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Abstract

In this thesis, we present a non-perturbative quantum study of high-order harmonic
generation (HHG) of Cesium atoms in intense mid-infrared laser pulses. An accurate
angular-momentum--dependent model potential 1s constructed for the high-precision de-
scription of the Cs atom electronieistructure. The”trhree-dimensional time-dependent Schrodinger
equation is solved accurately and efficiently by means of the.time-dependent generalized

[ S

pseudospectral (TDGPS) method. :;._ﬂ

Besides the expected odd harmo"nzics, tﬁe calculated HHG spectra show additional
structures due to the strong 65 = np c;ouplings. Thei speetral and temporal characteris-
tics of the HHG are further explored through Fourier and the wavelet transformation. As

a result, we can investigate the prevailing mechanisms in different energy regimes, espe-

cially those contributing to the generation of below- and near-threshold harmonics.
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Chapter 1

Introduction

In this chapter, the rudimentary knowledge of high-harmonic generation and the mo-
tivations for this work are introduced.

1.1 Strong field physics:

Our first grasp of the interalction l;etween atoms, molecules, and photons initiates from
Einstein's law for the photoelectric effect.- This law, justified formally by the lowest-order
perturbation theory and Fermi's golden rule, is strictly concerned with the absorption of a
single photon during a transition. Nevertheless, moving in pace with the advance of the
available laser intensities, the interaction has now entered the non-perturbative regime,
where the strength of the of the laser field is comparable to that of the Coulomb binding
force of the atomic core exerting on the active electron and non-linear multiphoton tran-

sition appears.

After the multiphoton absorption of several soft photons, the electron of the target X

gets some chance to recombine into the ground state by emitting a hard photon with an



energy q times the incident photon fwy:
X + q(hwo) — X + (ghwo), (L.1)

where q is an integer. When a relative intense laser is used as the light source, harmonics
have been observed to very high order. For example, Colosimo et al. [6] have observed
a highest 355th harmonic using Argon and a 2pm 50fs laser pulse. This phenomenon is
named high-order harmonic generation (HHG), and is the primary physical process we

concern in this thesis.

1.2 Fundamentals of HHG; L

=

A generic HHG spectrum is showsvﬁ in ézgure 1.1: there'is an initial sharp decline in
conversion efficiency, then a p'larteau‘:where the hafmqnic mntensity varies weakly with or-
der, and eventually a cut-off beyond which no harmonic emission is seen. Typically only
odd harmonics are observed if the Hamiltonian of the system has inversion symmetry. In
addition to pure theoretical interests, HHG has several applications. For instance, while
using rare-gas atoms and short laser pulses in the near-visible or UV regime, the coher-
ently generated harmonic can extend to the XUV (A = 10 — 120nm) or even the soft
X ray (0.1 — 10nm) water window region (2.33 — 4.33nm) [7, 8], a so called table-top
synchrotron. Moreover, due to the fact that the HHG spectrum has a large bandwidth, it
provides a practical means of synthesizing unprecedentedly short pulses on the order of

attoseconds (10~ '®s) , which is the intrinsic time scale of the electron motion in atoms or

molecules. Up to now, an 80as isolated pulse has been generated by Krausz et al. [9], and
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Figure 1.1: Generic harmonic spectrum,~This is an ¢xperimental result generated using Ar
and a 1064nm Nd:YAG laser at an infensity-apptoximately 3 x 10"3W /cm?. Reproduced
from [1]. N Err ol

a 130as pulse train has been pr_o,duceéd by L'Huillier etal [10].

1.3 HHG mechanisms in two extremes

The abrupt change of the trend of the harmonic conversion efficiency from the rapid
decline to the plateau in Figure 1.1 implies a switch of different HHG mechanisms in the
two energy regimes. These two regimes are separated roughly by the field-free ionization

threshold I,.

The formation of harmonics with energies well below I, is due to bound-bound excita-

tion process and can be explained by mutiphoton mechanism: an electron absorbs several



photon simultaneously, jumps to a (virtual) bound state, and then recombines into the
ground state by emitting a high-energy photon, as schematically shown in Figure 1.2. In
fact, owing to AC Stark effect, the ionization potential is constantly changing with time.
Hence, strictly speaking, this familiar picture may be appropriate to describe only the low-
est few harmonics, which involve transitions between low-lying states not that sensitive

to AC Stark shift.

continuum

A

Ip |
o | 2 ®0)

Figure 1.2: Illustration of the multiphoton process.

On the other hand, the generation of harmonics with energies well above I, is related to
bound-continuum ionization process. Under certain circumstances (we will discuss them
later), the ionization process is realized in terms of Keldysh tunnelling mechanism [11].
In 1993, P. B. Corkum proposed a semi-classical three step model [12, 13] based on this
assumption. This model is capable of predicting some essential features of HHG in an

intuitive way. It depicts the HHG process as composed of the following three steps:

* First step (see Figure 1.3 a): purely quantum. The electron is launched by the

Keldysh tunnelling ionization. The time-dependent laser field varies continuously



with time and keeps modifying the atomic Coulomb potential. When the field
strength reaches the maximum, the Coulomb potential is severely suppressed, and
the electron has the highest probability to tunnel through the modified potential bar-

rier and gets ionized.

» Second step (see Figure 1.3 b): purely classical. The motion of the electron after
liberation is then described classically by Newton's second law. The electron moves

freely in the laser field and the effect of the nuclear Coulomb attraction is ignored.

* Third step (see Figure 1.3 c and d): purely quantum. When the laser field reverses its
direction, the ionized electron might be pv;li,ed back and rescattered by the Coulomb
potential. If the electron recollides with the paréﬁt ionie core, it gets some chance
to recombine into the ground staté— glfc_l. emits a high-eﬁ;rgy photon.

