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中文摘要

在這篇論文中，我們從非微擾的量子力學觀點，研究銫原子在中程紅外強場雷

射中產生高次諧波 (high-order harmonic generation, HHG)的現象。我們建立了一個

和角動量量子數有關的模型勢能，精準地描述了銫原子的電子結構。我們以時變

廣義擬譜方法 (time-dependent generalized pseudospectral method, TDGPS)有效率且

準確地求解了三維的時變薛丁格方程式。

除了預期的奇數高次諧波外，由於銫原子 6s與 np能階間的強耦合，我們得

到的高次諧波頻譜顯示了一些額外的結構。經由傅立業 (Fourier)及小波 (wavelet)

分析，我們更進一步探索了高次諧波的時間與光譜特性。藉此我們可以瞭解在

不同能量範圍之高次諧波產生的主要機制，特別是低閾值與近閾值 (below- and

near-threshold)高次諧波的產生。
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Abstract

In this thesis, we present a non-perturbative quantum study of high-order harmonic

generation (HHG) of Cesium atoms in intense mid-infrared laser pulses. An accurate

angular-momentum--dependent model potential is constructed for the high-precision de-

scription of the Cs atom electronic structure. The three-dimensional time-dependent Schrödinger

equation is solved accurately and efficiently by means of the time-dependent generalized

pseudospectral (TDGPS) method.

Besides the expected odd harmonics, the calculated HHG spectra show additional

structures due to the strong 6s − np couplings. The spectral and temporal characteris-

tics of the HHG are further explored through Fourier and the wavelet transformation. As

a result, we can investigate the prevailing mechanisms in different energy regimes, espe-

cially those contributing to the generation of below- and near-threshold harmonics.
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Chapter 1

Introduction

In this chapter, the rudimentary knowledge of high-harmonic generation and the mo-

tivations for this work are introduced.

1.1 Strong field physics

Our first grasp of the interaction between atoms, molecules, and photons initiates from

Einstein's law for the photoelectric effect. This law, justified formally by the lowest-order

perturbation theory and Fermi's golden rule, is strictly concerned with the absorption of a

single photon during a transition. Nevertheless, moving in pace with the advance of the

available laser intensities, the interaction has now entered the non-perturbative regime,

where the strength of the of the laser field is comparable to that of the Coulomb binding

force of the atomic core exerting on the active electron and non-linear multiphoton tran-

sition appears.

After the multiphoton absorption of several soft photons, the electron of the target X

gets some chance to recombine into the ground state by emitting a hard photon with an
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energy q times the incident photon ~ω0:

X + q(~ω0) −→ X + (q~ω0), (1.1)

where q is an integer. When a relative intense laser is used as the light source, harmonics

have been observed to very high order. For example, Colosimo et al. [6] have observed

a highest 355th harmonic using Argon and a 2µm 50fs laser pulse. This phenomenon is

named high-order harmonic generation (HHG), and is the primary physical process we

concern in this thesis.

1.2 Fundamentals of HHG

A generic HHG spectrum is shown in Figure 1.1: there is an initial sharp decline in

conversion efficiency, then a plateau where the harmonic intensity varies weakly with or-

der, and eventually a cut-off beyond which no harmonic emission is seen. Typically only

odd harmonics are observed if the Hamiltonian of the system has inversion symmetry. In

addition to pure theoretical interests, HHG has several applications. For instance, while

using rare-gas atoms and short laser pulses in the near-visible or UV regime, the coher-

ently generated harmonic can extend to the XUV (λ = 10 − 120nm) or even the soft

X ray (0.1 − 10nm) water window region (2.33 − 4.33nm) [7, 8], a so called table-top

synchrotron. Moreover, due to the fact that the HHG spectrum has a large bandwidth, it

provides a practical means of synthesizing unprecedentedly short pulses on the order of

attoseconds (10−18s) , which is the intrinsic time scale of the electron motion in atoms or

molecules. Up to now, an 80as isolated pulse has been generated by Krausz et al. [9], and
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Figure 1.1: Generic harmonic spectrum. This is an experimental result generated using Ar
and a 1064nm Nd:YAG laser at an intensity approximately 3× 1013W/cm2. Reproduced
from [1].

a 130as pulse train has been produced by L'Huillier et al [10].

1.3 HHG mechanisms in two extremes

The abrupt change of the trend of the harmonic conversion efficiency from the rapid

decline to the plateau in Figure 1.1 implies a switch of different HHG mechanisms in the

two energy regimes. These two regimes are separated roughly by the field-free ionization

threshold Ip.

The formation of harmonics with energies well below Ip is due to bound-bound excita-

tion process and can be explained by mutiphoton mechanism: an electron absorbs several
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photon simultaneously, jumps to a (virtual) bound state, and then recombines into the

ground state by emitting a high-energy photon, as schematically shown in Figure 1.2. In

fact, owing to AC Stark effect, the ionization potential is constantly changing with time.

Hence, strictly speaking, this familiar picture may be appropriate to describe only the low-

est few harmonics, which involve transitions between low-lying states not that sensitive

to AC Stark shift.

Figure 1.2: Illustration of the multiphoton process.

On the other hand, the generation of harmonics with energieswell above Ip is related to

bound-continuum ionization process. Under certain circumstances (we will discuss them

later), the ionization process is realized in terms of Keldysh tunnelling mechanism [11].

In 1993, P. B. Corkum proposed a semi-classical three step model [12, 13] based on this

assumption. This model is capable of predicting some essential features of HHG in an

intuitive way. It depicts the HHG process as composed of the following three steps:

• First step (see Figure 1.3 a): purely quantum. The electron is launched by the

Keldysh tunnelling ionization. The time-dependent laser field varies continuously
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with time and keeps modifying the atomic Coulomb potential. When the field

strength reaches the maximum, the Coulomb potential is severely suppressed, and

the electron has the highest probability to tunnel through the modified potential bar-

rier and gets ionized.

• Second step (see Figure 1.3 b): purely classical. The motion of the electron after

liberation is then described classically by Newton's second law. The electron moves

freely in the laser field and the effect of the nuclear Coulomb attraction is ignored.

• Third step (see Figure 1.3 c and d): purely quantum. When the laser field reverses its

direction, the ionized electron might be pulled back and rescattered by the Coulomb

potential. If the electron recollides with the parent ionic core, it gets some chance

to recombine into the ground state and emits a high-energy photon.

Figure 1.3: Illustration of how the semi-classical three-step model describes the HHG
process. Reproduced from [2]

Conventionally, the concept of tunnelling is applicable only when the potential is time-

independent. Nevertheless, as the change of the laser field is slow enough, the validity of
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the tunnelling ansatz is assured under the adiabatic approximation, i.e.

Keldysh adiabatic parameterγ =
tunnelling time
laser period

=

√
Ip
2Up

≪ 1, (1.2)

where Up =
E2

4ω2 is the ponderomotive energy, that is, the average kinetic energy acquired

by a free electron in a laser field of amplitudeE and frequency ω. From the above relation,

we can see that this approximation becomes better when the laser intensity is relatively

high or laser wavelength is long. The harmonic energy predicted by the semi-classical

model is:

Harmonic energy = kinetic energy of the rescattering electron+ Ip ≥ Ip. (1.3)

Hence, this model can only explain the harmonic with energy greater then the ionization

threshold. Actually, it can only account for the harmonic with energy much greater then

Ip, for which the ignorance of Coulomb attraction after ionization has less influence.

