Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99954
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐瑋勵zh_TW
dc.contributor.advisorWei-Li Hsuen
dc.contributor.author林軒zh_TW
dc.contributor.authorShiuan Linen
dc.date.accessioned2025-09-22T16:07:42Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation1. Sonobe T, Otani K, Sekiguchi M, Otoshi K, Nikaido T, Konno S, Matsumoto Y. Influence of knee osteoarthritis severity, knee pain, and depression on physical function: a cross-sectional study. Clin Interv Aging. 2024;19:1653-1662.
2. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020;29-30:100587.
3. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. Osteoarthritis. Lancet. 2015;3869991:376-387.
4. Hsu WL, Chou LS, Woollacott M. Age-related changes in joint coordination during balance recovery. Age (Dordr). 2013;354:1299-1309.
5. Mahmoudian A, Lohmander LS, Mobasheri A, Englund M, Luyten FP. Early-stage symptomatic osteoarthritis of the knee - time for action. Nat Rev Rheumatol. 2021;1710:621-632.
6. Kitay GS, Koren MJ, Helfet DL, Parides MK, Markenson JA. Efficacy of combined local mechanical vibrations, continuous passive motion and thermotherapy in the management of osteoarthritis of the knee. Osteoarthritis Cartilage. 2009;1710:1269-1274.
7. Needs D, Blotter J, Cowan M, Fellingham G, Johnson AW, Feland JB. Effect of localized vibration massage on popliteal blood flow. J Clin Med. 2023;125.
8. Rabini A, de Sire A, Marzetti E, Gimigliano R, Ferriero G, Piazzini DB, et al. Effects of focal muscle vibration on physical functioning in patients with knee osteoarthritis: a randomized controlled trial. Eur J Phys Rehabil Med. 2015;515:513-520.
9. Viganò A, Celletti C, Giuliani G, Jannini TB, Marenco F, Maestrini I, et al. Focal muscle vibration (fMV) for post-stroke motor recovery: multisite neuroplasticity induction, timing of intervention, clinical approaches, and prospects from a narrative review. Vibration. 2023;6(3):645-658.
10. Rice DA, McNair PJ, Lewis GN. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects. Arthritis Res Ther. 2011;135:R151.
11. Benedetti MG, Boccia G, Cavazzuti L, Magnani E, Mariani E, Rainoldi A, Casale R. Localized muscle vibration reverses quadriceps muscle hypotrophy and improves physical function: a clinical and electrophysiological study. Int J Rehabil Res. 2017;404:339-346.
12. Hengsomboon P, Hiengkaew V, Hsu WL, Bovonsunthonchai S. Effect of sound on standing postural stability in the elderly with and without knee osteoarthritis. Acta Bioeng Biomech. 2019;213:99-108.
13. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. 2008;162:137-162.
14. Hassan A, Kamel R, Reda R, Abutaleb E. Effect of oscillatory whole-body vibration versus neuromuscular exercise on static and dynamic balance in patients with knee osteoarthritis. Int J Health Sci. 2022:4553-4571.
15. Gokpinar HH, Of NS, Saracoglu I, Sucuoglu H, Koyuncu H. The effects of whole-body vibration exercises with and without conventional physical therapy modalities in patients with knee osteoarthritis: a prospective, randomized-controlled study. Turk J Phys Med Rehabil. 2024;704:532-544.
16. Cerciello S, Rossi S, Visonà E, Corona K, Oliva F. Clinical applications of vibration therapy in orthopaedic practice. Muscles Ligaments Tendons J. 2016;61:147-156.
17. Anwer S, Alghadir A, Zafar H, Al-Eisa E. Effect of whole body vibration training on quadriceps muscle strength in individuals with knee osteoarthritis: a systematic review and meta-analysis. Physiotherapy. 2016;1022:145-151.
18. Pamukoff DN, Ryan ED, Blackburn JT. The acute effects of local muscle vibration frequency on peak torque, rate of torque development, and EMG activity. J Electromyogr Kinesiol. 2014;246:888-894.
19. Moran K, McNamara B, Luo J. Effect of vibration training in maximal effort (70% 1RM) dynamic bicep curls. Med Sci Sports Exerc. 2007;393:526-533.
20. Germann D, El Bouse A, Shnier J, Abdelkader N, Kazemi M. Effects of local vibration therapy on various performance parameters: a narrative literature review. J Can Chiropr Assoc. 2018;623:170-181.
21. Alnahdi AH, Zeni JA, Snyder-Mackler L. Muscle impairments in patients with knee osteoarthritis. Sports Health. 2012;44:284-292.
22. Blackburn JT, Pamukoff DN, Sakr M, Vaughan AJ, Berkoff DJ. Whole body and local muscle vibration reduce artificially induced quadriceps arthrogenic inhibition. Arch Phys Med Rehabil. 2014;9511:2021-2028.
