

infinite system of equations by eqwuatlngwthe coeff|0|ents of the same powers of the wave
a
numberk, on both sides. ”

|
.

Hm ><VT+V><H(’"1)+50E +sz<m1 =0

(2.3.8)
E) x V1 4V x =t gim) =0
form =0,1,.... Here we defingg(-1) = H(=1Y = 0 for convinience.
Let’s start fromm = 0 to find H® and £
0 x Vr+&E® =0
(2.3.9)
EO xvVr—-HO® =0
Solving these two equations gives
(EO V) VT + (20— |VT|*) B =0. (2.3.10)
By taking the inner product of (2.3.110) wifir, we obtain
(E©,Vr) =0, (2.3.11)

12



sincesy # 0. With this result,[(2.3.70) now takes the form
(20 — |VT[*) E® =0. (2.3.12)
Thus, the phase functionmust satisfy the eikonal equation:
IVT* = no? =g (2.3.13)

wheren, is the refractive index.
To solve the eikonal equations, we use geometric optics approximation by assuming

the solution is a plane wave
7(%) = nox- &, (2.3.14)

where¢ € S? is the propagating.directionof tHé wave.and the straight lines in the direction

¢ are called rays. With thig;(2.3.9) becomes

go| £ samge®| — o
e | (2.3.15)

| |
w10 x dL HOF S

|

Therefore, order zero WKB approximatiohleads to.that® and ' are perpendicular
to each other.

Next, consider the case = 1 in (2.3.8). Using[(2.3.14), we get

ngHW x ¢ +V x HO 4 ¢gEW +ifEO =0

(2.3.16)
ngEM x € +V x EO — HO) = 0.
Using (2.3.15), we arrive
2 1 0 aE(O) 0
(no’EW - £ + oV - B £ — ng +ifE® =0. (2.3.17)

23
Here,0F/0¢ denotes the direction derivatide- VE. We may decompose this vector

equation into the ray directiahand its perpendicular-. First, we notice that

or

1
ae €& (2.3.18)

13



This is due to the fact that, F) = 0 along the ray. Letr; := § — ££7, the projection
in R3 onto ¢+, For any 2-tensoy, the projectionr:(fE(©) for E©® ¢ ¢+ can be re-
expressed aB:(f)E®), whereP;:(f) := ¢ fme. With these, the projection of the above

vector equation ont¢* reads

oE©) 1
= —P.fEO 2.3.19
and the corresponding approximate solution is
E(x,t) v lthomoxt=wt) pO0) (5, (2.3.20)

Here, we only kee® in the WKB approximation{2.317) sindg > 0. From now on,
we simply denoteZ® by E.
Remark2.1. Let A = |£|* = E*E, then

oA OF” OE
T Al

L BB LB fE
10 ‘ 1,‘“ o

NIl = | (2.3.21)

sinceF f is symmetric.

This means when the wave is propagating in the media, its amplitude does not change;

the property quasi-isotropy casue only a retardation on the phase of the wave.

2.4 Transverse Ray Transform

Let us consider a photoelastic objectif. When a high frequency monochromatic light,

e.g. laser, passes through it, the change of polarization is governied byl(2.3.19). This ODE
gives us a forward imaging model for such a photoelastic object. We shall integrate this
ODE below. To do so, let : [0,1] — R? be a ray in the directiog passing the object

and be parametrized bye [0, []. Let us abbreviate the field(y(7)) by E(7). The ODE

above forE along the ray can be rewritten as

dE i
= - LpfE. (2.4.1)

dr  ng

14



We first assumé?(() is just some linear transform &f(0)
E(l) = UE(0) (2.4.2)

where the linear transformatidnis depend orf on~. Follow [2], U(~) can be expanded

via Peano-Baker series
l l 1
U:I+/ A(Tl)d7'1+/ A(Tl)/ A(Tg)dTQdTl+...
0 0 0

=1+)> 1, (2.4.3)
n=1

where

A(T) = (1/no) Pe f(7). (2.4.4)

We simplify this by using onlyf +Z;-to approximateUH i.e.