The tunnelling mechanism is intrinsically different from the multiphotin mechanism.

For the harmonic generated by the tunnelling mechanism, the electron gains energy far

away from the core through the classical motion; this process is highly sensitive to the de-

tailed laser pulse shape (both the pulse envelope and carrier), since it happens whenever

the field strength reaches maximum. On the contrary, for the harmonic formed by the mul-

tiphoton mechanism, the electron gains energy near the ionic core; this procedure is only

sensitive to the pulse shape in an averaged way, i.e. the pulse envelope, as predicted by the

lost-order perturbation theory (LOPT) [14]. There is another way to distinguish the har-

monic radiation between the two mechanisms by the relative emission times of successive
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harmonics, dubbed the harmonic chirp. For the harmonics due to multiphoton mecha-

nism, LOPT predicts the successive harmonics are emitted simultaneously (zero chirp).

As for the harmonics resulting from the tunnelling mechanism, the situation becomes a

little more complicated. Based on the semi-classical three-step model, if we select the

main contributions, i.e. the electron tunnels out near some field strength maximum and

returns to the ionic core within one laser period, and plot the return time versus return ki-

netic energy, we can get something similar to Figure 1.4. From this figure, we are able to

Figure 1.4: Electron return time versus return energy calculated by the semi-classical
three-step model. Reproduced from [3].

see that there are two return times corresponding to each return energy. The one coming

back earlier is named short trajectory, while the other returning later is called long trajec-

tory. Compared with the long trajectory, short trajectory gets ionized later and recollides

with the core earlier, thus travels within a shorter time and distance. We can get another

important message from the figure: the emission times of the successive harmonics show

different trends for the two kinds of trajectories. The high-frequency harmonic emits after

the low-frequency one for short trajectories (positive slope, positive chirp), while the high-

frequency component emits before the low-frequency one for long trajectories (negative
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slope, negative chirp). Because the probabilities of generating short or long trajectories

are generally not equal, the harmonic radiation originates from the tunnelling mechanism

leads to a total non-zero chirp. In conclusion, we can explore the mechanism of harmonic

generation by examining its chirp rate.

1.4 Below- and near-threshold harmonics

In the last section, we have discussed the HHG mechanism in two energy extremes.

However, the mechanism accounting for generating the harmonics near or below the ion-

ization threshold is relatively unexplored and a area of forefront research. Convention-

ally, only the multiphoton mechanism is considered to be responsible for the HHG in

this regime. However, recent experimental studies [4, 15, 16] have found the tunnelling

mechanism, especially the long trajectories, can also make its contribution here. In this

thesis, we would like to scrutinize the HHG in this energy regime from a theoretical, full-

quantum, and accurate point of view.

1.5 Cesium in the mid-infrared laser pulses

In [4], E. P. Power et al. performed the experiments by using an intense mid-infrared

pulse shining on cesium gases. This work has fully exploited the Keldysh scaling prop-

erty. Since the same ionization dynamics is guaranteed as long as the Keldysh parameter

γ =
√

2Ipω2

E2 is fixed, we are provided the freedom to tune and select the appropriate phys-

ical parameters. For example, argon (Ip = 15.76eV ) driven with a 130TW/cm2, 0.8µm

pulse and cesium (Ip = 3.89eV ) driven with a 1.6TW/cm2, 3.6µm pulse both produce
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γ = 1. We say that a 3.6µm/Cs system is the Keldysh-scaled equivalent of the 0.8µm/

Ar system. The advantage of using the mid-infrared light source is that the some of the

harmonics have wavelength in the visible region, so the conventional optical techniques,

for example cross-correlation technique in [4], can be used to measured the spectral as

well as the temporal properties of the HHG.

Since Cs belongs to alkali metals, another interesting property of the 3.6µm/Cs sys-

tem is that the ground state (6s) and the first excited state (6p) has relatively strong cou-

pling [17]. Some experimental and theoretical studies of potassium and rubidium [18, 19,

20, 21] have found this coupling leads to enhancement of the harmonic conversion effi-

ciency. There have already been some experiments using cesium [22, 23], but no similar

enhancement has been reported.

In the end of this chapter, we list the motivations for this current work as follows:

• We would like to perform the first 3D, quantum, and accurate calculation of HHG

of Cs.

• Based on the calculation, we would like to explore the mechanisms of below- and

near-threshold harmonic generation from a theoretical, single-atom point of view,

and made comparison with the experimental result in [4].

• We would like to investigate the influence of the strong 6s− sp coupling of the Cs

atom on HHG.
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Chapter 2

Numerical Methods

In this chapter, we introduce different approaches in solving the strong-field problems,

our theoretical formulation, and the numerical methods involved in this thesis.

2.1 Difficulties in solving the HHG problem

When the strength of the laser field is comparable to that of the Coulomb field binding

the active electron, the HHG process is highly non-perturbative and no longer has any

analytical solutions; we can only tackle the problem either by model or numerical calcula-

tions. The most famous semi-classical three-step model [12] has already been introduced

in chapter 1. Similar quantum mechanical formalism, which also ignores the influence of

the Coulomb potential when the electron gets tunnelingly ionized, is the strong-field ap-

proximation (SFA) [24]. The above two models can be linked together by the Feynman's

path-integral approach [25], which considers the SFA as the net result of interference be-

tween a few trajectories.

These models definitely give us a lot of physical insights into the mechanism of the
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HHG process. However, as we have seen before, the HHG process is highly non-linear

and the signals cover a broad range of orders, hence the assumptions and approximations

made by these models might sometimes be over simplistic and lead to the unpredictable

results which differ from the experimental ones as large as several orders of magnitude

[26]. Therefore, accurate numerical simulation plays an indispensable role in solving the

strong-field problems. Themost common numerical recipes are the time-independent non-

Hermitian Floquet Hamiltonianmethods [27] and direct numerical integration of the time-

dependent Schrödinger equation [28, 29]. The former approach provides better numerical

accuracy and computational efficiency, while the latter has more flexibility, regarding that

it does not impose any constraint on the forms of the Hamiltonians and the shapes of the

laser pulses. In this thesis, we adopt the direct numerical integration technique.

2.2 The Time-dependent Schrödinger equation

Here we consider the numerical solution to the time-dependent Schrödinger equation

(TDSE) for a Cesium atom in a linearly polarized intense mid-infrared laser pulses treated

classically (in atomic units):

i
∂

∂t
Ψ(r, t) = H(t)Ψ(r, t) = [H0 + Vext(t)]Ψ(r, t). (2.1)

Here H0 is the time-independent unperturbed Cs-atom Hamiltonian, and Vext(t) is the

time-dependent atom-laser coupling.

