請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99956完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許書睿 | zh_TW |
| dc.contributor.advisor | Shu-Jui Hsu | en |
| dc.contributor.author | 江鈺婷 | zh_TW |
| dc.contributor.author | Yu-Ting Chiang | en |
| dc.date.accessioned | 2025-09-22T16:08:06Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | Morton, C.C. and W.E. Nance, Newborn hearing screening--a silent revolution. N Engl J Med, 2006. 354(20): p. 2151-64.
Smith, R.J., J.F. Bale, Jr., and K.R. White, Sensorineural hearing loss in children. Lancet, 2005. 365(9462): p. 879-90. Hilgert, N., R.J.H. Smith, and G. Van Camp, Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res, 2009. 681(2-3): p. 189-196. CDC. Types of Hearing Loss. Available from: https://www.cdc.gov/hearing-loss-children/about/types-of-hearing-loss.html. Clark, J.G., Uses and abuses of hearing loss classification. Asha, 1981. 23(7): p. 493-500. Li, M.M., et al., Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med, 2022. 24(7): p. 1392-1406. Sheffield, A.M. and R.J.H. Smith, The Epidemiology of Deafness. Cold Spring Harb Perspect Med, 2019. 9(9). Wu, C.C., et al., Genetic Epidemiology and Clinical Features of Hereditary Hearing Impairment in the Taiwanese Population. Genes (Basel), 2019. 10(10). Kelsell, D.P., et al., Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature, 1997. 387(6628): p. 80-3. Chen, Y., et al., Characterization of a knock-in mouse model of the homozygous p.V37I variant in Gjb2. Sci Rep, 2016. 6: p. 33279. Jagger, D.J. and A. Forge, Connexins and gap junctions in the inner ear--it's not just about K⁺ recycling. Cell Tissue Res, 2015. 360(3): p. 633-44. Wingard, J.C. and H.B. Zhao, Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss - A Common Hereditary Deafness. Front Cell Neurosci, 2015. 9: p. 202. Yum, S.W., J. Zhang, and S.S. Scherer, Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiol Dis, 2010. 38(2): p. 226-36. Liu, W. and H. Rask-Andersen, GJB2 and GJB6 gene transcripts in the human cochlea: A study using RNAscope, confocal, and super-resolution structured illumination microscopy. Front Mol Neurosci, 2022. 15: p. 973646. Chan, D.K. and K.W. Chang, GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope, 2014. 124(2): p. E34-53. Gürtler, N., et al., GJB2 mutations in the Swiss hearing impaired. Ear Hear, 2003. 24(5): p. 440-7. Gasparini, P., et al., High carrier frequency of the 35delG deafness mutation in European populations. Genetic Analysis Consortium of GJB2 35delG. Eur J Hum Genet, 2000. 8(1): p. 19-23. Morell, R.J., et al., Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med, 1998. 339(21): p. 1500-5. Hwa, H.L., et al., Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med, 2003. 5(3): p. 161-5. Oguchi, T., et al., Clinical features of patients with GJB2 (connexin 26) mutations: severity of hearing loss is correlated with genotypes and protein expression patterns. J Hum Genet, 2005. 50(2): p. 76-83. Dai, P., et al., The prevalence of the 235delC GJB2 mutation in a Chinese deaf population. Genet Med, 2007. 9(5): p. 283-9. Kim, S.Y., et al., Residual Hearing in DFNB1 Deafness and Its Clinical Implication in a Korean Population. PLoS One, 2015. 10(6): p. e0125416. Chen, P.Y., et al., Prediction Model for Audiological Outcomes in Patients With GJB2 Mutations. Ear Hear, 2020. 41(1): p. 143-149. Snoeckx, R.L., et al., GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet, 2005. 77(6): p. 945-57. Shen, J., et al., Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel. Genet Med, 2019. 21(11): p. 2442-2452. Del Castillo, F.J. and I. Del Castillo, DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci, 2017. 10: p. 428. Moisan, S., et al., Characterization of GJB2 cis-regulatory elements in the DFNB1 locus. Hum Genet, 2019. 138(11-12): p. 1275-1286. Verpy, E., et al., Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. J Comp Neurol, 2011. 519(2): p. 194-210. Vona, B., et al., DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics. Clin Genet, 2015. 87(1): p. 49-55. Francey, L.J., et al., Genome-wide SNP genotyping identifies the Stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A, 2012. 158a(2): p. 298-308. Domínguez-Ruiz, M., et al., Novel Pathogenic Variants in the Gene Encoding Stereocilin (STRC) Causing Non-Syndromic Moderate Hearing Loss in Spanish and Argentinean Subjects. Biomedicines, 2023. 11(11). Os, P.G.E.