:r"':' _

Figure 1.3: Illustration of how the semi-classical three-step model describes the HHG
process. Reproduced from [2]

Conventionally, the concept of tunnelling is applicable only when the potential is time-

independent. Nevertheless, as the change of the laser field is slow enough, the validity of



the tunnelling ansatz is assured under the adiabatic approximation, i.e.

tunnelling time 1
Keldysh adiabati tery = =/ 1 1.2
eldysh adiabatic parametery Taser period o0, <1, (1.2)

where U, = % is the ponderomotive energy, that is, the average kinetic energy acquired
by a free electron in a laser field of amplitude F and frequency w. From the above relation,
we can see that this approximation becomes better when the laser intensity is relatively
high or laser wavelength is long. The harmonic energy predicted by the semi-classical

model is:

Harmonic energy = Kinetic enetgy of the reseattering electron + I, > I,,. (1.3)

Hence, this model can only=explain the haﬁ’ﬂenic with energy greater then the ionization
i
threshold. Actually, it can only ‘account forthe harmonic with energy much greater then

I, for which the ignorance of Coulomb attraction after ionization has less influence.

The tunnelling mechanism is intrinsically different from the multiphotin mechanism.
For the harmonic generated by the tunnelling mechanism, the electron gains energy far
away from the core through the classical motion; this process is highly sensitive to the de-
tailed laser pulse shape (both the pulse envelope and carrier), since it happens whenever
the field strength reaches maximum. On the contrary, for the harmonic formed by the mul-
tiphoton mechanism, the electron gains energy near the ionic core; this procedure is only
sensitive to the pulse shape in an averaged way, i.e. the pulse envelope, as predicted by the
lost-order perturbation theory (LOPT) [14]. There is another way to distinguish the har-

monic radiation between the two mechanisms by the relative emission times of successive



harmonics, dubbed the harmonic chirp. For the harmonics due to multiphoton mecha-
nism, LOPT predicts the successive harmonics are emitted simultaneously (zero chirp).
As for the harmonics resulting from the tunnelling mechanism, the situation becomes a
little more complicated. Based on the semi-classical three-step model, if we select the
main contributions, i.e. the electron tunnels out near some field strength maximum and
returns to the ionic core within one laser period, and plot the return time versus return ki-

netic energy, we can get something similar to Figure 1.4. From this figure, we are able to

3
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Figure 1.4: Electron return time versus return energy calculated by the semi-classical
three-step model. Reproduced from [3].

see that there are two return times corresponding to each return energy. The one coming
back earlier is named short trajectory, while the other returning later is called long trajec-
tory. Compared with the long trajectory, short trajectory gets ionized later and recollides
with the core earlier, thus travels within a shorter time and distance. We can get another
important message from the figure: the emission times of the successive harmonics show
different trends for the two kinds of trajectories. The high-frequency harmonic emits after
the low-frequency one for short trajectories (positive slope, positive chirp), while the high-

frequency component emits before the low-frequency one for long trajectories (negative



slope, negative chirp). Because the probabilities of generating short or long trajectories
are generally not equal, the harmonic radiation originates from the tunnelling mechanism
leads to a total non-zero chirp. In conclusion, we can explore the mechanism of harmonic

generation by examining its chirp rate.

1.4 Below- and near-threshold harmonics

In the last section, we have discussed the HHG mechanism in two energy extremes.
However, the mechanism accounting for.generating the harmonics near or below the ion-
ization threshold is relatively unexplored and a area.of forefront research. Convention-

ally, only the multiphoton meg¢hanism _is'\considered to be fesponsible for the HHG in

=
e E

~adE

- : ’_- g .
this regime. However, recent experimental _§tu'dles [4, 15, 16] have found the tunnelling
mechanism, especially the long trajectbries,réan also make its contribution here. In this
thesis, we would like to scrutinize the HHG in'this energy regime from a theoretical, full-

quantum, and accurate point of view.

1.5 Cesium in the mid-infrared laser pulses

In [4], E. P. Power et al. performed the experiments by using an intense mid-infrared
pulse shining on cesium gases. This work has fully exploited the Keldysh scaling prop-

erty. Since the same ionization dynamics is guaranteed as long as the Keldysh parameter

2Ipw?
2

is fixed, we are provided the freedom to tune and select the appropriate phys-
ical parameters. For example, argon (I, = 15.76eV) driven with a 130T W /cm?, 0.8um

pulse and cesium (I, = 3.89¢V") driven with a 1.6TW /em?, 3.6pm pulse both produce



v = 1. We say that a 3.6um/Cs system is the Keldysh-scaled equivalent of the 0.8um/
Ar system. The advantage of using the mid-infrared light source is that the some of the
harmonics have wavelength in the visible region, so the conventional optical techniques,
for example cross-correlation technique in [4], can be used to measured the spectral as

well as the temporal properties of the HHG.

Since Cs belongs to alkali metals, another interesting property of the 3.6pm/Cs sys-
tem is that the ground state (6s) and the first excited state (6p) has relatively strong cou-
pling [17]. Some experimental and theoretical studies of potassium and rubidium [18, 19,
20, 21] have found this coupling leads' to’enhancement.of the harmonic conversion effi-
ciency. There have already been some experiments using-cesium [22, 23], but no similar

enhancement has been reported.

In the end of this chapter, we' list ithe motivations for this current work as follows:

* We would like to perform the first 3D, quantum, and accurate calculation of HHG

of Cs.

* Based on the calculation, we would like to explore the mechanisms of below- and
near-threshold harmonic generation from a theoretical, single-atom point of view,

and made comparison with the experimental result in [4].

* We would like to investigate the influence of the strong 6s — sp coupling of the Cs

atom on HHG.



Chapter 2

Numerical Methods

In this chapter, we introduce different dpproaches in solving the strong-field problems,

our theoretical formulation, and the numerical methods.involved in this thesis.

|| p—
a—
.

