請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99969完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊宏志 | zh_TW |
| dc.contributor.advisor | Hung-Chih Yang | en |
| dc.contributor.author | 蘇怡瑄 | zh_TW |
| dc.contributor.author | Yi-Hsuan Su | en |
| dc.date.accessioned | 2025-09-22T16:10:56Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 1. Krammer, F., Smith, G. J. D., Fouchier, R. A. M., Peiris, M., Kedzierska, K., Doherty, P. C., Palese, P., Shaw, M. L., Treanor, J., Webster, R. G., & García-Sastre, A. (2018). Influenza. Nature reviews. Disease primers, 4(1), 3. https://doi.org/10.1038/s41572-018-0002-y
2. Sellers, S. A., Hagan, R. S., Hayden, F. G., & Fischer, W. A., 2nd (2017). The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza and other respiratory viruses, 11(5), 372–393. https://doi.org/10.1111/irv.12470 3. Kwong, J. C., Schwartz, K. L., Campitelli, M. A., Chung, H., Crowcroft, N. S., Karnauchow, T., Katz, K., Ko, D. T., McGeer, A. J., McNally, D., Richardson, D. C., Rosella, L. C., Simor, A., Smieja, M., Zahariadis, G., & Gubbay, J. B. (2018). Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. The New England journal of medicine, 378(4), 345–353. https://doi.org/10.1056/NEJMoa1702090 4. Palese P., Shaw M.L. Fields of Virology. 5th ed. Wolters Kluwer Health/Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2007. 5. Piasecka, J., Jarmolowicz, A., & Kierzek, E. (2020). Organization of the Influenza A Virus Genomic RNA in the Viral Replication Cycle-Structure, Interactions, and Implications for the Emergence of New Strains. Pathogens (Basel, Switzerland), 9(11), 951. https://doi.org/10.3390/pathogens9110951 6. Noda, T., & Kawaoka, Y. (2010). Structure of influenza virus ribonucleoprotein complexes and their packaging into virions. Reviews in medical virology, 20(6), 380–391. https://doi.org/10.1002/rmv.666 7. Russell C. J. (2016). Orthomyxoviruses: Structure of Antigens. Reference Module in Biomedical Sciences, B978-0-12-801238-3.95721-0. https://doi.org/10.1016/B978-0-12-801238-3.95721-0 8. Hutchinson, E. C., Charles, P. D., Hester, S. S., Thomas, B., Trudgian, D., Martínez-Alonso, M., & Fodor, E. (2014). Conserved and host-specific features of influenza virion architecture. Nature communications, 5, 4816. https://doi.org/10.1038/ncomms5816 9. Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J. R., & Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature medicine, 7(12), 1306–1312. https://doi.org/10.1038/nm1201-1306 10. Hatta, M., & Kawaoka, Y. (2003). The NB protein of influenza B virus is not necessary for virus replication in vitro. Journal of virology, 77(10), 6050–6054. https://doi.org/10.1128/jvi.77.10.6050-6054.2003 11. Lamb, R. A., Lai, C. J., & Choppin, P. W. (1981). Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proceedings of the National Academy of Sciences of the United States of America, 78(7), 4170–4174. https://doi.org/10.1073/pnas.78.7.4170 12. Briedis, D. J., Lamb, R. A., & Choppin, P. W. (1982). Sequence of RNA segment 7 of the influenza B virus genome: partial amino acid homology between the membrane proteins (M1) of influenza A and B viruses and conservation of a second open reading frame. Virology, 116(2), 581–588. https://doi.org/10.1016/0042-6822(82)90150-7 13. Horvath, C. M., Williams, M. A., & Lamb, R. A. (1990). Eukaryotic coupled translation of tandem cistrons: identification of the influenza B virus BM2 polypeptide. The EMBO journal, 9(8), 2639–2647. https://doi.org/10.1002/j.1460-2075.1990.tb07446.x 14. Dauber, B., Heins, G., & Wolff, T. (2004). The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. Journal of virology, 78(4), 1865–1872. https://doi.org/10.1128/jvi.78.4.1865-1872.2004 15. García-Sastre A. (2001). Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology, 279(2), 375–384. https://doi.org/10.1006/viro.2000.0756 16. Kochs, G., García-Sastre, A., & Martínez-Sobrido, L. (2007). Multiple anti-interferon actions of the influenza A virus NS1 protein. Journal of virology, 81(13), 7011–7021. https://doi.org/10.1128/JVI.02581-06 17. Briedis, D. J., & Lamb, R. A. (1982). Influenza B virus genome: sequences and structural organization of RNA segment 8 and the mRNAs coding for the NS1 and NS2 proteins. Journal of virology, 42(1), 186–193. https://doi.org/10.1128/JVI.42.1.186-193.1982 18. Lamb, R. A., Choppin, P. W., Chanock, R. M., & Lai, C. J. (1980). Mapping of the two overlapping genes for polypeptides NS1 and NS2 on RNA segment 8 of influenza virus genome. Proceedings of the National Academy of Sciences of the United States of America, 77(4), 1857–1861. https://doi.org/10.1073/pnas.77.4.1857 19. Hause, B. M., Ducatez, M., Collin, E. A., Ran, Z., Liu, R., Sheng, Z., Armien, A., Kaplan, B., Chakravarty, S., Hoppe, A. D., Webby, R. J., Simonson, R. R., & Li, F. (2013). Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses. PLoS pathogens, 9(2), e1003176. https://doi.org/10.1371/journal.ppat.1003176 20. Hause, B. M., Collin, E. A., Liu, R., Huang, B., Sheng, Z., Lu, W., Wang, D., Nelson, E. A., & Li, F. (2014). Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. mBio, 5(2), e00031–e14. https://doi.org/10.1128/mBio.00031-14 21. Zambon M. C. (1999). Epidemiology and pathogenesis of influenza. The Journal of antimicrobial chemotherapy, 44 Suppl B, 3–9. https://doi.org/10.1093/jac/44.suppl_2.3 22. Aggarwal, S., Bradel-Tretheway, B., Takimoto, T., Dewhurst, S., & Kim, B. (2010). Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex. PloS one, 5(4), e10372. https://doi.org/10.1371/journal.pone.0010372 23. Saunders-Hastings, P. R., & Krewski, D. (2016). Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens (Basel, Switzerland), 5(4), 66. https://doi.org/10.3390/pathogens5040066 24. Chen, Y. Q., Wohlbold, T. J., Zheng, N. Y., Huang, M., Huang, Y., Neu, K. E., Lee, J., Wan, H., Rojas, K. T., Kirkpatrick, E., Henry, C., Palm, A. E., Stamper, C. T., Lan, L. Y., Topham, D. J., Treanor, J., Wrammert, J., Ahmed, R., Eichelberger, M. C., Georgiou, G., … Wilson, P. C. (2018). Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell, 173(2), 417–429.e10. https://doi.org/10.1016/j.cell.2018.03.030 25. Nichol K. L. (2008). Efficacy and effectiveness of influenza vaccination. Vaccine, 26 Suppl 4, D17–D22. https://doi.org/10.1016/j.vaccine.2008.07.048 26. Karron RA, Collins PL. Fields Virology: Sixth Edition. Wolters Kluwer Health Adis (ESP); 2013. Parainfluenza viruses. 27. Wohlbold, T. J., & Krammer, F. (2014). In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses, 6(6), 2465–2494. https://doi.org/10.3390/v6062465 28. Altenburg, A. F., Rimmelzwaan, G. F., & de Vries, R. D. (2015). Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine, 33(4), 500–506. https://doi.org/10.1016/j.vaccine.2014.11.054 29. Erbelding, E. J., Post, D. J., Stemmy, E. J., Roberts, P. C., Augustine, A. D., Ferguson, S., Paules, C. I., Graham, B. S., & Fauci, A. S. (2018). A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. The Journal of infectious diseases, 218(3), 347–354. https://doi.org/10.1093/infdis/jiy103 30. Centers for Disease Control and Prevention. Seasonal influenza vaccine effectiveness, 2005–2017. 31. Wilkinson, T. M., Li, C. K., Chui, C. S., Huang, A. K., Perkins, M., Liebner, J. C., Lambkin-Williams, R., Gilbert, A., Oxford, J., Nicholas, B., Staples, K. J., Dong, T., Douek, D. C., McMichael, A. J., & Xu, X. N. (2012). Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nature medicine, 18(2), 274–280. https://doi.org/10.1038/nm.2612 32. Sridhar, S., Begom, S., Bermingham, A., Hoschler, K., Adamson, W., Carman, W., Bean, T., Barclay, W., Deeks, J. J., & Lalvani, A. (2013). Cellular immune correlates of protection against symptomatic pandemic influenza. Nature medicine, 19(10), 1305–1312. https://doi.org/10.1038/nm.3350 33. Topham, D. J., Tripp, R. A., & Doherty, P. C. (1997). CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. Journal of immunology (Baltimore, Md. : 1950), 159(11), 5197–5200. 34. Yang, O. O., Kalams, S. A., Rosenzweig, M., Trocha, A., Jones, N., Koziel, M., Walker, B. D., & Johnson, R. P. (1996). Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. Journal of virology, 70(9), 5799–5806. https://doi.org/10.1128/JVI.70.9.5799-5806.1996 35. Bevan, M.J. Helping the CD8+ T-cell response. Nat. Rev. Immunol. 4, 595–602 (2004). 36. Kalams, S. A., & Walker, B. D. (1998). The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. The Journal of experimental medicine, 188(12), 2199–2204. https://doi.org/10.1084/jem.188.12.2199 37. Neefjes, J., Jongsma, M. L., Paul, P., & Bakke, O. (2011). Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature reviews. Immunology, 11(12), 823–836. https://doi.org/10.1038/nri3084 38. Vyas, J. M., Van der Veen, A. G., & Ploegh, H. L. (2008). The known unknowns of antigen processing and presentation. Nature reviews. Immunology, 8(8), 607–618. https://doi.org/10.1038/nri2368 39. Kurts, C., Robinson, B. W., & Knolle, P. A. (2010). Cross-priming in health and disease. Nature reviews. Immunology, 10(6), 403–414. https://doi.org/10.1038/nri2780 40. Purcell, A. W., Ramarathinam, S. H., & Ternette, N. (2019). Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nature protocols, 14(6), 1687–1707. https://doi.org/10.1038/s41596-019-0133-y 41. Yewdell, J. W., & Bennink, J. R. (1999). Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annual review of immunology, 17, 51–88. https://doi.org/10.1146/annurev.immunol.17.1.51 42. Assarsson, E., Bui, H. H., Sidney, J., Zhang, Q., Glenn, J., Oseroff, C., Mbawuike, I. N., Alexander, J., Newman, M. J., Grey, H., & Sette, A. (2008). Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. Journal of virology, 82(24), 12241–12251. https://doi.org/10.1128/JVI.01563-08 43. Lee, L. Y., Ha, doL. A., Simmons, C., de Jong, M. D., Chau, N. V., Schumacher, R., Peng, Y. C., McMichael, A. J., Farrar, J. J., Smith, G. L., Townsend, A. R., Askonas, B. A., Rowland-Jones, S., & Dong, T. (2008). Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. The Journal of clinical investigation, 118(10), 3478–3490. https://doi.org/10.1172/JCI32460 44. Lin, P. H., Liang, C. Y., Yao, B. Y., Chen, H. W., Pan, C. F., Wu, L. L., Lin, Y. H., Hsu, Y. S., Liu, Y. H., Chen, P. J., Hu, C. J., & Yang, H. C. (2021). Robust induction of TRMs by combinatorial nanoshells confers cross-strain sterilizing immunity against lethal influenza viruses. Molecular therapy. Methods & clinical development, 21, 299–314. https://doi.org/10.1016/j.omtm.2021.03.010 45. Lin, P. H., Wong, W. I., Wang, Y. L., Hsieh, M. P., Lu, C. W., Liang, C. Y., Jui, S. H., Wu, F. Y., Chen, P. J., & Yang, H. C. (2018). Vaccine-induced antigen-specific regulatory T cells attenuate the antiviral immunity against acute influenza virus infection. Mucosal immunology, 11(4), 1239–1253. https://doi.org/10.1038/s41385-018-0004-9 46. Blum, J. S., Wearsch, P. A., & Cresswell, P. (2013). Pathways of antigen processing. Annual review of immunology, 31, 443–473. https://doi.org/10.1146/annurev-immunol-032712-095910 47. Dominguez, M. R., Silveira, E. L., de Vasconcelos, J. R., de Alencar, B. C., Machado, A. V., Bruna-Romero, O., Gazzinelli, R. T., & Rodrigues, M. M. (2011). Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite. PloS one, 6(7), e22011. https://doi.org/10.1371/journal.pone.0022011 48. Klein, S., Mischke, J., Beruldsen, F., Prinz, I., Antunes, D. A., Cornberg, M., & Kraft, A. R. M. (2023). Individual Epitope-Specific CD8+ T Cell Immune Responses Are Shaped Differently during Chronic Viral Infection. Pathogens (Basel, Switzerland), 12(5), 716. https://doi.org/10.3390/pathogens12050716 49. Akram, A., & Inman, R. D. (2012). Immunodominance: a pivotal principle in host response to viral infections. Clinical immunology (Orlando, Fla.), 143(2), 99–115. https://doi.org/10.1016/j.clim.2012.01.015 50. Flynn, K. J., Belz, G. T., Altman, J. D., Ahmed, R., Woodland, D. L., & Doherty, P. C. (1998). Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity, 8(6), 683–691. https://doi.org/10.1016/s1074-7613(00)80573-7 51. Belz, G. T., Altman, J. D., & Doherty, P. C. (1998). Characteristics of virus-specific CD8(+) T cells in the liver during the control and resolution phases of influenza pneumonia. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13812–13817. https://doi.org/10.1073/pnas.95.23.13812 52. McMichael, A. J., Gotch, F. M., & Rothbard, J. (1986). HLA B37 determines an influenza A virus nucleoprotein epitope recognized by cytotoxic T lymphocytes. The Journal of experimental medicine, 164(5), 1397–1406. https://doi.org/10.1084/jem.164.5.1397 53. Boon, A. C., de Mutsert, G., Graus, Y. M., Fouchier, R. A., Sintnicolaas, K., Osterhaus, A. D., & Rimmelzwaan, G. F. (2002). The magnitude and specificity of influenza A virus-specific cytotoxic T-lymphocyte responses in humans is related to HLA-A and -B phenotype. Journal of virology, 76(2), 582–590. https://doi.org/10.1128/jvi.76.2.582-590.2002 54. Oukka, M., Manuguerra, J. C., Livaditis, N., Tourdot, S., Riche, N., Vergnon, I., Cordopatis, P., & Kosmatopoulos, K. (1996). Protection against lethal viral infection by vaccination with nonimmunodominant peptides. Journal of immunology (Baltimore, Md. : 1950), 157(7), 3039–3045. 55. Wu, C., Zanker, D., Valkenburg, S., Tan, B., Kedzierska, K., Zou, Q. M., Doherty, P. C., & Chen, W. (2011). Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. Proceedings of the National Academy of Sciences of the United States of America, 108(22), 9178–9183. https://doi.org/10.1073/pnas.1105624108 56. Valkenburg, S. A., Quiñones-Parra, S., Gras, S., Komadina, N., McVernon, J., Wang, Z., Halim, H., Iannello, P., Cole, C., Laurie, K., Kelso, A., Rossjohn, J., Doherty, P. C., Turner, S. J., & Kedzierska, K. (2013). Acute emergence and reversion of influenza A virus quasispecies within CD8+ T cell antigenic peptides. Nature communications, 4, 2663. https://doi.org/10.1038/ncomms3663 57. Quiñones-Parra, S., Loh, L., Brown, L. E., Kedzierska, K., & Valkenburg, S. A. (2014). Universal immunity to influenza must outwit immune evasion. Frontiers in microbiology, 5, 285. https://doi.org/10.3389/fmicb.2014.00285 58. Im, E. J., Hong, J. P., Roshorm, Y., Bridgeman, A., Létourneau, S., Liljeström, P., Potash, M. J., Volsky, D. J., McMichael, A. J., & Hanke, T. (2011). Protective efficacy of serially up-ranked subdominant CD8+ T cell epitopes against virus challenges. PLoS pathogens, 7(5), e1002041. https://doi.org/10.1371/journal.ppat.1002041 59. Townsend, A. R., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D., & McMichael, A. J. (1986). The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell, 44(6), 959–968. https://doi.org/10.1016/0092-8674(86)90019-x 60. Tokić, S., Žižkova, V., Štefanić, M., Glavaš-Obrovac, L., Marczi, S., Samardžija, M., Sikorova, K., & Petrek, M. (2020). HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 allele and haplotype frequencies defined by next generation sequencing in a population of East Croatia blood donors. Scientific reports, 10(1), 5513. https://doi.org/10.1038/s41598-020-62175-9 61. Pedersen, S. R., Christensen, J. P., Buus, S., Rasmussen, M., Korsholm, K. S., Nielsen, M., & Claesson, M. H. (2016). Immunogenicity of HLA Class I and II Double Restricted Influenza A-Derived Peptides. PloS one, 11(1), e0145629. https://doi.org/10.1371/journal.pone.0145629 62. Koutsakos, M., Illing, P. T., Nguyen, T. H. O., Mifsud, N. A., Crawford, J. C., Rizzetto, S., Eltahla, A. A., Clemens, E. B., Sant, S., Chua, B. Y., Wong, C. Y., Allen, E. K., Teng, D., Dash, P., Boyd, D. F., Grzelak, L., Zeng, W., Hurt, A. C., Barr, I., Rockman, S., … Kedzierska, K. (2019). Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nature immunology, 20(5), 613–625. https://doi.org/10.1038/s41590-019-0320-6 63. Eickhoff, C. S., Terry, F. E., Peng, L., Meza, K. A., Sakala, I. G., Van Aartsen, D., Moise, L., Martin, W. D., Schriewer, J., Buller, R. M., De Groot, A. S., & Hoft, D. F. (2019). Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine, 37(36), 5371–5381. https://doi.org/10.1016/j.vaccine.2019.07.033 64. Tu, W., Mao, H., Zheng, J., Liu, Y., Chiu, S. S., Qin, G., Chan, P. L., Lam, K. T., Guan, J., Zhang, L., Guan, Y., Yuen, K. Y., Peiris, J. S., & Lau, Y. L. (2010). Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. Journal of virology, 84(13), 6527–6535. https://doi.org/10.1128/JVI.00519-10 65. Bednarek, M. A., Sauma, S. Y., Gammon, M. C., Porter, G., Tamhankar, S., Williamson, A. R., & Zweerink, H. J. (1991). The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. Journal of immunology (Baltimore, Md. : 1950), 147(12), 4047–4053. 