-V. and J.P. Schouten, Multiplex Ligation-dependent Probe Amplification (MLPA®) for the detection of copy number variation in genomic sequences, in PCR Mutation detection protocols. 2010, Springer. p. 97-126. Zeng, B., et al., Increased diagnostic yield in a cohort of hearing loss families using a comprehensive stepwise strategy of molecular testing. Front Genet, 2022. 13: p. 1057293. Yokota, Y., et al., Frequency and clinical features of hearing loss caused by STRC deletions. Sci Rep, 2019. 9(1): p. 4408. Hoppman, N., et al., Genetic testing for hearing loss in the United States should include deletion/duplication analysis for the deafness/infertility locus at 15q15.3. Mol Cytogenet, 2013. 6(1): p. 19. Moteki, H., et al., Detection and Confirmation of Deafness-Causing Copy Number Variations in the STRC Gene by Massively Parallel Sequencing and Comparative Genomic Hybridization. Ann Otol Rhinol Laryngol, 2016. 125(11): p. 918-923. Mandelker, D., et al., Comprehensive diagnostic testing for stereocilin: an approach for analyzing medically important genes with high homology. J Mol Diagn, 2014. 16(6): p. 639-47. Amr, S.S., et al., Allele-Specific Droplet Digital PCR Combined with a Next-Generation Sequencing-Based Algorithm for Diagnostic Copy Number Analysis in Genes with High Homology: Proof of Concept Using Stereocilin. Clin Chem, 2018. 64(4): p. 705-714. Ito, T., et al., Rapid screening of copy number variations in STRC by droplet digital PCR in patients with mild-to-moderate hearing loss. Hum Genome Var, 2019. 6: p. 41. Benoit, C., et al., Behavioral characterization of the cochlear amplifier lesion due to loss of function of stereocilin (STRC) in human subjects. Hear Res, 2023. 439: p. 108898. Han, S., et al., Prevalence and Characteristics of STRC Gene Mutations (DFNB16): A Systematic Review and Meta-Analysis. Front Genet, 2021. 12: p. 707845. Nishio, S.Y. and S.I. Usami, Frequency of the STRC-CATSPER2 deletion in STRC-associated hearing loss patients. Sci Rep, 2022. 12(1): p. 634. Guignard, S., et al., Involvement of CATSPER 2 mutation in a familial context of unexplained infertility and fertilization failure associated with hearing loss: a case report. F S Rep, 2024. 5(1): p. 114-122. Zhang, Y., et al., Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet, 2007. 44(4): p. 233-40. Morgan, A., et al., Lights and Shadows in the Genetics of Syndromic and Non-Syndromic Hearing Loss in the Italian Population. Genes (Basel), 2020. 11(11). Plevova, P., et al., STRC Deletion is a Frequent Cause of Slight to Moderate Congenital Hearing Impairment in the Czech Republic. Otol Neurotol, 2017. 38(10): p. e393-e400. Kim, B.J., et al., Significant Mendelian genetic contribution to pediatric mild-to-moderate hearing loss and its comprehensive diagnostic approach. Genet Med, 2020. 22(6): p. 1119-1128. Logsdon, G.A., M.R. Vollger, and E.E. Eichler, Long-read human genome sequencing and its applications. Nat Rev Genet, 2020. 21(10): p. 597-614. van Dijk, E.L., et al., The Third Revolution in Sequencing Technology. Trends Genet, 2018. 34(9): p. 666-681. Wenger, A.M., et al., Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol, 2019. 37(10): p. 1155-1162. Hon, T., et al., Highly accurate long-read HiFi sequencing data for five complex genomes. Sci Data, 2020. 7(1): p. 399. Warburton, P.E. and R.P. Sebra, Long-Read DNA Sequencing: Recent Advances and Remaining Challenges. Annu Rev Genomics Hum Genet, 2023. 24: p. 109-132. Mahmoud, M., et al., Structural variant calling: the long and the short of it. Genome Biol, 2019. 20(1): p. 246. Strych, L., et al., Targeted long-read sequencing identified a causal structural variant in X-linked nephrogenic diabetes insipidus. BMC Med Genomics, 2024. 17(1): p. 29. Tilgner, H., et al., Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proc Natl Acad Sci U S A, 2014. 111(27): p. 9869-74. Loomis, E.W., et al., Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res, 2013. 23(1): p. 121-8. Buermans, H.P., et al., Flexible and Scalable Full-Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat, 2017. 38(3): p. 310-316. Terzian, P., et al., Pig and quail CpG methylation datasets from short and long read sequencing technologies. Sci Data, 2025. 