2.1 Difficulties in solving t-l'i(_e HHG problem

When the strength of the la;er ﬁeid is‘comparableto that of the Coulomb field binding
the active electron, the HHG process is-highly non-perturbative and no longer has any
analytical solutions; we can only tackle the problem either by model or numerical calcula-
tions. The most famous semi-classical three-step model [12] has already been introduced
in chapter 1. Similar quantum mechanical formalism, which also ignores the influence of
the Coulomb potential when the electron gets tunnelingly ionized, is the strong-field ap-
proximation (SFA) [24]. The above two models can be linked together by the Feynman's
path-integral approach [25], which considers the SFA as the net result of interference be-

tween a few trajectories.

These models definitely give us a lot of physical insights into the mechanism of the

10



HHG process. However, as we have seen before, the HHG process is highly non-linear
and the signals cover a broad range of orders, hence the assumptions and approximations
made by these models might sometimes be over simplistic and lead to the unpredictable
results which differ from the experimental ones as large as several orders of magnitude
[26]. Therefore, accurate numerical simulation plays an indispensable role in solving the
strong-field problems. The most common numerical recipes are the time-independent non-
Hermitian Floquet Hamiltonian methods [27] and direct numerical integration of the time-
dependent Schrodinger equation [28, 29]. The former approach provides better numerical
accuracy and computational efficiency, while thelatter has more flexibility, regarding that
it does not impose any constraint.on the forms.of the Hamiltonians and the shapes of the

laser pulses. In this thesis, we adopt the direct numerical integration technique.

| —
e
T

et

2.2 The Time-dependent Sfé;hriidinger equation

Here we consider the numerical solution to the time-dependent Schrédinger equation
(TDSE) for a Cesium atom in a linearly polarized intense mid-infrared laser pulses treated

classically (in atomic units):

i%\IJ(r, t) = H(t)V(r,t) = [Ho + Ve (t)| Y (r, 1). (2.1)

Here H, is the time-independent unperturbed Cs-atom Hamiltonian, and V,,(t) is the

time-dependent atom-laser coupling.

In the scheme of model potential methods, we describe a multi-electron atom as va-

11



lence electrons interacting with an effective closed shell. In the case of Cs, one kind of the
alkali metals, solving TDSE then reduces to an one-electron three-dimensional problem:
U (r, t) is the wavefunction for the 6s valence electron, which moves under the influence of
the Cs™ core with electronic configuration 1522522p%3523p53d'%4524p%4d'°55%5p°. Based

on the above single-active-electron (SAE) approximation, H, has the following form:

192 L2
Hy = (7% + ﬁ) +V, (2.2)

where V. is a model potential for the Coulomb interaction between the 6s electron and the
Cs™ core. We shall discuss the'detail of V. in the next séction. The atom-field coupling

Vert(t) under dipole approximationinow becomes
Vit () B Vo (1, F==F (1) - r == F¢)z, (2.3)

where F(t) is the time-dependéﬁt laser foree, assumed polarized along the z direction.

2.3 Angular-momentum--dependent model potential for

Cesium

For the present study, we have constructed a high-precision angular-momentum--dependent

model potential to describe accurately the Coulomb interaction V:

Vo= [V Vilr) (Y], (24)
l

1 N-8 S,
Vi(r) = —= — iWﬁ( : ) — ( Lt A1,l) e B (71 + AQ,[) e P (2.5)

12



where « is the Cs' core dipole polarizability, 7. the effective Cs™ core radius, N the

number of the core electrons, and W, a core--cut-off function given by

() )] 06

Note that the indexes of some parameters and thus their values have [-dependency. Here
we find it is sufficient to use a 2-component model potential, that is, we have two different
sets of parameters for the description of the states with [ = 0 and [ > 1 respectively. The
numerical values of the parameters are listed in Table 2.1. The bound state energies
predicted by the model potential are compared with the experimental values [5] in Table
2.2. The oscillator strength of the 68 — 6p transition is éalculated to be 0.403, compared

to the 0.394 expected for Cs.

Table 2.1: Model potentialiparameters for Cs (in a.u.).
l « Te S = | A1 7 A2 B1 B2

0 15.6 335 59.151&687 54 32329367 ~0 1.69 4.67
>1 15.6 3.35 41.035779« 54 20:32427851 + 30 1.20 5.00

13



Table 2.2: Comparison of the calculated Cs energies to the experimental values (in a.u.).
For each angular momentum /, two rows of energies F(n, [) are listed: the upper row refers
to the calculated model-potential energies, and the lower row refers to the experimental
values from [5].

E(n,l)

\n 6 7 8 9 10 11 12

0 -0.1430990  -0.0586446  -0.0323015  -0.0204845  -0.0141531  -0.0103645  -0.0079174

-0.1430990  -0.0586446  -0.0323014  -0.0204845 -0.0141531  -0.0103645  -0.0079174

1 -0.0904543  -0.0434199  -0.0257368  -0.0170564  -0.0121389  -0.0090812  -0.0070498

-0.0904839  -0.0433784  -0.0257093  -0.0170393  -0.0121279  -0.0090737  -0.0070446

2 -0.0767537  -0.0401010  -0.0243947  -0.0163741  -0.0117426  -0.0088300  -0.0068826

-0.0767685  -0.0400591  -0.0243586  -0.0163493  -0.0117259  -0.0088183  -0.0068719

3 -0.0316125  -0.0202221  -0.0140293 = '-0.0102970 . -0.0078767  -0.0062189  -0.0050341

-0.0315953  -0.0202086 '+ -0.0140200-+, -0.0102907 -0.0078723  -0.0062157  -0.0050317

4 -0.0200405  -0.0139152 = -0.0102218  -0.0078248 & -0:0061817 . -0.0050066  -0.0041372

-0.0200407  -0.0139152 4-0.0102217  -0.0078248  -0.0061817;, 7 -0.0050066  -0.0041372

| —
e
e

2.4 Time-dependent gel_ler?é;fliazed pseudospectral method

We directly discretize and riuinerii:ally integraté Egn. 2.1 by the time-dependent gener-
alized pseudospectral method (TDGPS) developed by Tong and Chu et al [28, 30, 31, 32].
Pseudospectral methods belong to one type of discretization schemes which minimize the
error by requiring the equation to be exactly satisfied at each spatial grid. They posses
the simplicity of the direct discretization methods such as the finite difference (FD) and
the finite element (FE) methods, while simultaneously maintain high accuracy and fast
convergency of the finite basis set variational methods. They have been widely applied
to solving the problems in fluid dynamics for some time, yet what making them become
a perfect tool in handling the problems in strong-field atomic and molecular physics are

the generalizations made by our former group members.