‘ 7
e . i/ P fla)dr. (2.4.5)
: o Jo

The forward model becomes

\
| — ]

E(l) = <I 1+ ni ;/d:ﬁg AT dT) E(0). (2.4.6)
|70 S :
The consequence above shows ch"at if we detect the-object by a ray-glahgn the

change of polarization is

/ng(’]’) dr, (2.4.7)

Y

which is a useful information to reconstrugt
Similar to the approach in radiative CT, we introduce the following ray transform.
First, any ray inR? in the direction¢ can be identified as a poirt, x) in the tangent

plane ofS? at€.

Definition 2.1. Thetransverse ray transform (TRT) J : S(R?; S?R3) — S(T'S?; S?R3)

is defined by

JF(€,%) = / Pef(x + t€) dt. (2.4.8)

The imaging process of integrated photoelasticity can be regarded as collecting the

TRT data off to reconstructf.

!Actually, we neechy > 1 here.

15



2.5 The Polarization Ellipse

To get TRT of f, we must first determin& from detectingE (0) and E(l). In following
two sections, we will examine its feasibility in practice.
Let {e;, ey, e3} be an orthonormal basis @?>. Let us consider the ray direction

¢ = e3. We can decomposg into

E(1) = Ei(1)e; + Ea(7)esq (2.5.1)
and [2.3.1B) becomes,
dFE i
d—l = — (fuEh + fi2kEo)
db; o (2.5.2)
2 2
A= E
pr Ao (f21‘ O faa )
wheref;; is the representationgfw.rtthe orthonormal basige , e, e3}.
& and FE are both complex.:it is'the real vector
n(7, th= R4 =RefE (r)e*od ] (2.5.3)
:f Il
that has a physical meaning.'One can check that, far fixr,, the vectors
7](7’0, t) = Re [(El (T())él == EQ(To)eg)ei(kOnOTo_Wt)} ,t eR (254)

form an ellipse on the plane perpandiculaeto= &. It is called the polarization ellipse,
see Figuré 2]6. Lai, u, be the direction axes of the polarization ellipse, and le¢ the

angle betweem; ande;. Then we have

U; =e;CcosA+ eysin\
(2.5.5)

U, = —e;sin A+ ey cos .

Leta, b be the semiaxes of the ellipse w.ut; andu,, respectively, then
n(7o,t) = acos(¢g — wt)uy + bsin(¢py — wt)uy = Re [(aul T ibug)ei(%’m)] , (2.5.6)

where the choice of sign in this equality depends on the mofion {2.5.4) is clockwise or

counterclockwise. Inserting (2.5.5) into the equation above, we get

n(70,t) = Re [((acos A + ibsin \)e; + (asin A F ibcos )\)eg)ei(%’m)] (2.5.7)

16



Comparing[(Z514) and (2.5.7), we then have

Ei(19) = (acos\ = ibsin \)ei(¢o—konoo)

(2.5.8)
Ey(19) = (asin A F ibcos \)e(¢o—konoo)
From remark2]1, we can assume that
|EV(T)]P + [Bo(r) P = [|E(0)]* = 1. (2.5.9)
From [2.5.6), this is equivalent to
(2.5.10)
(2.5.11)

17
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2.6 Truncated Transverse Ray Transform

We have just shown the polarization ellipse is determined by three angle3, weand
(o — konoTo), and E is determined by[(2.518) anf (2.5111) accordingly. If we rewrite

(2.4.2) in coordinate form w.r.fe;, es, e3}

E(1) _ Un U E7(0) ’ (2.6.1)
E2(1) Uy Usy E*(0)

we will find that the number of unknowns is three (siricés symmetric), and the infor-
mation given by the polarization ellipse is sufficient to deterniinélowever, in practice,

only A andv can be got easily; it is difficult to detect the phase informatian— konom).

This is actually an underdetermined-problem, and for that, we need to make some com-
promise. ‘

Consider a vector field:alongy defined by

E(7)= E(7) -lexp F—"’é;—o /OT (Ll f22)] ; (2.6.2)

for the polarization ellipse, the corrésporidﬁngmdﬂ are equal to\ andv, respectively.