23. Kim J-R, Pham THN, Kim W-U, Kim HA. A causative role for periarticular skeletal muscle weakness in the progression of joint damage and pain in OA. Sci Rep. 2023;131:21349.
24. Poenaru D, Cinteza D, Petrusca I, Cioc L, Dumitrascu D. Local application of vibration in motor rehabilitation - scientific and practical considerations. Maedica (Bucur). 2016;113:227-231.
25. Pfenninger C, Grosboillot N, Digonet G, Lapole T. Effects of prolonged local vibration superimposed to muscle contraction on motoneuronal and cortical excitability. Front Physiol. 2023;14:1106387.
26. Salamanna F, Caravelli S, Marchese L, Carniato M, Vocale E, Gardini G, et al. Proprioception and mechanoreceptors in osteoarthritis: a systematic literature review. J Clin Med. 2023;1220.
27. Filippi GM, Rodio A, Fattorini L, Faralli M, Ricci G, Pettorossi VE. Plastic changes induced by muscle focal vibration: a possible mechanism for long-term motor improvements. Front Neurosci. 2023;17:1112232.
28. McDougall JJ. Osteoarthritis is a neurological disease - an hypothesis. Osteoarthr Cartil Open. 2019;11-2:100005.
29. Knoop J, Steultjens MP, van der Leeden M, van der Esch M, Thorstensson CA, Roorda LD, et al. Proprioception in knee osteoarthritis: a narrative review. Osteoarthritis Cartilage. 2011;194:381-388.
30. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;924:1651-1697.
31. Shen X, Yu Y, Xiao H, Ji L, Wu J. Cortical activity associated with focal muscle vibration applied directly to the affected forearm flexor muscle in post-stroke patients: an fNIRS study. Front Neurosci. 2023;17:1281160.
32. Taylor MW, Taylor JL, Seizova-Cajic T. Muscle vibration-induced illusions: review of contributing factors, taxonomy of illusions and user’s guide. Multisens Res. 2017;301:25-63.
33. Berteau JP. Knee pain from osteoarthritis: pathogenesis, risk factors, and recent evidence on physical therapy interventions. J Clin Med. 2022;1112.
34. Liao F, Zhang K, Zhou L, Chen Y, Elliott J, Jan Y-K. Effect of different local vibration frequencies on the multiscale regularity of plantar skin blood flow. Entropy. 2020;2211:1288.
35. Ren W, Pu F, Luan H, Duan Y, Su H, Fan Y, Jan YK. Effects of local vibration with different intermittent durations on skin blood flow responses in diabetic people. Front Bioeng Biotechnol. 2019;7:310.
36. Fu S, Duan T, Hou M, Yang F, Chai Y, Chen Y, et al. Postural balance in individuals with knee osteoarthritis during stand-to-sit task. Front Hum Neurosci. 2021;15:760960.
37. Fischer AG, Erhart-Hledik JC, Asay JL, Chu CR, Andriacchi TP. Utilizing the somatosensory system via vibratory stimulation to mitigate knee pain during walking: Randomized clinical trial. Gait Posture. 2020;80:37-43.
38. Casale R, Hansson P. The analgesic effect of localized vibration: a systematic review. Part 1: The neurophysiological basis. Eur J Phys Rehabil Med. 2022;582:306-315.
39. Wakeling JM, Nigg BM. Modification of soft tissue vibrations in the leg by muscular activity. J Appl Physiol (1985). 2001;902:412-420.
40. Fattorini L, Rodio A, Pettorossi VE, Filippi GM. Is the focal muscle vibration an effective motor conditioning intervention? a systematic review. J Funct Morphol Kinesiol. 2021;62.
41. Alghadir AH, Zafar H, Khan M. Acute effects of muscle vibration on elbow joint position sense in healthy young men: a randomized trial. Medicine (Baltimore). 2023;10236:e35017.
42. Barati K, Esfandiari E, Kamyab M, Ebrahimi Takamjani I, Atlasi R, Parnianpour M, et al. The effect of local muscle vibration on clinical and biomechanical parameters in people with knee osteoarthritis: a systematic review. Med J Islam Repub Iran. 2021;35:124.
43. Taniguchi M, Fukumoto Y, Yagi M, Motomura Y, Okada S, Okada S, et al. Enhanced echo intensity in vastus medialis is associated with worsening of functional disabilities and symptoms in patients with knee osteoarthritis: a 3 years longitudinal study. Rheumatol Int. 2023;435:953-960.