66. Liu, J., Wu, B., Zhang, S., Tan, S., Sun, Y., Chen, Z., Qin, Y., Sun, M., Shi, G., Wu, Y., Sun, M., Liu, N., Ning, K., Ma, Y., Gao, B., Yan, J., Zhu, F., Wang, H., & Gao, G. F. (2013). Conserved epitopes dominate cross-CD8+ T-cell responses against influenza A H1N1 virus among Asian populations. European journal of immunology, 43(8), 2055–2069. https://doi.org/10.1002/eji.201343417 67. Sant, S., Quiñones-Parra, S. M., Koutsakos, M., Grant, E. J., Loudovaris, T., Mannering, S. I., Crowe, J., van de Sandt, C. E., Rimmelzwaan, G. F., Rossjohn, J., Gras, S., Loh, L., Nguyen, T. H. O., & Kedzierska, K. (2020). HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS pathogens, 16(8), e1008714. https://doi.org/10.1371/journal.ppat.1008714 68. Plotnicky, H., Cyblat-Chanal, D., Aubry, J. P., Derouet, F., Klinguer-Hamour, C., Beck, A., Bonnefoy, J. Y., & Corvaïa, N. (2003). The immunodominant influenza matrix T cell epitope recognized in human induces influenza protection in HLA-A2/K(b) transgenic mice. Virology, 309(2), 320–329. https://doi.org/10.1016/s0042-6822(03)00072-2 69. Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of basic and clinical pharmacy, 7(2), 27–31. https://doi.org/10.4103/0976-0105.177703 70. Henrickson, S. E., Perro, M., Loughhead, S. M., Senman, B., Stutte, S., Quigley, M., Alexe, G., Iannacone, M., Flynn, M. P., Omid, S., Jesneck, J. L., Imam, S., Mempel, T. R., Mazo, I. B., Haining, W. N., & von Andrian, U. H. (2013). Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity, 39(3), 496–507. https://doi.org/10.1016/j.immuni.2013.08.034 71. Seder, R. A., Darrah, P. A., & Roederer, M. (2008). T-cell quality in memory and protection: implications for vaccine design. Nature reviews. Immunology, 8(4), 247–258. https://doi.org/10.1038/nri2274 72. van den Dijssel, J., Hagen, R. R., de Jongh, R., Steenhuis, M., Rispens, T., Geerdes, D. M., Mok, J. Y., Kragten, A. H., Duurland, M. C., Verstegen, N. J., van Ham, S. M., van Esch, W. J., van Gisbergen, K. P., Hombrink, P., Ten Brinke, A., & van de Sandt, C. E. (2022). Parallel detection of SARS-CoV-2 epitopes reveals dynamic immunodominance profiles of CD8+ T memory cells in convalescent COVID-19 donors. Clinical & translational immunology, 11(10), e1423. https://doi.org/10.1002/cti2.1423 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99969 | - |
| dc.description.abstract | 流感病毒是一種高度變異的 RNA 病毒,具有高突變率與人畜共通感染的潛力,經常引發季節性流行與全球性大流行,對全球公共衛生構成重大威脅。目前市面上的流感疫苗多針對病毒外部蛋白如血球凝集素 (HA) 與神經胺酸酶 (NA) 設計,雖然這樣的設計可提供良好保護力,卻因病毒突變快速而需每年重新預測及更新。相較之下,T 細胞能辨識整個病毒蛋白體中的抗原,增加辨識保守性 T 細胞表位的可能性。T 細胞表位 (epitope) 的免疫優勢性層級 (immunodominance hierarchy) 對免疫反應的效果具有關鍵影響,其免疫原性、抗原表現量以及與 MHC 分子結合親和力的差異,皆可影響表位的優勢程度。免疫優勢表位 (dominant epitope) 通常誘發較強的免疫反應並提供較佳保護,但也可能因選擇壓力反而促使病毒產生逃脫突變株。相對地,次優勢表位 (subdominant epitopes) 雖引發的反應較弱,卻能在優勢表位突變時作為備用目標。瞭解這些保守性表位的免疫優勢性與保護力,是發展出可以廣泛對抗多種流感病毒株同時具有持久免疫力之 T 細胞疫苗的關鍵步驟。因此,本研究旨在利用表達人類常見 HLA 分子的 HLA 轉基因小鼠 (HLA-A02 或 HLA-A11),去測量本實驗室先前鑑定或他人已發表過之保守性 T 細胞表位的免疫優勢層級與保護效果。首先我們在 HLA 轉基因小鼠量測台灣 2009 年臨床流行株 TW126 (H1N1) 的感染劑量,隨後以細胞內細胞激素染色 (ICS) 與 peptide-MHC 四聚體染色分析病毒感染後的 T 細胞反應,並進一步針對保守性表位分析其所誘發的 T 細胞免疫反應,以評估各表位的免疫優勢層級與保護潛力。未來,我們也將持續探討這些保守表位的保護效果及其開發更有效且具廣效性的流感T細胞疫苗之潛力。 | zh_TW |
| dc.description.abstract | Influenza is a rapidly evolving RNA virus characterized by high mutation rates and zoonotic potential, leading to seasonal outbreaks and pandemics that pose a major threat to global public health. Current influenza vaccines often target external viral proteins, hemagglutinin (HA) and neuraminidase (NA), offering strong protection but requiring annual updates. In contrast, T cells recognize antigens from the entire viral proteome, increasing the likelihood of identifying conserved T cell epitopes. The immunodominance