12(1): p. 556. PacBio HIFI Sequencing with Twist Bioscience Target Enrichment document. Available from: https://www.pacb.com/wp-content/uploads/Application-Brief-HiFi-Target-Enrichment-Best-Practices.pdf. PacBio Revio system web page. Available from: https://www.pacb.com/revio/. PacBio Vega system webpage. Available from: https://www.pacb.com/vega/. Collins, R.L., et al., A structural variation reference for medical and population genetics. Nature, 2020. 581(7809): p. 444-451. Sudmant, P.H., et al., An integrated map of structural variation in 2,504 human genomes. Nature, 2015. 526(7571): p. 75-81. Erwin, J.A., M.C. Marchetto, and F.H. Gage, Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci, 2014. 15(8): p. 497-506. Alkan, C., B.P. Coe, and E.E. Eichler, Genome structural variation discovery and genotyping. Nat Rev Genet, 2011. 12(5): p. 363-76. Duan, J., et al., Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PLoS One, 2013. 8(3): p. e59128. Chen, X., et al., Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics, 2016. 32(8): p. 1220-2. Rausch, T., et al., DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 2012. 28(18): p. i333-i339. Ho, S.S., A.E. Urban, and R.E. Mills, Structural variation in the sequencing era. Nat Rev Genet, 2020. 21(3): p. 171-189. Abbasi, W., et al., Evaluation of copy number variants for genetic hearing loss: a review of current approaches and recent findings. Hum Genet, 2022. 141(3-4): p. 387-400. Yang, L., A Practical Guide for Structural Variation Detection in the Human Genome. Curr Protoc Hum Genet, 2020. 107(1): p. e103. Cameron, D.L., L. Di Stefano, and A.T. Papenfuss, Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software. Nat Commun, 2019. 10(1): p. 3240. Tremmel, R., et al., Structural variation of the coding and non-coding human pharmacogenome. NPJ Genom Med, 2023. 8(1): p. 24. Chiang, C., et al., The impact of structural variation on human gene expression. Nat Genet, 2017. 49(5): p. 692-699. Scott, A.J., C. Chiang, and I.M. Hall, Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Res, 2021. 31(12): p. 2249-2257. D'Haene, E. and S. Vergult, Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genet Med, 2021. 23(1): p. 34-46. Weischenfeldt, J. and D.M. Ibrahim, When 3D genome changes cause disease: the impact of structural variations in congenital disease and cancer. Curr Opin Genet Dev, 2023. 80: p. 102048. Hurles, M.E., E.T. Dermitzakis, and C. Tyler-Smith, The functional impact of structural variation in humans. Trends Genet, 2008. 24(5): p. 238-45. Boyling, A., G. Perez-Siles, and M.L. Kennerson, Structural Variation at a Disease Mutation Hotspot: Strategies to Investigate Gene Regulation and the 3D Genome. Front Genet, 2022. 13: p. 842860. Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 2015. 17(5): p. 405-24. Oza, A.M., et al., Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat, 2018. 39(11): p. 1593-1613. Riggs, E.R., et al., Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med, 2020. 22(2): p. 245-257. Wei, C.Y., et al., Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med, 2021. 6(1): p. 10. Kendig, K.I., et al., Sentieon DNASeq Variant Calling Workflow Demonstrates Strong Computational Performance and Accuracy. Frontiers in Genetics, 2019. 10: p. 7. Wang, K., M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010. 38(16): p. e164. Karczewski, K.J., et al., The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020. 581(7809): p. 434-443. Kircher, M., et al., A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet, 2014. 46(3): p. 310-5. Kopanos, C., et al., VarSome: the human genomic variant search engine. Bioinformatics, 2019. 35(11): p. 1978-1980. Azaiez, H., et al., Genomic Landscape and Mutational Signatures of Deafness-Associated Genes. Am J Hum Genet, 2018. 103(4): p. 484-497. Li, M.X., et al., A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res, 2012. 40(7): p. e53. Purcell, S., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007. 81(3): p. 559-75. Usami, S., et al., Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet, 1999. 104(2): p. 188-92. Wu, C.C., P.J. Chen, and C.J. Hsu, Specificity of SLC26A4 mutations in the pathogenesis of inner ear malformations. Audiol Neurootol, 2005. 10(4): p. 234-42. Li, Q., et al., Identification of SLC26A4 c.919-2A>G compound heterozygosity in hearing-impaired patients to improve genetic counseling. J Transl Med, 2012. 10: p. 225. Mosrati, M.A., et al., A novel dominant mutation in SIX1, affecting a highly conserved residue, result in only auditory defects in humans. Eur J Med Genet, 2011. 