44. Saeed Alshahrani M, Reddy RS, Asiri F, Tedla JS, Alshahrani A, Kandakurti PK, Kakaraparthi VN. Correlation and comparison of quadriceps endurance and knee joint position sense in individuals with and without unilateral knee osteoarthritis. BMC Musculoskelet Disord. 2022;231:444.
45. Relph N, Herrington L. The effects of knee direction, physical activity and age on knee joint position sense. Knee. 2016;233:393-398.
46. Röijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation. part 1: basic science and principles of assessment and clinical interventions. Man Ther. 2015;203:368-377.
47. Modirrousta M, Fellows LK. Dorsal medial prefrontal cortex plays a necessary role in rapid error prediction in humans. J Neurosci. 2008;2851:14000-14005.
48. Mir-Moghtadaei A, Giacobbe P, Daskalakis ZJ, Blumberger DM, Downar J. Validation of a 25% nasion-inion heuristic for locating the dorsomedial prefrontal cortex for repetitive transcranial magnetic stimulation. Brain Stimul. 2016;95:793-795.
49. Reiner MM, Glashüttner C, Bernsteiner D, Tilp M, Guilhem G, Morales-Artacho A, Konrad A. A comparison of foam rolling and vibration foam rolling on the quadriceps muscle function and mechanical properties. Eur J Appl Physiol. 2021;1215:1461-1471.
50. Dans PW, Foglia SD, Nelson AJ. Data processing in functional near-infrared spectroscopy (fNIRS) motor control research. Brain Sci. 2021;115.
51. Sanni AA, McCully KK. Interpretation of near-infrared spectroscopy (NIRS) signals in skeletal muscle. J Funct Morphol Kinesiol. 2019;42.
52. Buchheit M, Ufland P, Haydar B, Laursen PB, Ahmaidi S. Reproducibility and sensitivity of muscle reoxygenation and oxygen uptake recovery kinetics following running exercise in the field. Clin Physiol Funct Imaging. 2011;315:337-346.
53. Goldberg A, Chavis M, Watkins J, Wilson T. The five-times-sit-to-stand test: validity, reliability and detectable change in older females. Aging Clin Exp Res. 2012;244:339-344.
54. Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 2002;578:M539-543.
55. Chen JH, Chen PJ, Kantha P, Tsai YC, Lai DM, Hsu WL. Examining the influence of body fat distribution on standing balance and functional performance in overweight female patients with degenerative lumbar disease. Front Bioeng Biotechnol. 2024;12:1375627.
56. Bohannon RW. Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther. 2006;292:64-68.
57. Kamide N, Takahashi K, Shiba Y. Reference values for the timed up and go test in healthy Japanese elderly people: determination using the methodology of meta-analysis. Geriatr Gerontol Int. 2011;114:445-451.
58. Tsai YC, Hsu WL, Kantha P, Chen PJ, Lai DM. Virtual reality skateboarding training for balance and functional performance in degenerative lumbar spine disease. J Neuroeng Rehabil. 2024;211:74.
59. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;331:159-174.
60. Pamukoff DN, Pietrosimone B, Lewek MD, Ryan ED, Weinhold PS, Lee DR, Blackburn JT. Whole-body and local muscle vibration immediately improve quadriceps function in individuals with anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2016;977:1121-1129.
61. Beinert K, Keller M, Taube W. Neck muscle vibration can improve sensorimotor function in patients with neck pain. Spine J. 2015;153:514-521.
62. Pfenninger C, Zeghoudi N, Bertrand MF, Lapole T. Effects of prolonged vibration to the flexor carpi radialis muscle on intracortical excitability. Sci Rep. 2024;141:8475.
63. Proske U. A reassessment of the role of joint receptors in human position sense. Exp Brain Res. 2023;2414:943-949.
64. Janwantanakul P, Magarey ME, Jones MA, Dansie BR. Variation in shoulder position sense at mid and extreme range of motion. Arch Phys Med Rehabil. 2001;826:840-844.
65. Kaya D, Guney-Deniz H, Sayaca C, Calik M, Doral MN. Effects on lower extremity neuromuscular control exercises on knee proprioception, muscle strength, and functional level in patients with ACL reconstruction. Biomed Res Int. 2019;2019:1694695.
66. Kensinger EA, Ford JH. Guiding the emotion in emotional memories: the role of the dorsomedial prefrontal cortex. Curr Dir Psychol Sci. 2021;302:111-119.
67. Arenales Arauz YL, van der Zee EA, Kamsma YPT, van Heuvelen MJG. Short-term effects of side-alternating whole-body vibration on cognitive function of young adults. PLoS One. 2023;181:e0280063.
68. Alghadir AH, Zafar H, Khan M. Acute effects of muscle vibration on elbow joint position sense in healthy young men: a randomized trial. Medicine. 2023;10236.