In the scheme of model potential methods, we describe a multi-electron atom as va-
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lence electrons interacting with an effective closed shell. In the case of Cs, one kind of the

alkali metals, solving TDSE then reduces to an one-electron three-dimensional problem:

Ψ(r, t) is the wavefunction for the 6s valence electron, whichmoves under the influence of

the Cs+ core with electronic configuration 1s22s22p63s23p63d104s24p64d105s25p6. Based

on the above single-active-electron (SAE) approximation, H0 has the following form:

H0 =

(
−1

2

∂2

∂r2
+

L2

2r2

)
+ Vc, (2.2)

where Vc is a model potential for the Coulomb interaction between the 6s electron and the

Cs+ core. We shall discuss the detail of Vc in the next section. The atom-field coupling

Vext(t) under dipole approximation now becomes

Vext(t) = Vext(r, t) = −F(t) · r = −F (t)z, (2.3)

where F(t) is the time-dependent laser force, assumed polarized along the z direction.

2.3 Angular-momentum--dependent model potential for

Cesium

For the present study, we have constructed a high-precision angular-momentum--dependent

model potential to describe accurately the Coulomb interaction Vc:

Vc =
∑
l

∣∣Y 0
l

⟩
Vl(r)

⟨
Y 0
l

∣∣ , (2.4)

Vl(r) = −1

r
− α

2r4
W6(

r

rc
)−

(
N − Sl

r
+ A1,l

)
e−B1,lr −

(
Sl

r
+ A2,l

)
e−B2r, (2.5)
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where α is the Cs+ core dipole polarizability, rc the effective Cs+ core radius, N the

number of the core electrons, andWn a core--cut-off function given by

Wn(x) = 1−
[
1 + nx+

(nx)2

2!
+ · · ·+ (nx)n

n!

]
e−nx. (2.6)

Note that the indexes of some parameters and thus their values have l-dependency. Here

we find it is sufficient to use a 2-component model potential, that is, we have two different

sets of parameters for the description of the states with l = 0 and l ≥ 1 respectively. The

numerical values of the parameters are listed in Table 2.1. The bound state energies

predicted by the model potential are compared with the experimental values [5] in Table

2.2. The oscillator strength of the 6s − 6p transition is calculated to be 0.403, compared

to the 0.394 expected for Cs.

Table 2.1: Model potential parameters for Cs (in a.u.).
l α rc S N A1 A2 B1 B2

0 15.6 3.35 59.151687 54 32.329367 0 1.69 4.67
≥ 1 15.6 3.35 41.035779 54 0.32427851 30 1.20 5.00
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Table 2.2: Comparison of the calculated Cs energies to the experimental values (in a.u.).
For each angular momentum l, two rows of energiesE(n, l) are listed: the upper row refers
to the calculated model-potential energies, and the lower row refers to the experimental
values from [5].

E(n, l)

l\n 6 7 8 9 10 11 12

0 -0.1430990 -0.0586446 -0.0323015 -0.0204845 -0.0141531 -0.0103645 -0.0079174

-0.1430990 -0.0586446 -0.0323014 -0.0204845 -0.0141531 -0.0103645 -0.0079174

1 -0.0904543 -0.0434199 -0.0257368 -0.0170564 -0.0121389 -0.0090812 -0.0070498

-0.0904839 -0.0433784 -0.0257093 -0.0170393 -0.0121279 -0.0090737 -0.0070446

2 -0.0767537 -0.0401010 -0.0243947 -0.0163741 -0.0117426 -0.0088300 -0.0068826

-0.0767685 -0.0400591 -0.0243586 -0.0163493 -0.0117259 -0.0088183 -0.0068719

3 -0.0316125 -0.0202221 -0.0140293 -0.0102970 -0.0078767 -0.0062189 -0.0050341

-0.0315953 -0.0202086 -0.0140200 -0.0102907 -0.0078723 -0.0062157 -0.0050317

4 -0.0200405 -0.0139152 -0.0102218 -0.0078248 -0.0061817 -0.0050066 -0.0041372

-0.0200407 -0.0139152 -0.0102217 -0.0078248 -0.0061817 -0.0050066 -0.0041372

2.4 Time-dependent generalized pseudospectral method

We directly discretize and numerically integrate Eqn. 2.1 by the time-dependent gener-

alized pseudospectral method (TDGPS) developed by Tong and Chu et al [28, 30, 31, 32].

Pseudospectral methods belong to one type of discretization schemes which minimize the

error by requiring the equation to be exactly satisfied at each spatial grid. They posses

the simplicity of the direct discretization methods such as the finite difference (FD) and

the finite element (FE) methods, while simultaneously maintain high accuracy and fast

convergency of the finite basis set variational methods. They have been widely applied

to solving the problems in fluid dynamics for some time, yet what making them become

a perfect tool in handling the problems in strong-field atomic and molecular physics are

the generalizations made by our former group members.
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The most notable and important ingredients of these generalizations are in two re-

spects: the non-uniform and optimal spatial grid discretization as well as the accurate and

efficient time propagation achieved by the split-operator technique in the energy represen-

tation. For atomic or molecular structure calculations involving the Coulomb or Coulomb-

like potential, one typical problem associated with the commonly used equal-spacing grid

methods is the Coulomb singularity in the origin and the long-range nature of the poten-

tial. Generally, one either uses a soft potential or truncates the semi-infinite radial domain

[0,∞) into a finite one [rmin, rmax]. The first treatment modifies the potential near the

origin, which might have unpredictably large impact on the results through the non-linear

effects. The second one has to use sufficiently small rmin and very large rmax, thus leads

to the need of tremendous number of grids and makes the cost of calculations prohibitive.

We can solve this problem by a non-uniform discretization of girds: it allows denser grids

near the origin, where the environment changes most dramatically and the most crucial

physics related to HHG happens, and a sparser mesh for the outer regime, where the po-

tential varies slowly and radiative recombination is less possible. Accordingly, we have

the optimal and the most efficient way to distribute and fully exploit all the grid points,

and can get highly accurate wavefunction and the converged results with modest number

of grids, often orders of magnitude smaller than those used in conventional equal-spacing

discretization methods [30]. A typical distribution of the collocation points for atomic

HHG calculations is shown in Figure 2.1.

The second feature of the TDGPS method is the time propagation by means of a novel

second-order split operator technique in the energy-coordinate representation:

Ψ(t+∆t) = e−iH0
∆t
2 e−iVext(t+

∆t
2
)∆te−iH0

∆t
2 Ψ(t) +O(∆t3) (2.7)
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Figure 2.1: Typical grid distribution for atomic HHG calculations using the TDGPS
method.

The conventional split-operator technique [33] splits the operator into kinetic and potential

energy parts and performs the time propagation in momentum-coordinate representation.

Both the conventional and the new split-operator method share the merits that the error in

each time step is to the third order of∆t and the unitarity of the wavefunction is automat-

ically preserved. However, the new split-operator method has the additional advantages

that we can employ larger ∆t by eliminating the undesirable and unstable high-energy

components of the wavefunction, and that each partial wave wavefunction can actually

be propagated independently and efficiently using the BLAS subroutines. Once the time-

dependent wavefunction is known, we can calculate any physical quantities by computing

the expectation value of the corresponding operator.
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Until now, the efficiency and the accuracy of the TDGPS procedure have make it a

powerful and successful tool in unravelling a variety of problems, such as the Hydro-

gen Rydberg-atom high-resolution spectroscopy [34], the creation and control of a sin-

gle attosecond xuv pulse by synthesizing the H atom HHG in few-cycle intense laser

pulses [35, 36], and spectral and temporal structures of HHG of Sodium [37]. It can also

solve the problems of diatomic molecules in strong laser fields, take for example, the ab

initio study of the orientation effects in multiphoton ionization and HHG of H+
2 [38]. In

addition to solving TDSE, it is capable of providing solution to the time-dependent density

functional theory, see [39] for the HHG ofH2 and [40] for the HHG of both homonuclear

and heteronuclear diatomic molecules.