14



The most notable and important ingredients of these generalizations are in two re-
spects: the non-uniform and optimal spatial grid discretization as well as the accurate and
efficient time propagation achieved by the split-operator technique in the energy represen-
tation. For atomic or molecular structure calculations involving the Coulomb or Coulomb-
like potential, one typical problem associated with the commonly used equal-spacing grid
methods is the Coulomb singularity in the origin and the long-range nature of the poten-
tial. Generally, one either uses a soft potential or truncates the semi-infinite radial domain
[0, 00) into a finite one [ry,in, "'maz). The first treatment modifies the potential near the
origin, which might have unpredictably large impact on the results through the non-linear
effects. The second one has to use sufficiently. small Tinin @nd very large r,,.., thus leads
to the need of tremendous number of grids and makes the eost of calculations prohibitive.
We can solve this problem by a non-un#oﬁdi;cretization of girds: it allows denser grids
near the origin, where the environment clic;lt}fges most dramatically and the most crucial
physics related to HHG happens; and é sparser mésh for the outer regime, where the po-
tential varies slowly and radiative recombination is l;ess possible. Accordingly, we have
the optimal and the most efficient way to distribute and fully exploit all the grid points,
and can get highly accurate wavefunction and the converged results with modest number
of grids, often orders of magnitude smaller than those used in conventional equal-spacing
discretization methods [30]. A typical distribution of the collocation points for atomic
HHG calculations is shown in Figure 2.1.

The second feature of the TDGPS method is the time propagation by means of a novel

second-order split operator technique in the energy-coordinate representation:

\D(t + At) — e—iHo%6—iVezt(t+%)At€—iHo%@(t) + O(Atd) (27)
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The conventional split-operatof tﬁchriiqlue [g B:»i-spli%sithe operator into kinetic and potential
energy parts and performs the timé :i)ropagation in m(;:ﬁqentum-coordinate representation.
Both the conventional and the new split-operator method share the merits that the error in
each time step is to the third order of At and the unitarity of the wavefunction is automat-
ically preserved. However, the new split-operator method has the additional advantages
that we can employ larger At by eliminating the undesirable and unstable high-energy
components of the wavefunction, and that each partial wave wavefunction can actually
be propagated independently and efficiently using the BLAS subroutines. Once the time-

dependent wavefunction is known, we can calculate any physical quantities by computing

the expectation value of the corresponding operator.

16



Until now, the efficiency and the accuracy of the TDGPS procedure have make it a
powerful and successful tool in unravelling a variety of problems, such as the Hydro-
gen Rydberg-atom high-resolution spectroscopy [34], the creation and control of a sin-
gle attosecond xuv pulse by synthesizing the H atom HHG in few-cycle intense laser
pulses [35, 36], and spectral and temporal structures of HHG of Sodium [37]. It can also
solve the problems of diatomic molecules in strong laser fields, take for example, the ab
initio study of the orientation effects in multiphoton ionization and HHG of H," [38]. In
addition to solving TDSE, it is capable of providing solution to the time-dependent density
functional theory, see [39] for the HHG of H5 and [40] for the HHG of both homonuclear

and heteronuclear diatomic molecules.

2.5 Summary =y

In this chapter, we discuss. the npﬁleriéeif deta_ils in solving the problem of HHG of
Cs. First, we construct an aceurate ohe-electron aﬁgular-momentum--dependent model
potential for the high-precision description;of the Cs atom. Then, the three-dimensional
TDSE is solved nonperturbatively by means of the TDGPS method, which utilizes a non-
uniform and optimal spatial grid discretization as well as a unconventional split-operator
technique for the accurate and efficient propagation of the wavefunction in space and

time.
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Chapter 3

Results and Discussions

In this chapter, we present'and discuss the results of HHG of Cs obtained by the numer-
ical methods described in Chapter 2:"'We should diseuss .both the spectral and temporal
characteristics of the HHG, and pay 'special attention to the behavior of the below- and

-‘!‘-f'

near-threshold harmonics and compare our 1*_esu1ts with the experimental ones [4].

3.1 Laser characteristics and quantum dynamics

One of our motivations for the present work is to make comparison of our theoretical
studies with the experiments carried out by E. P. Power et al. [4], where they surveyed the
temporal and spectral properties of the below- and near-threshold harmonics of Cs gas in
mid-infrared laser pulses using the sum frequency generation cross-correlation frequency
resolved optical gating (SFG XFROQG) technique. In their work, they have generated a
laser pulse with central wavelength A\ = 3600 nm and 7pw g = 110 fs. They estimated
a maximum laser intensity I = 2.66 TW /cm?. Nevertheless, since the length of the Cs
column in the experiments was approximately equal to the Rayleigh length of the focused

fundamental beam, an exact value for the generating intensity for the harmonics can not
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be given. In theoretical consideration, if we really use a 2.667W /cm? pulse to run the
calculation, we find that the electron population is rapidly depleted before the laser in-
tensity reaches its maxima. Thus, we have to use an intensity lower than 2.66TW /cm?
. However, if the laser intensity is too weak, tunnelling mechanism is less applicable and
the generation of long and short trajectories is irregular (we expect this by performing the
classical calculations). In addition, in weak intensity, resonance prevails and will put extra
and undesirable contribution on the temporal characteristics of HHG. Briefly, there is a

compromise in choosing the laser intensity.