54(5): p. e484-8. Yasukawa, R., et al., The Prevalence and Clinical Characteristics of TECTA-Associated Autosomal Dominant Hearing Loss. Genes (Basel), 2019. 10(10). Hildebrand, M.S., et al., DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss. Hum Mutat, 2011. 32(7): p. 825-34. Nixon, T.R.W., et al., Homozygous Type IX collagen variants (COL9A1, COL9A2, and COL9A3) causing recessive Stickler syndrome-Expanding the phenotype. American Journal of Medical Genetics Part A, 2019. 179(8): p. 1498-1506. Machiela, M.J. and S.J. Chanock, LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics, 2015. 31(21): p. 3555-7. Wilch, E., et al., Expression of GJB2 and GJB6 is reduced in a novel DFNB1 allele. Am J Hum Genet, 2006. 79(1): p. 174-9. Wilch, E., et al., A novel DFNB1 deletion allele supports the existence of a distant cis-regulatory region that controls GJB2 and GJB6 expression. Clin Genet, 2010. 78(3): p. 267-74. Zerbino, D.R., et al., The ensembl regulatory build. Genome Biol, 2015. 16(1): p. 56. Zerbino, D.R., et al., Ensembl regulation resources. Database (Oxford), 2016. 2016. Huang, S., et al., The Relationship between the p.V37I Mutation in GJB2 and Hearing Phenotypes in Chinese Individuals. PLoS One, 2015. 10(6): p. e0129662. Hilgert, N., et al., Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene. Eur J Hum Genet, 2009. 17(4): p. 517-24. Hosoya, M., et al., Investigation of the hearing levels of siblings affected by a single GJB2 variant: Possibility of genetic modifiers. Int J Pediatr Otorhinolaryngol, 2021. 149: p. 110840. Lin, Y.H., et al., Hearing Impairment with Monoallelic GJB2 Variants: A GJB2 Cause or Non-GJB2 Cause? J Mol Diagn, 2021. 23(10): p. 1279-1291. Chai, Y., et al., Identification of both MT-RNR1 m.1555A>G and bi-allelic GJB2 mutations in probands with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol, 2014. 78(4): p. 614-7. Defourny, J., N. Thelen, and M. Thiry, Cochlear connexin 30 homomeric and heteromeric channels exhibit distinct assembly mechanisms. Mech Dev, 2019. 155: p. 8-14. Nielsen, M.S., et al., Gap junctions. Compr Physiol, 2012. 2(3): p. 1981-2035. Liu, X.Z., et al., Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum Genet, 2009. 125(1): p. 53-62. Pallares-Ruiz, N., et al., A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect? Eur J Hum Genet, 2002. 10(1): p. 72-6. del Castillo, F.J., et al., A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet, 2005. 42(7): p. 588-94. Mei, L., et al., A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiol Dis, 2017. 108: p. 195-203. Wang, H., et al., Phenotypic Heterogeneity of Post-lingual and/or Milder Hearing Loss for the Patients With the GJB2 c.235delC Homozygous Mutation. Front Cell Dev Biol, 2021. 9: p. 647240. Gonzaga-Jauregui, C., et al., Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep, 2015. 12(7): p. 1169-83. Gazzo, A., et al., Understanding mutational effects in digenic diseases. Nucleic Acids Res, 2017. 45(15): p. e140. Gusareva, E.S., et al., Genome-wide association interaction analysis for Alzheimer's disease. Neurobiol Aging, 2014. 35(11): p. 2436-2443. Chen, J., et al., Human CRYL1, a novel enzyme-crystallin overexpressed in liver and kidney and downregulated in 58% of liver cancer tissues from 60 Chinese patients, and four new homologs from other mammalians. Gene, 2003. 302(1-2): p. 103-13. Cheng, I.K., et al., Reduced CRYL1 expression in hepatocellular carcinoma confers cell growth advantages and correlates with adverse patient prognosis. J Pathol, 2010. 220(3): p. 348-60. Feng, L., et al., Downregulation of Crystallin Lambda 1 is a New Independent Prognostic Marker in Clear Cell Renal Cell Carcinoma. Pharmgenomics Pers Med, 2022. 15: p. 857-866. Tindale, L.C., et al., Lipid and Alzheimer's disease genes associated with healthy aging and longevity in healthy oldest-old. Oncotarget, 2017. 8(13): p. 20612-20621. Orvis, J., et al., gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nat Methods, 2021. 18(8): p. 843-844. Feldmann, D., et al., A new large deletion in the DFNB1 locus causes nonsyndromic hearing loss. Eur J Med Genet, 2009. 52(4): p. 195-200. Jiang, L., et al., A generalized linear mixed model association tool for biobank-scale data. Nat Genet, 2021. 53(11): p. 1616-1621. Lin, P.H., et al., Etiologic and Audiologic Characteristics of Patients With Pediatric-Onset Unilateral and Asymmetric Sensorineural Hearing Loss. JAMA Otolaryngol Head Neck Surg, 2017. 