2.5 Summary

In this chapter, we discuss the numerical details in solving the problem of HHG of

Cs. First, we construct an accurate one-electron angular-momentum--dependent model

potential for the high-precision description of the Cs atom. Then, the three-dimensional

TDSE is solved nonperturbatively by means of the TDGPS method, which utilizes a non-

uniform and optimal spatial grid discretization as well as a unconventional split-operator

technique for the accurate and efficient propagation of the wavefunction in space and

time.
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Chapter 3

Results and Discussions

In this chapter, we present and discuss the results of HHG of Cs obtained by the numer-

ical methods described in Chapter 2. We should discuss both the spectral and temporal

characteristics of the HHG, and pay special attention to the behavior of the below- and

near-threshold harmonics and compare our results with the experimental ones [4].

3.1 Laser characteristics and quantum dynamics

One of our motivations for the present work is to make comparison of our theoretical

studies with the experiments carried out by E. P. Power et al. [4], where they surveyed the

temporal and spectral properties of the below- and near-threshold harmonics of Cs gas in

mid-infrared laser pulses using the sum frequency generation cross-correlation frequency

resolved optical gating (SFG XFROG) technique. In their work, they have generated a

laser pulse with central wavelength λ = 3600 nm and τFWHM
∼= 110 fs. They estimated

a maximum laser intensity I = 2.66 TW/cm2. Nevertheless, since the length of the Cs

column in the experiments was approximately equal to the Rayleigh length of the focused

fundamental beam, an exact value for the generating intensity for the harmonics can not
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be given. In theoretical consideration, if we really use a 2.66TW/cm2 pulse to run the

calculation, we find that the electron population is rapidly depleted before the laser in-

tensity reaches its maxima. Thus, we have to use an intensity lower than 2.66TW/cm2

. However, if the laser intensity is too weak, tunnelling mechanism is less applicable and

the generation of long and short trajectories is irregular (we expect this by performing the

classical calculations). In addition, in weak intensity, resonance prevails and will put extra

and undesirable contribution on the temporal characteristics of HHG. Briefly, there is a

compromise in choosing the laser intensity.

For our final data, we use a laser pulse with λ = 3600nm, τFWHM = 110fs, I =

2.1TW/cm2: Fmaxf(t)cos(ω0t), where Fmax is the field amplitude, f(t) a Gaussian

envelope, and ω0 the laser central frequency(see Figure 3.1). Under this condition, the

Keldysh parameter γ ∼= 0.875 < 1, so the tunnelling mechanism dominates. The data

with I = 1.0TW/cm2 are occasionally shown and compared, which has γ ∼= 1.27 > 1

and is in the multiphoton regime. The primary numerical parameters for the TDGPS cal-

culations are as follows: we use at least 400 radial girds ,90 partial waves, and an absorber

placed in a large distance, typically over 200 a.u. Note that the strong-field calculations

for Cs in intense mid-infrared laser pulses demand a much larger amount of partial waves

in comparison with the cases of Hydrogen atoms or diatomic molecules. This means that

the wavefunction tends to spread out extensively, and that the angular resolution plays an

important role in this system. Therefore, theoretical treatments of this system based on

some one-dimensional model potential, for example in [4], is not fairly proper. We run

the time propagation for 40 optical cycles (O.C.), so that the laser field strength in the

beginning and the end of the pulse is less then 10−5Fmax .
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Figure 3.1: Typical laser pulse used in the present calculation. λ = 3600nm, τFWHM =
110fs, and I = 2.1TW/cm2.
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Once the time-dependent wavefunction is known, we can calculate any physical quan-

tities by computing the expectation values of the corresponding operator. Here we show a

few time-dependent quantities closely related to the HHG results in the following sections.

Ion population is defined as

Ion population ≡ 1− ⟨Ψ((r), t) |Ψ((r), t)⟩ . (3.1)

The result is shown in Figure 3.2. As we can see, ion population grows rapidly in the
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Figure 3.2: Time-dependent ion population (orange solid line). The absolute value of the
laser pulse is also shown (green dotted line) for comparison.

middle of the pulse and approaches about 0.86 in the end of the pulse. This ion popula-

tion is quite high compared with the case of H or other diatomic molecules with similar
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Keldysh parameters, and this must have some influence on the HHG, as we will see in the

successive sections.

Since radiation originates from themotion of themoving charge, here we also calculate

the induced electric dipoles. Dipole length has the following expression:

dl(t) ≡ qe ⟨Ψ((r), t)| z |Ψ((r), t)⟩ , (3.2)

where the charge of the electron qe = −1. We also calculate the dipole acceleration as:

da(t) ≡ qe ¨⟨z⟩. (3.3)

The time derivative can be evaluated by the Ehrenfest's theorem:

d

dt
⟨Ω⟩ = −i ⟨Φ| [Ω, H(t)] |Φ⟩ , (3.4)

where Ω is any time-independent operator in Schrödinger's picture, and H is the total

Hamiltonian. Incorporating Eqn. 3.4, conservation of angular momentum and parity, and

the special structure of the angular-momentum--dependent model potential into Eqn. 3.3,
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it becomes:

da(t) = ⟨Ψ| [[z,H], H] |Ψ⟩ (3.5)

= ⟨Ψ| cos θdV1

dr
− F (t) |Ψ⟩

+ 2ℜ
{
⟨R1|

1√
3

d

dr
∆V0 |R0⟩

}
+ 2ℜ

{
⟨R1|

1√
3
(r∆V0

P 2
l=0

2
− P 2

l=1

2
r∆V0) |R0⟩

}
− 2ℜ

{
⟨R1|

1√
3

∆V0

r
|R0⟩

}
+ 2ℜ

{
⟨R1|

1√
3
r∆V 2

0 |R0⟩
}

− 2F (t)ℜ
{
⟨R1|

1

3
r2∆V0 |R1⟩ − ⟨R0|

1

3
r2∆V0 |R0⟩ − ⟨R2|

2

3
√
5
r2∆V0 |R0⟩

}
,

where

Rl(r, t) ≡
⟨
Y 0
l

∣∣Ψ(r, θ, t)
⟩
, (3.6)

∆V0(r) ≡ V0(r)− V1(r), (3.7)

and

P 2
l

2
= −1

2

d2

dr2
+

l(l + 1)

2r2
(3.8)

The results of dipole length and acceleration are shown are shown in Figure 3.3. An

interesting phenomenon is that there are some small oscillations in the dipole moments

near the end of the pulse. To explore the origin of these oscillations one step further, we

compare the dipole accelerations in two different intensities (Figure 3.4). From this figure,

we can see that:

• The oscillating frequency is independent of the laser frequency and is estimated to

be roughly 4ω0.
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• These oscillations become more conspicuous when the laser intensity is relatively

low, and persist until the laser field drops nearly to zero.