For our final data, we use a laser pulse with A =-3600nm, Tpwuy = 110 fs, I =
21TW Jem?: Foanf(t)cos(wot)s where F,,, is the ﬁeld amplitude, f (t) a Gaussian

envelope, and wy the laser central frequency(see Higure 3.1). Under this condition, the
L

-

Keldysh parameter v = 0.875 <1, sp th‘e-iit_unnelling mechanism dominates. The data
with I = 1.0TW /cm? are oceasionéliy shown an"d,compared, which has v = 1.27 > 1
and is in the multiphoton regime: The primary numerKical parameters for the TDGPS cal-
culations are as follows: we use at least 400 radial girds ,90 partial waves, and an absorber
placed in a large distance, typically over 200 a.u. Note that the strong-field calculations
for Cs in intense mid-infrared laser pulses demand a much larger amount of partial waves
in comparison with the cases of Hydrogen atoms or diatomic molecules. This means that
the wavefunction tends to spread out extensively, and that the angular resolution plays an
important role in this system. Therefore, theoretical treatments of this system based on
some one-dimensional model potential, for example in [4], is not fairly proper. We run
the time propagation for 40 optical cycles (O.C.), so that the laser field strength in the

beginning and the end of the pulse is less then 1075 F},,,, .
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Figure 3.1: Typical laser pulse used in the present calculation. A = 3600nm, Tpwpy =
110fs,and I = 2.1TW /em?.
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Once the time-dependent wavefunction is known, we can calculate any physical quan-
tities by computing the expectation values of the corresponding operator. Here we show a

few time-dependent quantities closely related to the HHG results in the following sections.

Ion population is defined as
Ton population = 1 — (U ((r),t) | U ((r),1)) . (3.1)

The result is shown in Figure 3.2. As'we can '._s,'ee, ion population grows rapidly in the

1.0 — 1177 ,T_;;__,‘.l, —+——71——T7T—+1—+—1——7 0.008
‘ “ lon population
- Laser field 4 0.007
0.8 |
0.006
/\O\ —
X o6l 0.005 b
= o
9o =
I 0.004 =
= o}
o
o 04 0.003 ®
= <
Q ~—
0.002
0.2}
0.001
0.0 bt 0 ~id 0.000
-12

Time (O.C.)

Figure 3.2: Time-dependent ion population (orange solid line). The absolute value of the
laser pulse is also shown (green dotted line) for comparison.

middle of the pulse and approaches about 0.86 in the end of the pulse. This ion popula-
tion is quite high compared with the case of H or other diatomic molecules with similar
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Keldysh parameters, and this must have some influence on the HHG, as we will see in the

successive sections.

Since radiation originates from the motion of the moving charge, here we also calculate

the induced electric dipoles. Dipole length has the following expression:

di(t) = qe (U((r), )| 2 [¥((r), 1)) , (3.2)
where the charge of the electron g. = —1. We also calculate the dipole acceleration as:
OB, (3.3)

T I
The time derivative can be evaluated by the'Bhrenfest's theorem:
Il m

|
‘

N |
=i (B0, H#)] |, (3-4)

where () is any time-independent operator in Schrédinger's picture, and H is the total
Hamiltonian. Incorporating Eqn. 3.4, conservation of angular momentum and parity, and

the special structure of the angular-momentum--dependent model potential into Eqn. 3.3,
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it becomes:

do(t) = (¥|[[z, H], H] V) (3.5)
= (\If|cosé%—F(t)|\I/)

w{(r, |fd LAV R

TAVO

w{oml g
- {ml iy AV°|Ro>}
{5

P2 P2
lO = 1TA‘/0)|R0>}

1 2
— 2F ()R —r?A Rol=r> AV, —(R AV, IR
) {<RI| AV (Rulgr SUahie) ~ (| 2t o) |
where = : “
i E {@}iﬁ(ﬁe,t», (3.6)
Hm || |
Avoér = Vh(r) AW o (3.7)
and
o ()
PEEY AT 38

The results of dipole length and acceleration are shown are shown in Figure 3.3. An
interesting phenomenon is that there are some small oscillations in the dipole moments
near the end of the pulse. To explore the origin of these oscillations one step further, we
compare the dipole accelerations in two different intensities (Figure 3.4). From this figure,

we can see that:

» The oscillating frequency is independent of the laser frequency and is estimated to

be roughly 4wy.
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» These oscillations become more conspicuous when the laser intensity is relatively

low, and persist until the laser field drops nearly to zero.

Since the use of superstrong laser fields tends to wash out the detailed resonant fine struc-
ture [41], and the model potential predicts a energy difference about 4.2w, between the 6s
and 6p states, we may associate these oscillations to the multilphoton resonance between

the two strongly coupled bound states.

NpF——T— T T T T T T T T I

(a) d(t)

L)
..L.l_l]n.u.n.n.n

0.004 ...,7....i....1'

' e || W (b) d_(t)
0.002 |- = - ]

d(t) (a.u.)

0.000 | & | I

-0.002 ' -

-0.004 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " " " "
12 10 -8 -6 -4 -2 0 2 4 6 8 10 12

Time (O.C.)