E satisfies a similar ODE aE(ZZ!SZ)

dE i [1 5 N
d—l = . {§(f11 = fa2) B + f12E2}
dg "o X (2.6.3)
1 ~ ~
d_: = n_o {f21E1 + §(f22 - fn)EQ] )
or equivalently,
dE i
o = Qs (2.6.4)
where the operatdp; is defined by
1
Qef = Pef — étl“(ng)Fg- (2.6.5)
Apply Peano-Baker series again, we have
E(l) = VE(0) (2.6.6)

19



where
i l
Val+ —/ Qef(7)dr. (2.6.7)
N 0
Here we made another definition

Definition 2.2. Thetruncated transverse ray transform (TTRT) K : S(R?; S?R3) —
S(TS?* S?R3) is defined by

Kf(£,x) = /_OO Qe f(x + &) dt. (2.6.8)

Because of the missing information in integrated photoelasticity, the imaging data
we get is actually TTRT off instead of, TRT off. This compromise, however, has a
drawback: the kernel of TTRT is not.empty, it consists of all tensor field of the form

a(x)d. As the result, we can recover only the trace=free paft, afe. f — tr(f)d/3.

20



Chapter 3

Reconstruction Methods

According the model we derived in the previous chapter, let us reformulate the recon-

struction problem of integrated photoelasticity:

Problem 3.1(Invert TTRT).
GivenL C TS? andg € S(L; S*R3);find a trace-free tensor. fielfl € S(R?; S?R3) such
that ‘

| K™=, (3.0.1)
The reason why we consider.a subBeif 7'S? is because

dim(ZS?)-="4 » 3'=dim(R?). (3.0.2)

Therefore, the reconstruction may need only partial data of TTRT. On the other hand,
the trace-free condition is due to the degenerac¥ ofin the following discussion, we

assumef is trace-free unless otherwise stated.

3.1 Aben’s method

In [1], the author derived a reconstruction method based on physical assumption that there
is no external forces apply on the detecting object, and it is in equilibrium.

Suppose the detecting object is puffinh and consider a thin slica BC, where these
three point are on the boundary of the object, and set the coordinate according to Figure

[3.1. Letrays pass through the slice along the diregiam the upper and lower surfaces,

21



whose coordinates arg and z;, respectively. We then get the data

Kll(s) = Cfa:’zs,z:zz (O-xlx/ - OZZ) dy/ (3 1 1)

Ki(s) = C’fx,:s’Z:Zl O, dy

Kl(s) = wa,_s o, (Oper —022)dy
I (3.1.2)
Kg(s) =C fx’:s o Og'z dy,>
whereo represents the stress; this uses stress-optic law stafed in (2.1.1). Use the physical

assumption mentioned in the beginning, whienis close to zero, we have

C
AZ/ Oyl ! dy' = Tu — Tl (313)
A

whereT,, andT; are the shear forces’on the upper and lower surfaces of the slice, respec-

tively, which can be formulated by
C:; (3.1.4)
L | = w" ds

Combine these results and-I&t —+;O' we reach“the result

&,
iy — Kodah— K 3.1.5
/Aa ¥ Cdz/ Jdil— K. (3.15)

Rotate the coordinate’, y'), we obtain Radon transform ef..

To summerize, Aben’s method let us determine the Radon transform of each compo-

nent of f from K f. We then use Radon inversion techniques to reconsfruct

22



Figure 3.1: Aben’s Method
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3.2 Sharafutdinov’s Methods

In [6], the author propose another reconstruction method by Fourier transform.

First, we rewrite(), f to its coordinate form

1
—5 fpa&pdij. (3.2.1)

(Qef)is = Fir — 5 (ol + Finre) + o Frubrbalily + ‘

€] 2[¢]
Here is an example: suppo&e- e; then
1 1
(Qef)ij = fij — (fisdjs + fi30i3) + §f335i35j3 + §f335ij

5(fi1 = f22) Ji2 0
= fa 5(for — fu) 0
0 0 0
We make a definition |

Definition 3.1. The back projection‘operator 7

p: OF(R® x RE; 5_21%3) — O~ (R}; S°RY) (3.2.2)
is defined by .’ i 'T |
jibte)d b Nl 5 dw(), (3.23)