143(9): p. 912-919. Zhao, S., et al., Accuracy and efficiency of germline variant calling pipelines for human genome data. Sci Rep, 2020. 10(1): p. 20222. Behera, S., et al., Comprehensive genome analysis and variant detection at scale using DRAGEN. Nat Biotechnol, 2024. Chen, X., et al., Genome-wide profiling of highly similar paralogous genes using HiFi sequencing. Nat Commun, 2025. 16(1): p. 2340. Zook, J.M., et al., A robust benchmark for detection of germline large deletions and insertions. Nat Biotechnol, 2020. 38(11): p. 1347-1355. English, A.C., et al., Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol, 2022. 23(1): p. 271. Geoffroy, V., et al., AnnotSV: an integrated tool for structural variations annotation. Bioinformatics, 2018. 34(20): p. 3572-3574. Danis, D., et al., SvAnna: efficient and accurate pathogenicity prediction of coding and regulatory structural variants in long-read genome sequencing. Genome Med, 2022. 14(1): p. 44. Wu, C.C., et al., Application of massively parallel sequencing to genetic diagnosis in multiplex families with idiopathic sensorineural hearing impairment. PLoS One, 2013. 8(2): p. e57369. Solomon, B.D., et al., Clinical genomic database. Proc Natl Acad Sci U S A, 2013. 110(24): p. 9851-5. Landrum, M.J., et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res, 2014. 42(Database issue): p. D980-5. Kleinert, P. and M. Kircher, A framework to score the effects of structural variants in health and disease. Genome Res, 2022. 32(4): p. 766-777. Jaganathan, K., et al., Predicting Splicing from Primary Sequence with Deep Learning. Cell, 2019. 176(3): p. 535-548.e24. Jian, X., E. Boerwinkle, and X. Liu, In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res, 2014. 42(22): p. 13534-44. Giacopuzzi, E., N. Popitsch, and J.C. Taylor, GREEN-DB: a framework for the annotation and prioritization of non-coding regulatory variants from whole-genome sequencing data. Nucleic Acids Res, 2022. 50(5): p. 2522-2535. Chen, S., et al., A genomic mutational constraint map using variation in 76,156 human genomes. Nature, 2024. 625(7993): p. 92-100. Collins, R.L., et al., A cross-disorder dosage sensitivity map of the human genome. Cell, 2022. 185(16): p. 3041-3055.e25. Danecek, P., et al., Twelve years of SAMtools and BCFtools. Gigascience, 2021. 10(2). Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-2. McLaren, W., et al., The Ensembl Variant Effect Predictor. Genome Biol, 2016. 17(1): p. 122. Scheffer, D.I., et al., Gene Expression by Mouse Inner Ear Hair Cells during Development. J Neurosci, 2015. 35(16): p. 6366-80. Lu, C.C., et al., Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. J Neurosci, 2011. 31(30): p. 10903-18. Baldarelli, R.M., et al., Mouse Genome Informatics: an integrated knowledgebase system for the laboratory mouse. Genetics, 2024. 227(1). PacBio pbsv structural variant calling benchmark. Available from: https://github.com/PacificBiosciences/sv-benchmark. Zhao, X., et al., Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. Am J Hum Genet, 2021. 108(5): p. 919-928. Lin, Z., et al., Genome Sequencing Unveils the Role of Copy Number Variants in Hearing Loss and Identifies Novel Deletions With Founder Effect in the DFNB1 Locus. Hum Mutat, 2024. 2024: p. 9517114. Rothschild, S.C., et al., CaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signaling. Dev Biol, 2013. 381(1): p. 179-88. Meese, S., et al., Activity-Dependent Phosphorylation by CaMKIIδ Alters the Ca(2+) Affinity of the Multi-C(2)-Domain Protein Otoferlin. Front Synaptic Neurosci, 2017. 9: p. 13. Jin, Q., et al., CAMK1D Inhibits Glioma Through the PI3K/AKT/mTOR Signaling Pathway. Front Oncol, 2022. 12: p. 845036. Katsuoka, F., et al., Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol, 2005. 25(18): p. 8044-51. Hirotsu, Y., et al., Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res, 2012. 40(20): p. 10228-39. Hwang, Y.J., et al., MafK positively regulates NF-κB activity by enhancing CBP-mediated p65 acetylation. Sci Rep, 2013. 3: p. 3242. Patel, S.D., et al., Deficiency of the bZIP transcription factors Mafg and Mafk causes misexpression of genes in distinct pathways and results in lens embryonic developmental defects. Front Cell Dev Biol, 2022. 10: p. 981893. Khan, S.F., et al., The roles and regulation of TBX3 in development and disease. Gene, 2020. 726: p. 144223. Carlson, H., et al., A dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that cause ulnar-mammary syndrome. Hum Mol Genet, 2001. 