Figure 3.3: Time-dependent induced dipole moment in length form (panal (a)) and accel-
eration form (panal (b).
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3.2 Fourier an‘aly'SI

i i
e e
= Ty

' w0
In this section we show the’calculate'd HHG @ectra obta‘ined by Fourier analysis. Here
.f = |.-
=)
we defined Fourier transformation as ""r SREgelt

ftf d zwtdt

3.9
tf_t , (3.9)

where d(w) is generally complex, and the amplitude d(w) and the phase ¢(w) are real. As

is the definition in [28], the HHG power spectrum can be obtained from

Di(w) = d?(w), (3.10)

25



or

(3.11)

The agreement of D;(w) and D,(w) is a typical way in our group to make sure the con-
vergency of the calculation. However, the following reasons make the overlapping very

hard to achieve for the current case:

* D;(w) weights the contribution of the wavefuction far away from the origin, while
D, (w) weights the contribution much closer to the nucleus. For the highly ionized
system, converged results based on.Dy(w) become extremely difficult to obtain,
since there is a rising background‘due to 'the electron density far from the nucleus
and the increasing importance of the intera(?tion of the.wavefunction with the edges

of the grids, refer to [29] for the detailed.nimerical experiments and interpretations.

- |

* The equivalence of D;{w)and bq (w) il:'_‘ensured only ifd; (t) and d,(t) satisfy certain

|
1

boundary conditions:

difty) = dift;) =0 (3.12)

and

dy(t) — dy(t;) = 0. (3.13)

However, in our numerical experience, the dipole moments for Cs tend to oscillate
especially when the pulse is coming to an end or when the laser intensity is low.
Thus, the above boundary conditions are generally not established, and D;(w) and

D,(w) are not mathematically equivalent.

Therefore, in the current work, we ensure the numerical convergency by doubling one pa-

rameter at a time and checking if D,(w) has any change. Hereafter, we will only present
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the data based on calculations using d,(w).

In theoretical works, we often calculate the power spectra defined as above. Nonethe-
less, they actually do not present the power emitted by the HHG. According to the classical
Larmor formula [42], the instantaneous power emitted is given by

_2¢?
- 3e3

P(1) oy (3.14)

Hence, we should in fact defined the power spectrum (up to a constant) as
gl) = < (3.15)

3 e

the factor w? is not necessary..In some studies, they present the HHG spectrum as the
Il W

harmonic yields, i.e. the relative numbers of photons emitted:per unit time:

|
1

B

rfy %k

(3.16)

P(w) and I'(w) are the very physical quantities that experimentalists measure, and they
show a more pronounced plateau structure. From now on, we refer to P(w) when men-
tioning HHG power spectra. See Figure 3.5 for the result. The spectrum has several

properties:

* There is a clear cut-off at around 35wy, as same as that predicted by the semi-classical

three-step model E,yi—orr = I + 3.17U, = 34.Twy.

* There is an additional harmonic peak appearing around 4.17wy. This corresponds to

the strong 6s-6p coupling. The energy difference between the two field-free states
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predicted by our model potential is about 4. 1€§w0.
N pd

* The first few harmonics do not shqw arapidly dgélining tendency which is predicted
by the perturbation theory. This mighthas something to do with the resonance effect.
The theoretical work studying HHG of Na carried out by Chu et al. [37] shows that
the low harmonics could be enhanced by the strong coupling of the ground and the
first excited state, and they reveal a much slower decreasing trend compared with

that of the non-resonant H atom case.

* There is a plateau in the spectrum: the spectral magnitude from 9th harmonic to

35th cut-off harmonic varies within two orders.

» The shapes of the harmonic peaks near and beyond the cut-off are broad and struc-

tureless; the harmonic peaks in the mid-plateau are much narrower; the harmonic
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peaks between the two regimes shows peak splitting, for example, the 31st and 33rd

harmonics. Similar features can be found in [43, 37].

Let us zoom in to see the below- and near threshold harmonics (harmonic order q=5-
13) and compare our rescaled result with the experimental data [4]. As we can see, the
experimental harmonics show an overall decreasing tendency, while our calculated har-
monics do not. The difference of each peak amplitude between the experimental and the
theoretical one is not very good ,yet within roughly one order of magnitude. The discrep-
ancy is acceptable, since we consider here the single-atom response and not take macro-
scopic propagation effect into account. VWe can not compare the peak shapes between
these two sets of data, because in4[4] they:extraét' the th;rmonic signals by subtracting the

averaged background from theé XFROG-raw data-, Hence the signals are greatly reduced

between the successive harmonics. | E E;_,__ ’l ,L
@0 , 0o B
107 E \v’z / 0 .
E]O_Q |ﬁ II\ /Y M‘ 2 'WO%}T g ;\ \mu ]\ r‘ i f\\ |
ool | 0 N g B ol |
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Frequency (o))
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Figure 3.6: Comparison of the below- and near-threshold harmonics. Panal (a) experi-
mental result, reproduced from [4]; panal (b) theoretical result.

Finally we end this section by presenting the HHG power spectrum in a lower laser
intensity 7 = 1.0TW /ecm?, see Figure 3.7. Panal (b) shows the whole HHG power spec-
trum. In this lower intensity, harmonics terminate at a smaller order and there is no clear
cut-off due to the fact that Keldysh parameter v > 1 here. Note that the 6s-6p resonant
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Figure 3.7: HHG power spectrum in the ldgi_:-inte%l'ity I = 1.0TW /cm? case. Panal(a)
rescaled below- and near-threshold I l[monics; palill 1 (b) the whole HHG spectrum.

structure is more noticeable 1n thiS: :ibw-;'lintensity 'Casé:j.-: Now let us look the rescaled low-
order harmonics at panal (b). The red arrows label the peaks not belonging to the expected
odd harmonics. We might be able to associate these peaks with the 6s-np multiphoton res-
onances as listed in Table 3.1. Considering the AC Stack shift, the interpretation of the
peaks as the resonances between the ground state and some high-lying excited states may
sound inappropriate. However, as we can see from the results of the following section, the
emission times corresponding to the above harmonics are often near the end of the laser
pulse, when the energy shifting is relatively small. Therefore, this correspondence might
still be a possible scenario. Work in this direction is in progress in order to provide more

sounded understanding of the origin of these peaks.
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Table 3.1: Comparison of the positions of the additional harmonic peaks and the field-free
6s-np energy differences calculated by the model potential.