The compositionuK : S(R?; S?R?) —>‘C°O(R3; S%R3) can be written as

pKf =DBif+ Baf + Bsf + Baf, (3.2.4)
where
( 1 s
Blf = %f * ‘.I'| )
1 T;T
(Baf)ij = _%(fik | ’4 +fjk - ‘k)
1 TiTiXLT (3.2.5)
kLl
(B3f)ij = Efkl * ’j|6 )
TrT
(Bsf)ij = _fkl |k| 's
\

If we denoteh = (2/m)uK f and apply the Fourier transform on it, we have
ﬁ'j (flkEJk + f;k@k) + fkl%kl + fk16k15zg |y! hl] (3.2.6)
wheree; = y;/ |y| ande;; = d;; — e;e;. Here is alemma

24



Lemma 3.1. If the right-hand side of(3.2.6) meets the conditjan= 0, then the system
of equations has a unique solution satisfying the condifibr= 0, and the solution can

be expressed as
~ ~ ~ ~ ~ 5.
fij =2 |y| 4h1] -3 (hikekej + hjk:ek;ei> + hklekeleiej + ghklekeléij . (327)

The result can be also written in invarient form

. 6 . . 1 55 51  5\:
Fr =21l (1= Syt i i) ) (329)
i || |yl
Apply the Fourier inversion we reach the result
4 1/2 -1 2252 O a—1s2
f=-=(-4) 4—6A""dd+ A*d? —|—§ZA 0% | uKf. (3.2.9)
™

For the detail of this reconstruction method;please refer to section 6 in [6].
This formula, which involves.a 3 dimensional back projection, needs full information

of TTRT to reconstruct the tensor fiefd'therefore, may not be good for practical usage.

=

3.3 Lioheart and Sharafufdi'nov’s Method

In [4], the authors proposed-a reconstruction method similar to previous one, but use
partial data of TTRT only.
The subsel mentioned in the beginning of this chapter is chosen as follows:

L, ={(2)eTS*|{n) =0} fornes?
(3.3.1)

L =UL L,

Briefly speaking, by choosingy directions{n; j.Vzl, we collect TTRT data only by rays
perpendicular to one of these directions.

The idea of this reconstruction method is as follows: Consider the gdatafor a
given unit vectom. For a planeP perpendicular tg), the restriction of the vector field
n x f(xz)n can be considered as a 2D vector field/®nOn the other hand, we consider
the slice tensor of is a second order tensor field dh We then apply a slice-by-slice

reconstruction to these vector and tensor fields on each plane. The reconstruction proce-

dure is similar to classical reconstruction method of inverting 2D Radon transform. The
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result under the Fourier space can be written as
(3.3.2)
where )\, andy,, can be obtain from TTRT data, and this indicate that the recontruction

problem is merely to solve algebraic equations in Fourier space.

3.3.1 Logitudinal Ray Transform (LRT)

We introduce another kind of ray transform here,

Definition 3.2 (Logitudinal Ray Transform (LRT)).

Thelogitudinal ray transform (LRT)

I /S@?: 5°C?) S 8@'s?) (3.3.3)
is defined by —
G YIRS F (33.4

LRT is a transformation which apblies on any-order of tensor field. It is noteworthy that
whenn = 0, LRT is just the ordinary-ray transform-defined & In this section, we use
only cases: = 1 andn = 2.

LRT can be also defined on a tensor field on a plari&’in

Definition 3.3 (LRT on a Plane).
Forann € S?%, letn® = {¢€ e R3] (£, 1) = 0}, S™n* be the complex order tensor field
onn*, andS, = {£ € | |¢| = 1} be the unit sphere ig". Givens € R, letsn + n*

be a plane pass throughy and perpendicular t@. The LRT on the plane; + n+
Lys:S(sn+nt5"n) — S(TS,) (3.3.5)

is defined by

o0

@J@ww:/°<ﬂw+x+ﬁ%@ww (3.3.6)

—0o0
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The relation between these two definition is as follows:

Ly s(iy,s )& ) = 1f(& sn+ ) (3.3.7)

wherew,  : S(sn+n'; S™nt) € S(R?; S"C?) is the embedding of a tensor field arjd

Is its conjugate. The relation of LRT and TTRT can be described by the following lemma:

Lemma 3.2. Let f € S(R?; S?C?) be a trace free tensor field. Equations

I7I78<<77 X fn)|s77+nL) = K%,sfv

Ins(6y5f = 2t(e; . )0) =27 f

(3.3.8)

hold for everys € R andn € S, where the function&; .f € S(T'S)) (i = 1,2) are
defined by

(K1) (& = (K f) (&8t =), € n)
‘ (3.3.9)

(B F)(E @) [SJEAIE b0+ )

i

Since for each ray, the TERT cont&irE"tWo independent components, the conversion
| 3

I

from TTRT to LRT is without'any| loss of-information 1¥3.8.8. Next, we need to find
the inversion formula for LRT in o:rder the recéhstrgfctFor any details of this lemma,

please refer ta [4].
3.3.2 Inversion Formula of LRT
We make a definition first.

Definition 3.4 (Tengential Component).

For a vector fieldg € C*°(R?; C?), we define itséengential componenty € C>°(R?) by

(r9)(y) = (9(v),y"), (3.3.10)

where the vectoy L is obtained by rotating by 7 /2.
For a tensor fieldy € C>(R?; S2C?), we define its tengential componemnt € C>(RR?)

by
(r9)(y) = lyI* tr(g) — {9(v)y. y) - (3.3.11)
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And we have the following inversion formula for LRT

Lemma 3.3(Inverseion Formula of LRT).
For a vector fieldf € S(R?; C?), the tangential component of its Fourier transfosiy|

can be recovered from its LRT by the formula

TF[f] = % ly| F [B (%pf))} . (3.3.12)

For a tensor fieldf € S(R?; S2C?), the tangential component of its Fourier transform

F|f] can be recovered from its LRT by the formula
1
FIf] = 5 v FIBU)) (3.3.13)

Here B : S(TS') — C°°(R?) is:the two dimensional back projection operator, and the

Fourier transform is defined componentwisely.

For details of LRT, please-refer to ehapter 2!0f|[6].

| — ]

3.3.3 Algebraic Equations in Fga'ﬁtérSpace

i
MW |

Combining Lemm& 312 a@}.m.Z) can be written explicitly:

Lemma 3.4. Let f be the 3D Fourier transform of a trace free tensor figle S(R3; S2C3).

For a unit vectorn € S?, equations

f y Ty =N\
<f(y)77 y> (y) (3.3.14)
=k <f(y)n7n> —~ <f(y)7n7y, 7Tny> = piy(y)
hold onR? with RHS defined by
i 8(K$f)) }
W) =Ll [( 22 @ 518

,Un(y) = |7T17y|3fwﬁy [(Banf)(ﬁ)] .
whereK? (j = 1,2) is define in[(3.319).
By choosing a directiol and collect the TTRT data oh,,, we than have two linear

equations oﬁj(y) for eachy € R3. In a symmetric trace free tensor, there are five known,

therefore, it seems that we need only three directions to recongtruct
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In [4], the authors prove that choosing

(

m = €1,
— (3.3.16)
3 = €3

\
is sufficient for soIvingf, but unstable, since the linear system degeneraje-at0 for

anyi = 1,2, 3. We can still use the continuity gfto determined its value in these point.

By choosing six direction:

m=(ex+e3)/V2, m=I(es+e)/V2 n3=(e1+e)/V2,

(3.3.17)
m = (ex—e3)/V2, ns =65 —e)/V2, g = (e1 —er)/V2,
we can get a stable reconstructionfofvith the stability estimate
)f(y)‘ <C <|y| Zl)‘ |+l.y| ZW — fiz3(y )|>
= (3.3.18)

)f(y)’2 <" <|y| Zi% Iiiyl Zmz — flit3(y )iQ)

This method has adventages aver the prewous two, First, it did not need the assump-
tion that the object is in equilibrium and_ can use to determine its residual stress. And
second, it uses only partial data of TTRT.