Since the use of superstrong laser fields tends to wash out the detailed resonant fine struc-

ture [41], and the model potential predicts a energy difference about 4.2ω0 between the 6s

and 6p states, we may associate these oscillations to the multilphoton resonance between

the two strongly coupled bound states.

-20

-10

0

10

20

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-0.004

-0.002

0.000

0.002

0.004

(b) da(t)d(
t) 

(a
.u

.)

(a) dl(t)

Time (O.C.)

Figure 3.3: Time-dependent induced dipole moment in length form (panal (a)) and accel-
eration form (panal (b).
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Figure 3.4: Comparison dipole accelerations in two different intensities.

3.2 Fourier analysis: spectral properties of HHG

In this section we show the calculated HHG spectra obtained by Fourier analysis. Here

we defined Fourier transformation as:

d̃(ω) ≡ d(ω)eiϕ(ω) =

∫ tf
ti

d(t)eiωtdt

tf − ti
, (3.9)

where d̃(ω) is generally complex, and the amplitude d(ω) and the phase ϕ(ω) are real. As

is the definition in [28], the HHG power spectrum can be obtained from

Dl(ω) = d2l (ω), (3.10)
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or

Da(ω) =
d2a(ω)

ω4
. (3.11)

The agreement of Dl(ω) and Da(ω) is a typical way in our group to make sure the con-

vergency of the calculation. However, the following reasons make the overlapping very

hard to achieve for the current case:

• Dl(ω) weights the contribution of the wavefuction far away from the origin, while

Da(ω) weights the contribution much closer to the nucleus. For the highly ionized

system, converged results based on Dl(ω) become extremely difficult to obtain,

since there is a rising background due to the electron density far from the nucleus

and the increasing importance of the interaction of the wavefunction with the edges

of the grids, refer to [29] for the detailed numerical experiments and interpretations.

• The equivalence ofDl(ω) andDa(ω) is ensured only if dl(t) and ḋl(t) satisfy certain

boundary conditions:

dl(tf )− dl(ti) = 0, (3.12)

and

ḋl(tf )− ḋl(ti) = 0. (3.13)

However, in our numerical experience, the dipole moments for Cs tend to oscillate

especially when the pulse is coming to an end or when the laser intensity is low.

Thus, the above boundary conditions are generally not established, and Dl(ω) and

Da(ω) are not mathematically equivalent.

Therefore, in the current work, we ensure the numerical convergency by doubling one pa-

rameter at a time and checking if Da(ω) has any change. Hereafter, we will only present
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the data based on calculations using da(ω).

In theoretical works, we often calculate the power spectra defined as above. Nonethe-

less, they actually do not present the power emitted by the HHG. According to the classical

Larmor formula [42], the instantaneous power emitted is given by

P (t) =
2q2e
3c3

¨⟨z⟩
2
. (3.14)

Hence, we should in fact defined the power spectrum (up to a constant) as

P (ω) = d2a(ω); (3.15)

the factor ω4 is not necessary. In some studies, they present the HHG spectrum as the

harmonic yields, i.e. the relative numbers of photons emitted per unit time:

Γ(ω) =
d2a(ω)

ω
. (3.16)

P (ω) and Γ(ω) are the very physical quantities that experimentalists measure, and they

show a more pronounced plateau structure. From now on, we refer to P (ω) when men-

tioning HHG power spectra. See Figure 3.5 for the result. The spectrum has several

properties:

• There is a clear cut-off at around 35ω0, as same as that predicted by the semi-classical

three-step model Ecut−off = Ip + 3.17Up
∼= 34.7ω0.

• There is an additional harmonic peak appearing around 4.17ω0. This corresponds to

the strong 6s-6p coupling. The energy difference between the two field-free states
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Figure 3.5: Calculated harmonic spectrum P (ω) from dipole acceleration.

predicted by our model potential is about 4.16ω0.

• The first few harmonics do not show a rapidly declining tendency which is predicted

by the perturbation theory. Thismight has something to dowith the resonance effect.

The theoretical work studying HHG of Na carried out by Chu et al. [37] shows that

the low harmonics could be enhanced by the strong coupling of the ground and the

first excited state, and they reveal a much slower decreasing trend compared with

that of the non-resonant H atom case.

• There is a plateau in the spectrum: the spectral magnitude from 9th harmonic to

35th cut-off harmonic varies within two orders.

• The shapes of the harmonic peaks near and beyond the cut-off are broad and struc-

tureless; the harmonic peaks in the mid-plateau are much narrower; the harmonic
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peaks between the two regimes shows peak splitting, for example, the 31st and 33rd

harmonics. Similar features can be found in [43, 37].

Let us zoom in to see the below- and near threshold harmonics (harmonic order q=5-

13) and compare our rescaled result with the experimental data [4]. As we can see, the

experimental harmonics show an overall decreasing tendency, while our calculated har-

monics do not. The difference of each peak amplitude between the experimental and the

theoretical one is not very good ,yet within roughly one order of magnitude. The discrep-

ancy is acceptable, since we consider here the single-atom response and not take macro-

scopic propagation effect into account. We can not compare the peak shapes between

these two sets of data, because in [4] they extract the harmonic signals by subtracting the

averaged background from the XFROG raw data. Hence the signals are greatly reduced

between the successive harmonics.

Figure 3.6: Comparison of the below- and near-threshold harmonics. Panal (a) experi-
mental result, reproduced from [4]; panal (b) theoretical result.

Finally we end this section by presenting the HHG power spectrum in a lower laser

intensity I = 1.0TW/cm2, see Figure 3.7. Panal (b) shows the whole HHG power spec-

trum. In this lower intensity, harmonics terminate at a smaller order and there is no clear

cut-off due to the fact that Keldysh parameter γ > 1 here. Note that the 6s-6p resonant
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Figure 3.7: HHG power spectrum in the low intensity I = 1.0TW/cm2 case. Panal(a)
rescaled below- and near-threshold harmonics; panal (b) the whole HHG spectrum.

structure is more noticeable in this low-intensity case. Now let us look the rescaled low-

order harmonics at panal (b). The red arrows label the peaks not belonging to the expected

odd harmonics. We might be able to associate these peaks with the 6s-np multiphoton res-

onances as listed in Table 3.1. Considering the AC Stack shift, the interpretation of the

peaks as the resonances between the ground state and some high-lying excited states may

sound inappropriate. However, as we can see from the results of the following section, the

emission times corresponding to the above harmonics are often near the end of the laser

pulse, when the energy shifting is relatively small. Therefore, this correspondence might

still be a possible scenario. Work in this direction is in progress in order to provide more

sounded understanding of the origin of these peaks.
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Table 3.1: Comparison of the positions of the additional harmonic peaks and the field-free
6s-np energy differences calculated by the model potential.

Arrow label Peak position (ω0) Field-free energy difference
H4 4.13 ∆E6s−6p = 4.16
H8 7.87 ∆E6s−7p = 7.88
H9.b 9.23 ∆E6s−8p = 9.27
H10.a 9.94 ∆E6s−9p = 9.96
H10.b 10.39 ∆E6s−10p = 10.35

3.3 Fourier analysis: temporal properties of the HHG

An important aim of this work is to explore the mechanism of the below- and near-

threshold harmonics. This involves the cognizance of the temporal characteristics of the

HHG. The spectral properties of HHG , as we discussed in the last section, only require

the knowledge of the spectral amplitudes d(ω) (see Eqn. 3.9 for the definition), while the

spectral phases ϕ(ω) are actually capable of providing us the information about the tem-

poral information of the HHG.