10(21): p. 2403-13. van Weerd, J.H., et al., Trait-associated noncoding variant regions affect TBX3 regulation and cardiac conduction. Elife, 2020. 9. Kaiser, M., et al., Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development, 2021. 148(8). van Beeck Calkoen, E.A., et al., Contralateral hearing loss in children with a unilateral enlarged vestibular aqueduct. Int J Pediatr Otorhinolaryngol, 2021. 150: p. 110891. Sekiguchi, M., et al., ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk. Transl Psychiatry, 2020. 10(1): p. 247. Tanaka, R., et al., Inhibition of Rho-kinase ameliorates decreased spine density in the medial prefrontal cortex and methamphetamine-induced cognitive dysfunction in mice carrying schizophrenia-associated mutations of the Arhgap10 gene. Pharmacol Res, 2023. 187: p. 106589. Dai, Y.B., et al., The role of Rho GTPase family in cochlear hair cells and hearing. Neural Regen Res, 2023. 18(10): p. 2167-2172. Monaghan, C.E., et al., REST corepressors RCOR1 and RCOR2 and the repressor INSM1 regulate the proliferation-differentiation balance in the developing brain. Proc Natl Acad Sci U S A, 2017. 114(3): p. E406-e415. Monestime, C.M., et al., CoRest1 regulates neurogenesis in a stage-dependent manner. Dev Dyn, 2019. 248(10): p. 918-930. Xu, H., et al., RCOR1 improves neurobehaviors and neuron injury in rat cerebral palsy by Endothelin-1 targeting-induced Akt/GSK-3β pathway upregulation. Brain Dev, 2024. 46(2): p. 93-102. Wells, H.R.R., et al., Genome-wide association study suggests that variation at the RCOR1 locus is associated with tinnitus in UK Biobank. Sci Rep, 2021. 11(1): p. 6470. Adams, J.W., et al., Loss of GTF2I promotes neuronal apoptosis and synaptic reduction in human cellular models of neurodevelopment. Cell Rep, 2024. 43(3): p. 113867. Deurloo, M.H.S., et al., Transcription Factor 2I Regulates Neuronal Development via TRPC3 in 7q11.23 Disorder Models. Mol Neurobiol, 2019. 56(5): p. 3313-3325. Wang, Y.K., L.A. Pérez-Jurado, and U. Francke, A mouse single-copy gene, Gtf2i, the homolog of human GTF2I, that is duplicated in the Williams-Beuren syndrome deletion region. Genomics, 1998. 48(2): p. 163-70. Palmer, S.J., et al., Expression of Gtf2ird1, the Williams syndrome-associated gene, during mouse development. Gene Expr Patterns, 2007. 7(4): p. 396-404. Kosugi, S. and C. Terao, Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data. Hum Genome Var, 2024. 11(1): p. 18. Höps, W., et al., HiFi long-read genomes for difficult-to-detect, clinically relevant variants. Am J Hum Genet, 2025. 112(2): p. 450-456. Zhang, F. and J.R. Lupski, Non-coding genetic variants in human disease. Hum Mol Genet, 2015. 24(R1): p. R102-10. Liu, X., et al., Systematic assessment of structural variant annotation tools for genomic interpretation. Life Sci Alliance, 2025. 8(3). Twist Bioscience Long Read Library Preparation and Standard Hyb v2 Enrichment Protocol.; Available from: https://www.twistbioscience.com/resources/protocol/long-read-library-preparation-and-standard-hyb-v2-enrichment. Thaxton, C., et al., Utilizing ClinGen gene-disease validity and dosage sensitivity curations to inform variant classification. Hum Mutat, 2022. 43(8): p. 1031-1040. ClinGen Dosage Sensitivity Single Gene Evaluation Process. Available from: https://www.clinicalgenome.org/site/assets/files/6428/dosage_sop-scoring-1.pdf. gnomAD web page. Available from: https://gnomad.broadinstitute.org/news/2018-10-gnomad-v2-1/. Scott, E.R., et al., Long-read HiFi sequencing of NUDT15: Phased full-gene haplotyping and pharmacogenomic allele discovery. Hum Mutat, 2022. 43(11): p. 1557-1566. Vasan, N., et al., Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science, 2019. 366(6466): p. 714-723. Wenzel, A., et al., Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations. Sci Rep, 2018. 8(1): p. 4170. Gabrieli, T., et al., Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res, 2018. 46(14): p. e87. Iyer, S.V., S. Goodwin, and W.R. McCombie, Leveraging the power of long reads for targeted sequencing. Genome Res, 2024. 34(11): p. 1701-1718. Gasc, C., E. Peyretaillade, and P. Peyret, Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016. 44(10): p. 4504-18. Mahmoud, M., et al., Closing the gap: Solving complex medically relevant genes at scale. medRxiv, 2024. Maydan, J.S., et al., De Novo identification of single nucleotide mutations in Caenorhabditis elegans using array comparative genomic hybridization. Genetics, 2009. 