In this paper, however, we do not follow any of these reconstruction method. We'll
use the algebraic reconstruction techniques and applied TV regularization via augmented

Lagrangian method and see whether an acceptable result can be obtained.

29



Chapter 4

Augmented Lagragian Method

Reduce this problem to its fundamentals, the reconstruaction problem is just solving a
linear system/ f = g, where we consider the partial TTRT datés as in [3.3.11). This

problem is equivalent to an L2 minimization.problem:
min{]| K f —GIE}: (4.0.1)

If K is non-degenerate, the' minimizer, is just the solutietikgf = g. Here we want to
add TV regularization into this minimifé%on scheme and find the minimizer by iterative
method. There are two-consideration fb_r us|to do so:-first, for practical applications,
noise is inevitable, thereforg;may not be in the range dt’; second, for ordinary ray
transform, it has high frequency:sigular vectors corresponding to small singular values. It
may be the same for TTRT, and ifit is true, gradient descent method in L2 minimization
scheme may have a slow convergence rate for the high frequency parts; TV regularization
would improve this situation.

In this chapter, We propose a numerical reconstruction in TV-L2 scheme using alge-

braic reconstruction method and augmented lagragian method.

4.1 Augmented Lagrangian Method

Consider the constraint problem
min f(x) subjectto ¢(x)=0. (4.1.1)
The ordinary penalty method use the following unconstraint iterative approach

xp = min{ Wy (x) = f(x) + e lc(x)[*} (4.1.2)

30



To find the minimizer in the equation above, we can use gradiestent method. We use
larger ., after each iteration to ensure the final result will satisfy the constraint.
The augmented Lagrangian method use the following unconstraint iterative approach

instead
i = min{ L (x) = f(x) + pu |e(x)|* = Ae(x)}. (4.1.3)
After each iteration, in addition to updating, the variable\ is also updated by
A A — pe(xy) (4.1.4)

In ordinary penalty approach, when becomes larger and larger, its convergence rate
would becomes slower and slower. For-augmented Lagrangian method, the additional
linear term can helg; converges to‘a solution satisfies given constraint without letting

1 90 to infinity. It improyves the raté of convergence.
4.2 Alternating Direction:Methad

To solve the reconstruction probl‘ém in'interated photoealsticity, We aplpdynating
Direction Method (ADMjn [10] WhiCiﬁ is based ‘:on augmented Lagrangian method.

We denote the TV functiorial of.the tensor field yf), where the TV norm of a
tensor field is defined by adding TV.nerm for each components of the tensor field. A

basic TV-L2 minimization scheme, which is also known as ROF model, is
) 1 2
minfa®(f) + 7 Kf — g3} (4.2.1)

However, sinceb is non-differetiable, use gradient descent method directly may have a
slow convergence rate. Hence, we introduce some auxiliary variatiebe the gradient
of tensor f, then the minimization problem can be rewrite as a constraint minization

problem
1 .
I?in{a lwlly + 5 1K f = gl3} subjectto Vf =w, (4.2.2)
The augmented Lagrangian functionlof (412.2) is

£MwaMMh—%w—Vﬂ+§W—VM@+%MT—M§ (4.2.3)
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In discretized scheme, suppose the voxel is indexed by 1,2,..., N, the formula
above becomes

1
L(f,w) —&(Z”w H—Z)\ (w—= V£, §||w—Vf||§>—l—§HKf—g||§

©,J,m 2,J,n

(4.2.4)

wherew}'; is a 3-d vector for each j =1, 2, 3,n = 1,..., N andV is the discretized
gradient.

Our goal is to find the minimizer of, and this can be done by minimizing it w.rf.
andw alternatingly.