Arrow label Peak position (wy) Field-free energy difference

H4 413 AFgs_¢p = 4.16

H8 787 AEGS—?p — 788

H9.b 9.23 AFEg,_g, = 9.27
H10.a 9.94 AFEg,_g, = 9.96
H10.b 10.39 AFEgs—10p = 10.35

3.3 Fourier analysis: temporal properties of the HHG

An important aim of this work is to explore the mechanism of the below- and near-
threshold harmonics. This involves the/cognizance of the femporal characteristics of the
HHG. The spectral properties of HHG' | as-we.discussed in the last section, only require
the knowledge of the spectralamplitudes d(w) (see Eqn, 3:9 for the definition), while the
spectral phases ¢(w) are actually capablé fiﬂg{gviding us the information about the tem-
poral information of the HHG. 1

In most of the experimental works ;including thét done by E. P. Power et al, which
characterize the temporal traits of the HHG [4, 44, 45], people measure the group delay

for each frequency component defined as:

Tdelay<w) = g_f} (317)

This physical quantity has the dimension of time, and it represents the emission time as-
sociated a group of harmonics centred on w. As pointed out in Chapter 1, harmonics
due to multiphoton mechanism or tunnelling mechanism can be distinguished by the rela-
tive emission times between successive harmonics: for the harmonics generated by mul-

tiphoton mechanism, perturbation theory predicts the successive harmonics are emitted
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simultaneously (zero chirp), while for the harmonics formed by tunnelling mechanism,
the successive harmonics are not emitted in coincidence. In the latter case, we can further
discern which kind of trajectories makes the prominent contribution: if the high-frequency
harmonic emits before the low-frequency one (negative chirp), then the long trajectories
are responsible for this part of HHG; if the high-frequency harmonic harmonic emits after
the low-frequency one (positive chirp), then the short trajectories are the main generating
source. In short, comparing the relative group delays between successive harmonics could
give us the answer regarding the mechanism and the channel that lead to the generation of

below- and near-threshold harmonics:

Figure 3.8 and Figure 3.9:show our results of calculatiens. In Fig 3.8, we can see that
although the emission times distributed O\f,e;f ,ﬁ lpng period compared with the 7py gy =
110fs, the times near each harmonic_are“f}j}ative concentrated: the distribution of the
points is denser around the vertical aétted lines. Besides, the emission times near each
harmonic from the mid-plateau to the cut-oft. (q=21—3:5) form a straight line with negative
slope, that is, each harmonic has negative intrinsic chirp, and the magnitude of the chirp
rate decreases with q, as predicted by the SFA [46]. Finally, for the frequency where res-
onance could take place, for example, around 4w, 8wy, 10wy, the emission times spread
over a large range and are relatively late compared with the emission times near other
odd harmonics. Figure 3.9 compares the calculated group delays for the below- and near-
threshold harmonics with those obtained in the XFROG experiment [4]. Both results re-
veal the emission times for the harmonic q=5-13 show a non-zero and negative slope,

implying tunnelling mechanism, especially the long trajectory, participates the harmonic

generation here, in agreement with the conclusion of other recent reports [16, 15, 47].
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Note that the our theoretical emission times spread over the range of about 9fs, in good

concordance with the experimental results.
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Figure 3.8: Calcu re seri (I =21TW Jem?.
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3.4 Wavelet analysis:Spectral andfemporal properties of

the HHG | =
| 1 5
‘-14__ | ;
In the last section, we dig out SOLT! temporal :fqliatures of the HHG by Fourier trans-
i | 1 d
1 | .
formation and compare them with:/the e_xperiments.":'iNevertheless, the emission of the
harmonics due to the tunnelling mechanism should appear one per half optical cycle,
whenever the laser field reaches a local maxima. Hence, there should be several emis-
sion times associated with each harmonic. Experimentally, it is impossible to probe the
emission times in such a short time scale, so we can only rely on the group delays, which
actually represent the averaged emission times. Theoretically, however, we are able to
extract every emission time in a fine temporal resolution: the delicate and non-averaged

spectral and temporal characteristics of HHG can be calculated by means of the wavelet

transformation.
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The wavelet transformation is defined as [48, 43]

ty ~
0= [ Wb (3.18)

where

W2(E-t)2 . -
Wiw(®) = \/Ee‘(w) e (E=t) (3.19)
T

In Fourier transformation, we project the time-dependent physical quantity into plane
wave solution, which is non-localized in time, thus leads to the lost of the detailed tem-
poral information. Wavelet transformation, on the other side, makes the decomposition
using a localized wave packet V) 'with eentral fréquency w and central emission time ¢,
therefore preserves the minute temporal features.. The parameter 7 measures the approx-
imate number of oscillations included i f;ﬁi\é{avelet, and is a compromise between the
spectral and temporal resolutions, res"ul:ted fr}bm the limitationiimposed by the uncertainty
principle. We have tested the dependéﬁce of dw(t)'onr T by.varying its value from 5 to 30.

Although the absolute value of d,,(¢) changesa little, the general pattern doest not change.

In the following calculations, we choose 7 = 13.35 to perform the wavelet transformation.

Figure 3.10 shows the three-dimensional graph of the modulus of d,, () in logarithmic
scale with respect to various (w,t). Figure 3.11 depicts the time profile, i.e. the cross
section of the spectrum at a given frequency, for several harmonics in different energy
regimes. These figures reveal striking and vivid details of the spectral and temporal struc-

tures regarding the HHG mechanisms in different energy regimes:

* For the lowest few harmonic, the 3D spectrum and the time profile (see Figure 3.11

panel (a)) is a smooth function in time. Usually the time profile has a shape mimick-
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Figure 3.10: Time-frequency spectrum of atomic Cs. The color represent the modulus of
d,(t) in logarithmic scale.

ing that of the laser envelope (refer to [43] for the H atom case), but our result shows
the maxima is shifted toward an earlier time. This may be attributed to the rapid re-
duction of the bounded electron population (see Figure 3.2), which is not taken into
account in the theory. The time profiles in other energy regimes also indicate the
similar trends. Anyway, the smooth time profile is an evidence that the multiphoton

mechanism 1is responsible for the generation of the lowest few harmonics here.