181(4): p. 1673-7. Peterson, J.F., et al., Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing? Oncotarget, 2015. 6(22): p. 18845-62. Retterer, K., et al., Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med, 2015. 17(8): p. 623-9. Tayoun, A.N., et al., Targeted Droplet-Digital PCR as a Tool for Novel Deletion Discovery at the DFNB1 Locus. Hum Mutat, 2016. 37(1): p. 119-26. Holland, M. SALSA® MLPA® Probemix P461 STRC-CATSPER2-OTOA. Available from: https://www.mrcholland.com/product/P461. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99956 | - |
| dc.description.abstract | 遺傳性聽力損傷(hereditary hearing impairment, HHI)是一種常見的遺傳疾病,具有高度的基因異質性與表現型變異性,因而診斷上充滿挑戰。雖然短片段的次世代定序(short-read next-generation sequencing, srNGS)已廣泛應用於臨床診斷,但針對遺傳性聽力損傷的診斷率僅約40%,顯示尚有改進診斷分析策略的需求。
本研究透過分析短片段與長片段定序資料,針對遺傳性聽力損傷未解的遺傳成因進行探討,與發展相關臨床檢測應用,主要包括三個方向: 1.GJB2相關的表現型變異性:重新分析短片段定序基因套組(short-read panel, srPanel)資料,發現除GJB2以外的聽力損傷相關基因致病變異,另有一可能影響表現型的修飾基因變異CRYL1 rs14236,可能與帶有GJB2 p.V37I同型合子的聽力損傷病人所觀察到的較嚴重聽損有關。 2.結構變異(structural variant, SV)的發現:建立一套整合長片段全基因體定序(long-read whole-genome sequencing, lrWGS)與短片段全基因體定序(short-read whole-genome sequencing, srWGS)資料的分析流程,成功從過去無法診斷家庭中找出新的可能致病非編碼區域缺失變異。 3.具成本效益的長片段定序套組 (long-read panel, lrPanel) 開發與應用:設計並驗證一個客製化長片段定序套組,針對短片段定序難以準確分析的STRC基因及其他容易出現結構變異的聽力相關基因進行分析,達成將長片段定序應用於臨床聽力損傷分子診斷的可能。 本研究利用短片段及長片段定序技術與發展分析策略,釐清未解的遺傳性聽力損傷遺傳病因,提供臨床參考依據,進而提升診斷率。 | zh_TW |
| dc.description.abstract | Hereditary hearing impairment (HHI) is a common genetic disorder characterized by high genetic heterogeneity and phenotypic variability, making diagnosis challenging. Although short-read next-generation sequencing (srNGS) is widely used in clinical diagnostics, the diagnostic yield for HHI remains around 40%, highlighting the need for improved strategies.
This study investigates unresolved genetic causes of HHI and develops clinical testing approaches using both short- and long-read sequencing through three strategies: 1. GJB2-related phenotypic variability: Reanalysis of short-read panel (srPanel) data revealed additional pathogenic variants in other deafness genes and a potential modifier variant, CRYL1 rs14236, which may contribute to the more severe hearing loss observed in GJB2 p.V37I homozygotes. 2. Discovery of structural variants (SVs): A comprehensive analysis pipeline combining long-read whole-genome sequencing (lrWGS) with short-read WGS was developed, enabling the identification of novel non-coding deletions in previously undiagnosed families. 3. Cost-effective clinical application: A custom long-read panel targeting the STRC gene—difficult to analyze with srNGS—and other SV-prone deafness genes was developed and validated for clinical use. Overall, this study demonstrates how integrating multiple sequencing technologies and tailored analysis strategies can resolve complex genetic cases and improve the diagnostic outcomes of HHI. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:08:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:08:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract IV 目錄 V 圖目錄 IX 表目錄 XI Chapter 1. Introduction 1 1.1. Hereditary hearing impairment (HHI) 1 1.2. Gap junction beta-2 protein (GJB2) gene 2 1.3. Stereocilin (STRC) gene 3 1.4. High-throughput sequencing 5 1.5. Structural variant (SV) 7 1.6. Standards of variant annotation and interpretation 9 1.7. Research framework and objective 15 Chapter 2. Exploring Genetic Factors of Phenotypic Variability in GJB2-Related Hearing Loss 16 2.1. Overview 16 2.2. Materials and Methods 16 2.2.1. GJB2 p.V37I homozygote recruitment and hearing loss level classification 16 2.2.2. Short-read next-generation sequencing (srNGS) panel 17 2.2.3. SNV/INDEL calling from short-read panel and pathogenicity interpretation 18 2.2.4. Case–control association analyses 19 2.3. Results 20 2.3.1. Study workflow and study subject selection 20 2.3.2. Pathogenic variants identified by individual short-read panel re-analyses 22 2.3.3. Phenotypic modifier variant CRYL1 rs14236 identified by case-control association 24 2.3.4. Evidence supporting CRYL1 rs14236 as a genetic modifier 25 2.4. Discussion 30 Chapter 3. Using Long-Read WGS to Detect Structural Variants in Hearing-Impaired Patients Negative by Short-Read WGS 34 3.1. Overview 34 3.2. Materials and Methods 37 3.2.1. Collection of study cases