We minimize£ w.r.t. f by gradient descent method, i.e.
=P = At (—a(Ve ) + aBV - (Wit — VB + K*(Kf*—g))  (4.25)
On the other hand, minimization @fw.r.t. w can be"don€ by the following formula

w*R)r, 4 b Mo, 415 (4.2.6)
| i
wheres(¢,1/3), known as'the 3-dim1.ensidhal soft—thresholding, is defined as

i1

(B o Tz Byt (4.2.7)

We summarize this method to the following algorithm

Algorithm4.1 (ADM).
Require: f°, \°, M, At
f=fa=N
for k=0— M —1do
wiy < s((Vf +A/B)i5.1/5)
f—f—At(—a(V-N)+apV:-(w—-Vf)+ K(Kf—yg))
A= A= pB(w—-VY)
end for
Here we just set a large number of iterations and record its result. We test this algo-

rithm on the partial TTRT data of 3, 6, and 9 directions.
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Chapter 5

Numerical Results

5.1 Numerical Settings

The test subject we choose is a 50-by=50-by-50 tensor phantom, which is tracefree and
piecewise constant, see the figurd 5.1. ‘

In our numerical experimentsywe’ll make twe.comparisons: one is between between
ADM in TV-L2 scheme and gradient'descent'method:in L2 scheme. This comparison
shows whether TV regularization has ‘é‘iﬁ;.adventages.

Another is among three different sets (-)ﬁnTTRT data. These three sets of TTRT data are
different inn’s they choose in[(Iﬂ.i): oﬁe is With'threts as in [3.3.16); one is with

six 's as in [3.3.117); the last is-with .nings by combining the previous two. 17][4], the
authors have already shown it is'sufficient to reconstfumt (3.3.16), and the reconstruc-

tion is stable with[(3.3.17). We want to know whether and how more TTRT data would
improve the reconstruction.

For each slice, the TTRT data is collected by 75 rays for each angle and 90 angles

uniformly distributed in0, 7].

5.2 Results

First, we will show the result reconstructed by gradient descent method in L2 scheme with
differet number ofy’s.

The result of 3)'s is shown in Figuré 5]2.

The result of &)’s is shown in Figur€5]3.

The result of 9's is shown in Figuré 54.
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Next, we will show the result reconstructed by ADM in TV-L2 sche with differet
number ofy’s. For regularization parameters, we choase 0.1, 8 = 1000.
The result of 37’s is shown in Figuré 5]5.
The result of 6)'s is shown in Figuré 5]6.
The result of 9’s is shown in Figuré5]7.
At the end, we will compare the decreasing of relative errors of these methods, which
are measured in 12 sense.
For grandient descent method, comparison among 338,i9 shown in Figur¢ 518.
For ADM, comparison among 3, 6,78 is shown in Figuré 5]9.
Comparison between gradient descent method and ADM with diffefens shown in

Figurel5.10 anf5.11 and 5]12.
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Figure 5.7: Reconstruction by ADM with @s.
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5.3 Summary

From these results, it shows both more TTRT data and TV regularization improve the
reconstruction result. More TTRT data help the iteration converges more rapidly. On the
other hand, in the results reconstructed by gradient descent method, there are artifacts of

high frequency fringes, and TV regularization reduces this effect.
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Chapter 6

Conclusion and Future Works

Conclusion. In this paper, we adopt the truncated tranverse ray transform model to
reconstrunct the trace-free part of the dielectric tensor of a photoelastic material. The
least-squre model for fidelity functional and.I'V-regularization are introduced for recon-
struction. The augmented Lagrangian methbd isradopted for solving the corresponding
minimization problem. The;complete data is a trancated transverse ray transfa@isi,on

which is overdetermined. A smaller data.setis a subsst7'S?, whereL = Uj.v L,,,and

aF
L.

L, = {(¢,7) € TS*| (§1) = O Ournife

1

;ical testsiddemonstrates the following things.
First, the augmented Lagrangian méthod'converges faster than the gradient method. Sec-
ond, within the same method, thé converge speed is faster for 1argdtris suggested
efficiency gains significantly we should choaSe= 6.or N = 9. Third, the least-square

fit of the TTRT model with TV regularization give good image quanlity for piecewise

smooth dileectric tensor.

Discussion and Future works.

1. Itis interesting to understand the variation of singular values of the resulting mea-
suring matrix with different numbers and choices)pf The goal is to find proper

n;'s for a stable reconstruction.
2. Itis not known how the proposed method behaves as the collected data is noisy.

3. When the data is far from complete, can the compressed sensing technique be use-

ful?
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All these questions remain further study.
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