In most of the experimental works ,including that done by E. P. Power et al, which

characterize the temporal traits of the HHG [4, 44, 45], people measure the group delay

for each frequency component defined as:

τdelay(ω) =
∂ϕ

∂ω
. (3.17)

This physical quantity has the dimension of time, and it represents the emission time as-

sociated a group of harmonics centred on ω. As pointed out in Chapter 1, harmonics

due to multiphoton mechanism or tunnelling mechanism can be distinguished by the rela-

tive emission times between successive harmonics: for the harmonics generated by mul-

tiphoton mechanism, perturbation theory predicts the successive harmonics are emitted
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simultaneously (zero chirp), while for the harmonics formed by tunnelling mechanism,

the successive harmonics are not emitted in coincidence. In the latter case, we can further

discern which kind of trajectories makes the prominent contribution: if the high-frequency

harmonic emits before the low-frequency one (negative chirp), then the long trajectories

are responsible for this part of HHG; if the high-frequency harmonic harmonic emits after

the low-frequency one (positive chirp), then the short trajectories are the main generating

source. In short, comparing the relative group delays between successive harmonics could

give us the answer regarding the mechanism and the channel that lead to the generation of

below- and near-threshold harmonics.

Figure 3.8 and Figure 3.9 show our results of calculations. In Fig 3.8, we can see that

although the emission times distributed over a long period compared with the τFWHM =

110fs, the times near each harmonic are relative concentrated: the distribution of the

points is denser around the vertical dotted lines. Besides, the emission times near each

harmonic from the mid-plateau to the cut-off (q=21-35) form a straight line with negative

slope, that is, each harmonic has negative intrinsic chirp, and the magnitude of the chirp

rate decreases with q, as predicted by the SFA [46]. Finally, for the frequency where res-

onance could take place, for example, around 4ω0, 8ω0, 10ω0, the emission times spread

over a large range and are relatively late compared with the emission times near other

odd harmonics. Figure 3.9 compares the calculated group delays for the below- and near-

threshold harmonics with those obtained in the XFROG experiment [4]. Both results re-

veal the emission times for the harmonic q=5-13 show a non-zero and negative slope,

implying tunnelling mechanism, especially the long trajectory, participates the harmonic

generation here, in agreement with the conclusion of other recent reports [16, 15, 47].
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Note that the our theoretical emission times spread over the range of about 9fs, in good

concordance with the experimental results.
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Figure 3.8: Calculate group delay with laser intensity I = 2.1TW/cm2.
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Figure 3.9: Group delay of the below- and near-threshold harmonics. Panal (a) shows
the experimental results (blue solid line), reproduced from [4]; panal (b) is our calculated
emission times (pink dots).

3.4 Wavelet analysis: spectral and temporal properties of

the HHG

In the last section, we dig out some temporal features of the HHG by Fourier trans-

formation and compare them with the experiments. Nevertheless, the emission of the

harmonics due to the tunnelling mechanism should appear one per half optical cycle,

whenever the laser field reaches a local maxima. Hence, there should be several emis-

sion times associated with each harmonic. Experimentally, it is impossible to probe the

emission times in such a short time scale, so we can only rely on the group delays, which

actually represent the averaged emission times. Theoretically, however, we are able to

extract every emission time in a fine temporal resolution: the delicate and non-averaged

spectral and temporal characteristics of HHG can be calculated by means of the wavelet

transformation.
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The wavelet transformation is defined as [48, 43]

dω(t) ≡
∫ tf

ti

da(t̄)Wt,ω(t̄)dt̄, (3.18)

where

Wt,ω(t̄) =

√
ω

τ
e−

ω2(t̄−t)2

2τ2 eiω(t̄−t). (3.19)

In Fourier transformation, we project the time-dependent physical quantity into plane

wave solution, which is non-localized in time, thus leads to the lost of the detailed tem-

poral information. Wavelet transformation, on the other side, makes the decomposition

using a localized wave packet W with central frequency ω and central emission time t,

therefore preserves the minute temporal features. The parameter τ measures the approx-

imate number of oscillations included in the wavelet, and is a compromise between the

spectral and temporal resolutions, resulted from the limitation imposed by the uncertainty

principle. We have tested the dependence of dω(t) on τ by varying its value from 5 to 30.

Although the absolute value of dω(t) changes a little, the general pattern doest not change.

In the following calculations, we choose τ = 13.35 to perform the wavelet transformation.

Figure 3.10 shows the three-dimensional graph of the modulus of dω(t) in logarithmic

scale with respect to various (ω, t). Figure 3.11 depicts the time profile, i.e. the cross

section of the spectrum at a given frequency, for several harmonics in different energy

regimes. These figures reveal striking and vivid details of the spectral and temporal struc-

tures regarding the HHG mechanisms in different energy regimes:

• For the lowest few harmonic, the 3D spectrum and the time profile (see Figure 3.11

panel (a)) is a smooth function in time. Usually the time profile has a shape mimick-
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Figure 3.10: Time-frequency spectrum of atomic Cs. The color represent the modulus of
dω(t) in logarithmic scale.

ing that of the laser envelope (refer to [43] for the H atom case), but our result shows

the maxima is shifted toward an earlier time. This may be attributed to the rapid re-

duction of the bounded electron population (see Figure 3.2), which is not taken into

account in the theory. The time profiles in other energy regimes also indicate the

similar trends. Anyway, the smooth time profile is an evidence that the multiphoton

mechanism is responsible for the generation of the lowest few harmonics here.

• For the harmonics well above the ionization threshold, the 3D spectrum and the time
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Figure 3.11: Typical time profiles of HHG for (a) the lowest few harmonics, (b) below-
and near-threshold harmonics, (c) plateau harmonics, and (d) cut-off harmonics.

profiles (see Figure 3.11 panel (c) and (d)) shows the development of fast bursts in

time, demonstrating that tunnelling mechanism is the prominent mechanism here:

the harmonic emission is not only dependent on the envelope of the laser pulse, but

is also highly sensitive to the pulse carrier, which decides the crest of the field value

and the tunnelling instant. Panel (d) is the time profile for the 35th harmonic in the

cut-off, from which we can see that there is one burst per half optical cycle, while

Panel (c) is the time profile for the harmonic in the plateau, from which we can tell

that there are two bursts per half O.C. in the middle of the pulse. These findings are

in accordance with what predicted by the semi-classical three-step model: there are

two channels, namely the long and short trajectories, contributing to the generation
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of plateau harmonics, and these channels merge together for the harmonics in the

cut-off.

• From the above two points, we know that the 3D spectrum of the lowest few harmon-

ics are characterized by the vertical bands, while the spectrum of high harmonics are

characterized by horizontal lines. For the harmonics between the two extremes, the

spectrum show a net-like structures due to the competition of the multiphoton and

tunnelling mechanisms. The below- and near-threshold (5th to 13th) harmonics

obviously lie in this net-like regime. Figure 3.12 plots the evolution of the time

profile for the below- and near-thresholds harmonics. The existence of fast bursts

is discernible for the harmonic orders greater than 7.