hierarchy of T cell epitopes plays a critical role in shaping immune response effectiveness. Variations in immunogenicity, expression levels, and binding affinities to MHC molecules contribute to distinct dominance patterns, which typically induce stronger immune responses and offer better protection but can also exert selection pressure, leading to escape mutants. In contrast, subdominant epitopes, while eliciting weaker responses, serve as essential backups when mutations occur in dominant epitopes. Understanding the immunodominance hierarchy and protectivity of the conserved T cell epitopes is a key step to develop a universal influenza T cell vaccine to provide durable and cross-strain immunity. Therefore, this study aimed to evaluate the immunodominance hierarchy and protectivity of the conserved T cell epitopes identified in our lab using HLA-transgenic mice that expressing the prevalent human HLAs, either HLA-A02 or HLA-A11. We first titrated the dose of IAV strain TW126 (H1N1), an isolate in 2009 pandemic in Taiwan, in HLA transgenic mice. We then analyzed the T cell response to influenza virus infection using intracellular cytokine staining and pMHC tetramer staining. Furthermore, we evaluated the T cell response to the conserved T cell epitopes to investigate their immunodominance hierarchy and their protective potential. The protective efficacy of these conserved epitopes and their potential in developing a more effective and universal T cell-based influenza vaccine will also be examined in future studies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:10:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:10:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Context
口試委員審定書 I 致謝 II 中文摘要 III Abstract IV 1. Introduction 1 1.1 Human influenza virus epidemiology and public health impact 1 1.2 Structure and genome organization of influenza A virus 1 1.3 Antigenic drift and shift in influenza virus evolution 3 1.4 Current strategies and limitations of influenza vaccines 4 1.5 Role of CD4+ and CD8+ T cells in influenza immunity 5 1.6 Broadening vaccine targets with epitope-based approaches 6 1.7 Immunodominance hierarchy of epitopes 7 1.8 Selection pressure and escape mutant of dominant epitopes 8 1.9 Protective potential of subdominant epitopes 9 2. Specific aim 12 3. Materials and Methods 13 3.1 Mice 13 3.2 Viruses 13 3.3 Infection and survival rate assessment 14 3.4 Immunization of mice with CFA and CPG 14 3.5 Collection and processing of tissue samples 15 3.6 Ex-vivo intracellular cytokine staining (ICS) 16 3.7 Tetramer staining 16 3.8 Viral titer measurement in lung 17 3.9 Cell staining and flow cytometry 18 3.10 Statistic analysis 18 4. Results 19 4.1 Determination of viral titer and assessment of infection dosage 19 4.2 Confirmation of epitope presentation and CD8+ T cell activation after infection in B6 mice 21 4.3 Selection of HLA-A*02:01 epitope candidates for further analysis 22 4.4 Immunodominance hierarchy of the five selected HLA-A*02:01 epitopes under natural infection 25 4.5 Evaluation of the immunogenicity of HLA-A*02:01 epitopes. induced by vaccination with CFA 28 4.6 Protective evaluation of PA-1 following vaccination and viral challenge 31 4.7 Selection of HLA-A*11:01 epitope candidates for further analysis 34 4.8 Immunodominance hierarchy of four identified HLA-A*11:01 epitopes 35 5. Discussion 38 5.1 