* For the harmonics well above the ionization threshold, the 3D spectrum and the time
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Figure 3.11: Typical time profiles 01 HG{Er (a) lge lowest few harmonics, (b) below-
t C

and near-threshold harmonics, (¢)pl I Tau harmon1| , and'(d) cut-off harmonics.

profiles (see Figure 3.11 pa-rié:ll (¢)and (d)) 's'hor\:;:srthe development of fast bursts in
time, demonstrating that tunnelling mechanism is the prominent mechanism here:
the harmonic emission is not only dependent on the envelope of the laser pulse, but
is also highly sensitive to the pulse carrier, which decides the crest of the field value
and the tunnelling instant. Panel (d) is the time profile for the 35th harmonic in the
cut-off, from which we can see that there is one burst per half optical cycle, while
Panel (c) is the time profile for the harmonic in the plateau, from which we can tell
that there are two bursts per half O.C. in the middle of the pulse. These findings are
in accordance with what predicted by the semi-classical three-step model: there are

two channels, namely the long and short trajectories, contributing to the generation
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of plateau harmonics, and these channels merge together for the harmonics in the

cut-off.

From the above two points, we know that the 3D spectrum of the lowest few harmon-
ics are characterized by the vertical bands, while the spectrum of high harmonics are
characterized by horizontal lines. For the harmonics between the two extremes, the
spectrum show a net-like structures due to the competition of the multiphoton and
tunnelling mechanisms. The below- and near-threshold (5th to 13th) harmonics
obviously lie in this net-like regime. Figure 3.12 plots the evolution of the time
profile for the below- and near-thresholds,harmonics. The existence of fast bursts

is discernible for the harmonic.efders greatémnthan 7.

For the harmonic at a frequency slight greater than 4wy, the 3D spectrum shows an
almost continuous emission espccial]_;i'when thedaser pulse is coming to an end.
1 A ]
The time profile atw = 4.2w0‘_is‘ presénted in Figure 3.13. We may attributed this
to the multiphoton resonance between the stroﬁgly coupled 6s and 6p states. The
information we get by the wavelettransformation is consistent with these we obtain
from the time-dependent dipole moments (Figure 3.3 and 3.4) and the time delays
(Figure 3.8). There are other extended structures below the ionization threshold

near the end of the pulse, but we can not specify them with some clear frequency

components. The physical origin in this regime needs further investigation.
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Figure 3.12: Evolution of the time prqﬁl@_ﬁiﬁhe below- and:near-threshold harmonics.

| M
3.5 Summary || ==

| |

In this chapter, first we discués :the quantum dyn;rnics, then we explore the spectral
and temporal characteristics of the HHG of atomic Cs in mid-infrared laser pulses by
Fourier transformation and the wavelet analysis. The strong couplings between 6s and np
states, 6s and 6p in particular, producing notable peaks in addition to the expected odd
harmonics when the laser field is relatively weak. Both the results of Fourier and wavelet
transformations verify the existence of the tunnelling mechanism (besides the multiphoton
mechanism) for the below- and near-threshold harmonics. We further indicate that the
contribution from the tunnelling mechanism is through the channel of long trajectories by
showing the negative chirp in the calculated group delays, which is in good agreement

compared with the experimental result [4].
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Figure 3.13: Typical time profile for a peak due to the multiphoton resonance between
two strongly coupled states, here the 6s and 6p states.
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Chapter 4

Conclusions and Future Perspectives

In this thesis, we present the. first three-dimensional full-quantum calculations of the
high-order harmonic generation of ‘atomic Cesium 1 mid-infrared laser pulses. A one-
electron model potential is constructed forthe high-precision description of the Cs atom

o

electronic structure. We solve the TDSE nonf_aerturbatively by-means of the time-dependent

generalized pseudospectral method wifh high accuracy and-efficiency.

We analyze the temporal and spectral features of the HHG in different energy regimes
by performing Fourier and wavelet transformations. One special property of the HHG of
atomic Cs is the extra peaks in addition to the normal odd harmonics. These peaks result
from the strong couplings between the 6s an np states and become more salient when the
laser field is relatively weak, for example, when the laser pulse is coming to an end or
a lower peak intensity is used. We also address the problem of the mechanisms of the
below- and near-threshold harmonics. The calculated group delays show these harmonics
are negatively chirped and imply long trajectories due to tunnelling mechanism work here;

both the trend and magnitude of the theoretical results are in good agreement the experi-
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mental values [4]. Wavelet transformation reveals the detailed time-frequency spectrum
of below- and near-threshold harmonics have a net-like structure, demonstrating in an-
other way that both the multiphoton and tunnelling mechanisms participate the harmonic
generation in this energy regime. By comparing the calculated emission times from the
wavelet transformation with those predicted by classical simulations, we hope in the near
future we can unwrap and identify the contributions from different types of trajectories

and explain how they function for the generation of below- and near-threshold harmonics.

We show the importance of the strongly coupled 6s — np states in this work by the
existence of additional peaks'in the spectra.-However,.the competition and interference
between the contiuum —"6s and the contiuum —6p should affect the whole HHG
spectra in some way. This effect has alrie_fgﬂlx be found experimentally to cause the ap-
pearance of some side peaks in the abqve—:cﬂf{eshold ionization (ATI) photoelectron spec-
tra [17], yet no studies on the:HHG ﬁhéton spectré have been performed. The theoretical
understanding of the resonant effect may-also bring ;ome practical applications. For ex-
ample, it may be possible to use a second coupling laser beam as a means for the active

control of the HHG process by tuning the populations in the two states [18]. We shall

continue our work in this direction.
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