• For the harmonic at a frequency slight greater than 4ω0, the 3D spectrum shows an

almost continuous emission especially when the laser pulse is coming to an end.

The time profile at ω = 4.2ω0 is presented in Figure 3.13. We may attributed this

to the multiphoton resonance between the strongly coupled 6s and 6p states. The

information we get by the wavelet transformation is consistent with these we obtain

from the time-dependent dipole moments (Figure 3.3 and 3.4) and the time delays

(Figure 3.8). There are other extended structures below the ionization threshold

near the end of the pulse, but we can not specify them with some clear frequency

components. The physical origin in this regime needs further investigation.
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Figure 3.12: Evolution of the time profiles of the below- and near-threshold harmonics.

3.5 Summary

In this chapter, first we discuss the quantum dynamics, then we explore the spectral

and temporal characteristics of the HHG of atomic Cs in mid-infrared laser pulses by

Fourier transformation and the wavelet analysis. The strong couplings between 6s and np

states, 6s and 6p in particular, producing notable peaks in addition to the expected odd

harmonics when the laser field is relatively weak. Both the results of Fourier and wavelet

transformations verify the existence of the tunnelling mechanism (besides the multiphoton

mechanism) for the below- and near-threshold harmonics. We further indicate that the

contribution from the tunnelling mechanism is through the channel of long trajectories by

showing the negative chirp in the calculated group delays, which is in good agreement

compared with the experimental result [4].
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Chapter 4

Conclusions and Future Perspectives

In this thesis, we present the first three-dimensional full-quantum calculations of the

high-order harmonic generation of atomic Cesium in mid-infrared laser pulses. A one-

electron model potential is constructed for the high-precision description of the Cs atom

electronic structure. We solve the TDSE nonperturbatively bymeans of the time-dependent

generalized pseudospectral method with high accuracy and efficiency.

We analyze the temporal and spectral features of the HHG in different energy regimes

by performing Fourier and wavelet transformations. One special property of the HHG of

atomic Cs is the extra peaks in addition to the normal odd harmonics. These peaks result

from the strong couplings between the 6s an np states and become more salient when the

laser field is relatively weak, for example, when the laser pulse is coming to an end or

a lower peak intensity is used. We also address the problem of the mechanisms of the

below- and near-threshold harmonics. The calculated group delays show these harmonics

are negatively chirped and imply long trajectories due to tunnelling mechanismwork here;

both the trend and magnitude of the theoretical results are in good agreement the experi-
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mental values [4]. Wavelet transformation reveals the detailed time-frequency spectrum

of below- and near-threshold harmonics have a net-like structure, demonstrating in an-

other way that both the multiphoton and tunnelling mechanisms participate the harmonic

generation in this energy regime. By comparing the calculated emission times from the

wavelet transformation with those predicted by classical simulations, we hope in the near

future we can unwrap and identify the contributions from different types of trajectories

and explain how they function for the generation of below- and near-threshold harmonics.

We show the importance of the strongly coupled 6s − np states in this work by the

existence of additional peaks in the spectra. However, the competition and interference

between the contiuum −→ 6s and the contiuum −→ 6p should affect the whole HHG

spectra in some way. This effect has already be found experimentally to cause the ap-

pearance of some side peaks in the above-threshold ionization (ATI) photoelectron spec-

tra [17], yet no studies on the HHG photon spectra have been performed. The theoretical

understanding of the resonant effect may also bring some practical applications. For ex-

ample, it may be possible to use a second coupling laser beam as a means for the active

control of the HHG process by tuning the populations in the two states [18]. We shall

continue our work in this direction.

42



Bibliography

[1] M. Ferray and et al. Multiple-harmonic conversion of 1064 nm radiation in rare

gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 21(3):L31,

1988.

[2] P. B. Corkum and F. Krausz. Attosecond science. Nature Physics, 3(6):381--387,

2007.

[3] A. M. March. Strong field studies of cesium using intense mid-infrared light. PhD

thesis, Stony Brook University, 2009.

[4] E. P. Power, A. M. March, F. Catoire, E. Sistrunk, K. Krushelnick, P. Agostini, and

L. F. DiMauro. Xfrog phasemeasurement of threshold harmonics in a keldysh-scaled

system. Nature Photonics, 4(6):352--356, 2010.

[5] J. E. Sansonetti. Wavelengths, transition probabilities, and energy levels for the

spectra of cesium (cs i--cs lv). Journal of Physical and Chemical Reference Data,

38(4):761--923, 2009.

[6] P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate,

R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro.

Scaling strong-field interactions towards the classical limit. Nature Physics, 4(5):

386--389, 2008.

43



[7] Zenghu Chang, Andy Rundquist, Haiwen Wang, Margaret M. Murnane, and

Henry C. Kapteyn. Generation of coherent soft x rays at 2.7 nm using high har-

monics. Physical Review Letters, 79(16):2967, 1997.

[8] Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan,

M. Lenzner, P. Wobrauschek, and F. Krausz. Generation of coherent x-rays in

the water window using 5-femtosecond laser pulses. Science, 278(5338):661--664,

1997.

[9] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uib-

eracker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz,

and U. Kleineberg. Single-cycle nonlinear optics. Science, 320(5883):1614--1617,

2008.

[10] E. Gustafsson, T. Ruchon, M. Swoboda, T. Remetter, E. Pourtal, R. Lopez-Martens,

P. Balcou, and A. L'Huillier. Broadband attosecond pulse shaping. Optics Letters,

32(11):1353--1355, 2007.

[11] L. V. Keldysh. Ionization in field of a strong electromagnetic wave. Soviet Physics

Jetp-Ussr, 20(5):1307--, 1965.

[12] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Physical

Review Letters, 71(13):1994, 1993.

[13] Jeffrey L. Krause, Kenneth J. Schafer, and Kenneth C. Kulander. High-order har-

monic generation from atoms and ions in the high intensity regime. Physical Review

Letters, 68(24):3535, 1992.

44



[14] A. Lhuillier, K. J. Schafer, and K. C. Kulander. Theoretical aspects of intense field

harmonic-generation. Journal of Physics B-Atomic Molecular and Optical Physics,

24(15):3315--3341, 1991.

[15] H. Soifer, P. Botheron, D. Shafir, A. Diner, O. Raz, B. D. Bruner, Y. Mairesse,

B. Pons, and N. Dudovich. Near-threshold high-order harmonic spectroscopy with

aligned molecules. Physical Review Letters, 105(14):143904, 2010.

[16] D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J.

Schafer. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Na-

ture Physics, 5(11):815--820, 2009.

[17] W. Nicklich, Kumpfm, uuml, H. ller, H. Walther, X. Tang, Huale Xu, and P. Lam-

bropoulos. Above-threshold ionization of cesium under femtosecond laser pulses:

New substructure due to strongly coupled bound states. Physical Review Letters,

69(24):3455, 1992.

[18] B. Sheehy, J. D. D. Martin, L. F. DiMauro, P. Agostini, K. J. Schafer, M. B. Gaarde,

and K. C. Kulander. High harmonic generation at long wavelengths. Physical Review

Letters, 83(25):5270, 1999.