Summary of findings 38 5.2 Limitations in this study 39 5.3 Establishing a reliable infection model and optimizing antigen dose for animal-to-human relevance 40 5.4 Potential mechanisms underlying GL9 immunodominance 41 5.5 Controlled evaluation of peptide immunogenicity 43 5.6 Protective effects of the dominant and subdominant epitopes 44 5.7 Limitation of HLA-transgenic mouse models in evaluating PB1413-421 46 5.8 Technical and biological constraints in HLA-A11 epitope evaluation 48 5.9 Balancing dominant and subdominant epitopes in vaccine formulation 49 6. Figures 52 Figure 1. Viral titer and testing of TW126 and Hybrid-TW126 virus strains 54 Figure 2. Successful presentation of NP366-374 and PA224-233 and activation of CD8+ T cells 56 Figure 3. GL9 could induce CD8+ T cell response in HLA-A2-transgenic mice 58 Figure 4. GL9 induced the greatest CD8+ T cell response among five HLA-A*02:01 epitopes under natural infection 61 Figure 5. GL9 induced the robust CD8+ T cell response, while PA-1 induced a weaker response 64 Figure 6. PA-1 vaccination reduced body weight loss, but its protectivity remains unclear 66 Figure 7. Lack of T cell responses to four identified HLA-A*11:01 epitopes may result from insufficient expression of HLA-A11 molecules in transgenic mice 69 7. References 71 8. Supplementary Information 79 Supplementary Table 1. Sequence alignment of NP366-374 and PA224-233 79 Supplementary Table 2. Identified HLA-A*02:01-restricted IAV(TW126) epitopes 79 Supplementary Table 3. Information of five selected HLA-A*02:01epitopes 80 Supplementary Table 4. Identified HLA-A*11:01-restricted IAV(TW126) epitopes 80 Supplementary Figure 1. Schematic illustration of TW126 (A/Taiwan/126/2009) and Hybrid-TW126 virus strain 81 Supplementary Figure 2. Hybrid-TW126 viral titration in HLA-A2 and HLA-A11-transgenic mice 82 Supplementary Figure 3. Data from referenced studies on epitope selection and T cell activation 85 Supplementary Figure 4. Stabilization assay of HLA-A*02:01 and HLA-A*11:01 epitopes in monoallelic HLA 293T cell lines 86 Supplementary Figure 5. Overall tetramer staining results for GL9 and PA-1 88 | - |
| dc.language.iso | en | - |
| dc.subject | 流感病毒 | zh_TW |
| dc.subject | T細胞免疫 | zh_TW |
| dc.subject | 保守T 細胞表位 | zh_TW |
| dc.subject | HLA 轉基因小鼠 | zh_TW |
| dc.subject | 免疫優勢性層級 | zh_TW |
| dc.subject | Influenza virus | en |
| dc.subject | immunodominance hierarchy | en |
| dc.subject | HLA-transgenic mice | en |
| dc.subject | conserved CD8+ epitopes | en |
| dc.subject | T cell immunity | en |
| dc.title | CD8+ T細胞保守性抗原於HLA轉基因小鼠流感病毒感染中之免疫主導階層與保護性研究 | zh_TW |
| dc.title | To explore the immunodominance hierarchy and protectivity of conserved CD8+ T cell epitopes against influenza virus infection in HLA-transgenic mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陶秘華;林志萱 | zh_TW |
| dc.contributor.oralexamcommittee | Mi-Hua Tao;Jr-Shiuan Lin | en |
| dc.subject.keyword | 流感病毒,T細胞免疫,保守T 細胞表位,HLA 轉基因小鼠,免疫優勢性層級, | zh_TW |
| dc.subject.keyword | Influenza virus,T cell immunity,conserved CD8+ epitopes,HLA-transgenic mice,immunodominance hierarchy, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202502579 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 微生物學研究所 | - |
| dc.date.embargo-lift | 2027-07-30 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-07-30 | 12.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