and whole-genome sequencing (WGS) data 37 3.2.1.1. Recruitment of study cases and deafness multiplex families for WGS 37 3.2.1.2. Short-read and long-read WGS 38 3.2.2. SV calling and performance evaluation 38 3.2.2.1. Variant calling from WGS data 38 3.2.2.2. HG002 SV benchmarking 39 3.2.3. SV annotation and prioritization 39 3.2.3.1. SV annotation and prioritization by AnnotSV and SvAnna 39 3.2.3.2. Establishment of deafness gene virtual panels 40 3.2.3.3. Datasets and databases for in-house SV annotation pipeline 41 3.2.3.4. In-house SV ranking pipeline 42 3.2.3.5. HPRC samples as SV ranking false positives 49 3.2.4. HG002 deletion set with deletion spike-in for SV prioritization comparison 50 3.3. Results 51 3.3.1. SV calling and performance evaluation 51 3.3.1.1. lrWGS outperforms srWGS in SV detection 51 3.3.1.2. Detection of STRC CNVs in HHI patients via lrWGS and Paraphase 57 3.3.2. SV annotation and prioritization 58 3.3.2.1. AnnotSV-based annotation and classification of CNVs in HHI patients 58 I. Family-based analysis of joint CNVs from srWGS using AnnotSV 58 II. Analysis of CNVs in individual HHI patients using lrWGS and AnnotSV 59 III. Limitations of AnnotSV 61 3.3.2.2. Screening for translocations and inversions in 754 deafness genes from lrWGS data 62 3.3.2.3. SvAnna-based prioritization of SVs from lrWGS in HHI patients 64 3.3.2.4. Optimizing SV matching parameters for enhanced in-house SV annotation and ranking pipeline 66 3.3.3. SV prioritization comparison: AnnotSV, SvAnna, and In-house pipeline 71 3.3.3.1. Comparison of SV scoring criteria and enhancements by the In-house pipeline 71 I. ACMG/ClinGen CNV scoring system and AnnotSV 71 II. SvAnna 72 III. Enhancements by the In-house pipeline 73 3.3.3.2. Comparison of SV prioritization performance using HG002 lrWGS deletions with spike-in deletions 74 3.3.4. Multiplex family reports 80 3.3.4.1. Families with suspect findings 80 I. MDD0046 Family 80 II. MDD0065 Family 88 III.MDD0117 Family 97 3.3.4.2. Families without suspect findings 103 I. DE7604 Family 103 II. MDD0026 Family 107 III.MDD0050 Family 109 IV.MDD0057 Family 115 V. MDD00140 Family 120 3.4. Discussion 126 Chapter 4. Developing a Long-Read Diagnostic Panel for Hereditary Hearing Impairment 131 4.1. Overview 131 4.2. Materials and Methods 131 4.2.1. Validation sample selection for long-read panel SV calling 131 4.2.2. DNA library preparation and sequencing of long-read panel 132 4.2.3. Long-read panel SV calling workflow 132 4.2.4. HG002 SV benchmarking in long-read panel targeted regions 133 4.3. Results 133 4.3.1. Long-read panel design and targeted gene selection 133 4.3.2. Coverage analysis of long-read panel target regions 134 4.3.3. SV calling performance evaluation in long-read panel targeted regions with HG002 benchmarking 139 4.3.4. SV detection comparison between long-read panel and lrWGS of deafness patients 142 4.3.5. STRC CNV analysis of the long-read panel 145 4.3.6. SV discovery of the long-read panel 148 4.4. Discussion 151 Conclusions 155 Acknowledgements 155 References 156 Appendix 166 個人著作列表 170 | - |
| dc.language.iso | en | - |
| dc.subject | 遺傳性聽力損傷 | zh_TW |
| dc.subject | 結構變異 | zh_TW |
| dc.subject | 長片段定序 | zh_TW |
| dc.subject | 短片段定序 | zh_TW |
| dc.subject | 全基因組定序 | zh_TW |
| dc.subject | 定序套組 | zh_TW |
| dc.subject | Structural variant | en |
| dc.subject | Hereditary hearing impairment | en |
| dc.subject | Target panel sequencing | en |
| dc.subject | Whole-genome sequencing | en |
| dc.subject | Short-read sequencing | en |
| dc.subject | Long-read sequencing | en |
| dc.title | 應用長片段與短片段DNA序列分析以解決遺傳性聽損之診斷挑戰 | zh_TW |
| dc.title | Applying Long-Read and Short-Read DNA Sequencing to Address Diagnostic Challenges in Hereditary Hearing Impairment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 吳振吉;陳沛隆;馮嬿臻;陳弘昕 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Chi Wu;Pei-Lung Chen;Yen-Chen Feng;Hung-Hsin Chen | en |
| dc.subject.keyword | 遺傳性聽力損傷,結構變異,長片段定序,短片段定序,全基因組定序,定序套組, | zh_TW |
| dc.subject.keyword | Hereditary hearing impairment,Structural variant,Long-read sequencing,Short-read sequencing,Whole-genome sequencing,Target panel sequencing, | en |
| dc.relation.page | 170 | - |
| dc.identifier.doi | 10.6342/NTU202502984 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 基因體暨蛋白體醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 30.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