[19] B. Sheehy, T. O. Clatterbuck, C. Lyng, J. D. D. Martin, D. W. Kim, L. F. DiMauro,

M. B. Gaarde, K. J. Schafer, P. Agostini, and K. C. Kulander. Strong field physics

in a scaled interaction. Laser Physics, 11(2):226--230, 2001.

[20] Mette B. Gaarde and Kenneth J. Schafer. Enhancement of many high-order harmon-

ics via a single multiphoton resonance. Physical Review A, 64(1):013820, 2001.

45



[21] G.Doumy, J.Wheeler, E. Sistrunk, A. DiChiara, T. A.Miller, E. Power, A.M.March,

F. Catoire, C. Blaga, I. Lachko, C. Roedig, R. Chirla, K. Krushelnick, P. Agostini,

and L. F. DiMauro. High harmonic generation from long wavelength drivers. In

Lasers Electro Optics The Pacific Rim Conference on Lasers and Electro-Optics,

2009. CLEO/PACIFIC RIM '09. Conference on, pages 1--2.

[22] T. O. Clatterbuck, C. Lynga, P. Colosimo, J. D. D. Martin, B. Sheehy, L. F. Di-

Mauro, P. Agostini, and K. C. Kulander. Scaled intense laser-atom physics: the long

wavelength regime. Journal of Modern Optics, 50:441--450, 2003.

[23] T. O. Clatterbuck, Lyng, aring, C., P. M. Paul, L. F. DiMauro, M. B. Gaarde, K. J.

Schafer, P. Agostini, K. C. Kulander, and I. Walmsley. Yield and temporal charac-

terization of high-order harmonics from intense midinfrared excitation of a cesium

vapor. Physical Review A, 69(3):033807, 2004.

[24] M. Lewenstein, Ph Balcou, M. Yu Ivanov, Anne L'Huillier, and P. B. Corkum. The-

ory of high-harmonic generation by low-frequency laser fields. Physical Review A,

49(3):2117, 1994.

[25] P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H. Walther, R. Kopold,

W. Becker, D. B. Milošević, A. Sanpera, and M. Lewenstein. Feynman's path-

integral approach for intense-laser-atom interactions. Science, 292(5518):902--905,

2001.

[26] Zhangjin Chen, Toru Morishita, Anh-Thu Le, and C. D. Lin. Analysis of two-

dimensional high-energy photoelectron momentum distributions in the single ion-

ization of atoms by intense laser pulses. Physical Review A, 76(4):043402, 2007.

46



[27] Shih-I. Chu and Dmitry A. Telnov. Beyond the floquet theorem: generalized flo-

quet formalisms and quasienergy methods for atomic and molecular multiphoton

processes in intense laser fields. Physics Reports, 390(1-2):1--131, 2004.

[28] X. M. Tong and S. I. Chu. Theoretical study of multiple high-order harmonic gen-

eration by intense ultrashort pulsed laser fields: A new generalized pseudospectral

time-dependent method. Chemical Physics, 217(2-3):119--130, 1997.

[29] Jeffrey L. Krause, Kenneth J. Schafer, and Kenneth C. Kulander. Calculation of

photoemission from atoms subject to intense laser fields. Physical Review A, 45(7):

4998, 1992.

[30] G. H. Yao and S. I. Chu. Generalized pseudospectral methods with mappings for

bound and resonance state problems. Chemical Physics Letters, 204(3-4):381--388,

1993.

[31] D. A. Telnov and S. I. Chu. Multiphoton detachment of h- near the one-photon

threshold: Exterior complex-scaling-generalized pseudospectral method for com-

plex quasienergy resonances. Physical Review A, 59(4):2864--2874, 1999.

[32] J. Y. Wang, S. I. Chu, and C. Laughlin. Multiphoton detachment of h- .2. intensity-

dependent photodetachment rates and threshold behavior - complex-scaling gener-

alized pseudospectral method. Physical Review A, 50(4):3208--3215, 1994.

[33] M. R. Hermann and J. A. Fleck. Split-operator spectral method for solving the time-

dependent schrodinger-equation in spherical coordinates. Physical Review A, 38(12):

6000--6012, 1988.

47



[34] Xiao-Min Tong and Shih-I. Chu. Time-dependent approach to high-resolution spec-

troscopy and quantum dynamics of rydberg atoms in crossed magnetic and electric

fields. Physical Review A, 61(3):031401, 2000.

[35] Juan J. Carrera, X. M. Tong, and Shih-I. Chu. Creation and control of a single co-

herent attosecond xuv pulse by few-cycle intense laser pulses. Physical Review A,

74(2):023404, 2006.

[36] Juan J. Carrera and Shih-I. Chu. Extension of high-order harmonic generation cutoff

via coherent control of intense few-cycle chirped laser pulses. Physical Review A,

75(3):033807, 2007.

[37] X. Chu, S. I. Chu, and C. Laughlin. Spectral and temporal structures of high-order

harmonic generation of na in intensemid-ir laser fields. Physical Review A, 6401(1):-

-, 2001.

[38] D. A. Telnov and S. I. Chu. Ab initio study of the orientation effects in multiphoton

ionization and high-order harmonic generation from the ground and excited elec-

tronic states of h(2)(+). Physical Review A, 76(4), 2007.

[39] X. Chu and S. I. Chu. Self-interaction-free time-dependent density-functional theory

for molecular processes in strong fields: High-order harmonic generation of h-2 in

intense laser fields. Physical Review A, 6302(2):--, 2001.

[40] J. Heslar, D. Telnov, and S. I. Chu. High-order-harmonic generation in homonuclear

and heteronuclear diatomic molecules: Exploration of multiple orbital contributions.

Physical Review A, 83(4), 2011.

48



[41] Shih-I. Chu. Quasienergy formalism for intense field multiphoton ionization of

atoms induced by circularly polarized radiation. Chemical Physics Letters, 54(2):

367--372, 1978.

[42] B. Sundaram and P.W.Milonni. High-order harmonic-generation - simplified model

and relevance of single-atom theories to experiment. Physical Review A, 41(11):

6571--6573, 1990.

[43] X. M. Tong and S. I. Chu. Probing the spectral and temporal structures of high-order

harmonic generation in intense laser pulses. Physical Review A, 6102(2):--, 2000.

[44] Y. Mairesse, A. de Bohan, L. J. Frasinski, H. Merdji, L. C. Dinu, P. Monchicourt,

P. Breger, M. Kovacev, R. Taieb, B. Carre, H. G. Muller, P. Agostini, and P. Salieres.

Attosecond synchronization of high-harmonic soft x-rays. Science, 302(5650):1540-

-1543, 2003.

[45] G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L. F. DiMauro. At-

tosecond synchronization of high-order harmonics from midinfrared drivers. Physi-

cal Review Letters, 102(9):093002, 2009.

[46] Mette Gaarde. Time-frequency representations of high order harmonics. Opt. Ex-

press, 8(10):529--536, 2001.

[47] James A. Hostetter, Jennifer L. Tate, Kenneth J. Schafer, and Mette B. Gaarde.

Semiclassical approaches to below-threshold harmonics. Physical Review A, 82(2):

023401, 2010.

49



[48] Philippe Antoine, Bernard Piraux, and Alfred Maquet. Time profile of harmonics

generated by a single atom in a strong electromagnetic field. Physical Review A,

51(3):R1750, 1995.

50