69. Nakagami G, Sanada H, Matsui N, Kitagawa A, Yokogawa H, Sekiya N, et al. Effect of vibration on skin blood flow in an in vivo microcirculatory model. Biosci Trends. 2007;13:161-166.
70. Palmieri RM, Ingersoll CD, Cordova ML, Kinzey SJ, Stone MB, Krause BA. The effect of a simulated knee joint effusion on postural control in healthy subjects. Arch Phys Med Rehabil. 2003;847:1076-1079.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99954-
dc.description.abstract背景: 膝關節炎(Knee Osteoarthritis, OA)影響全球約8,670萬人,是導致老年人疼痛與失能的主要退化性疾病之一。然而,目前文獻主要集中於探討不同振動頻率的選擇,針對連續模式及間歇模式振動對於不同神經肌肉功能成效的比較則較少有研究討論。
研究目的:探討連續振動模式與間歇振動模式對膝關節骨關節炎患者在多項神經肌肉功能之立即效應。
研究設計:交叉設計研究
研究方法:本研究共由台北慈濟醫院招募了40位診斷為膝關節炎的參與者並隨機分為兩組。第一組先接受連續模式振動,後接受間歇模式振動;第二組則相反。所有受試者皆在患側股內側肌接受連續與間歇模式各兩分鐘的振動介入。量測內容包含基本資料及振動介入前後的各項臨床成效評估。統計分析採用單因子重複量數變異數分析比較振動介入前、連續模式振動後及間歇模式振動後對疼痛、肌力、膝關節位置覺、血流動力學及功能表現的影響。此外,也會使用配對樣本t檢定比較連續與介歇振動模式下組織循環的差異。統計顯著水準設定為p < 0.05。
結果:連續模式振動相比於間歇模式振動,能增加股內側肌的微循環與背內側前額葉皮層的活化程度;而間歇模式振動則相較於連續模式振動,更能降低關節位置覺測試中的絕對誤差值。
結論:本研究成果發現連續模式與間歇模式的振動介入在施作兩分鐘後能立即改善膝骨關節炎患者的神經肌肉功能,且對於微循環不佳的問題,建議使用連續模式振動;而針對本體感覺缺損的問題,則更適合使用間歇模式振動。依據個別臨床症狀選擇合適的局部肌肉振動模式,對於精準復健可能具有潛在的應用價值。
zh_TW
dc.description.abstractBackground: Knee osteoarthritis (OA) affects 86.7 million people worldwide and is a leading degenerative disease that causes pain and disability in older adults. However, current literature primarily focuses on selecting different vibration frequencies, with few studies investigating the differences between continuous mode and intermittent mode vibrations to enhance various neuromuscular functions.
Purpose: To investigate the immediate effects of continuous and intermittent mode local muscle vibration (LMV) on multiple neuromuscular functions in individuals with knee OA.
Design: Crossover design study
Methods: A total of 40 participants diagnosed with knee OA were recruited from Taipei Tzu Chi Hospital. Participants were randomized into two intervention arms. Arm 1 first performed continuous mode vibration, followed by intermittent mode vibration, while arm 2 performed the opposite sequence. All participants received continuous and intermittent mode local muscle vibration for two minutes that targeted the vastus medialis on the affected side. Measurements included basic demographic information and clinical outcomes assessed before and after the vibration interventions. One-way repeated measures ANOVA was used to compare the differences in pain, muscle power, knee joint position sense, hemodynamic data, and functional performance among baseline, continuous mode, and intermittent mode vibration. In addition, a paired t-test was used to compare muscle hemodynamic responses between the continuous and intermittent vibration modes. The level of statistical significance was set at p < 0.05.
Results: The microcirculation in the vastus medialis and dorsal medial prefrontal cortex (DMPFC) activation of continuous mode vibration increased compared to intermittent mode vibrations. Meanwhile, the absolute error value in the joint position sense test of intermittent mode vibration decreased compared to continuous mode vibrations.
Conclusions: Both continuous and intermittent modes after two minutes of vibration immediately improve neuromuscular functions in knee OA. Continuous mode vibration may be more suited for microcirculation, while intermittent mode may be more suited for proprioception. Personalized mode selection of local muscle vibration that addresses specific clinical symptoms may have potential in precision rehabilitation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:07:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:07:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 IV
ABSTRACT VI
CONTENTS VIII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 2
2-1. Knee Osteoarthritis (OA) 2
2-2. Vibration Intervention 2
2-3. The Effect of Local Muscle Vibration on Knee OA 4
2-3-1. Improve Muscle Power 4
2-3-2. Improve Proprioception 4
2-3-3. Improve Microcirculation 6
2-3-4. Reduce Pain 7
2-4. The Effect of Different Parameters for Local Muscle Vibration on Knee OA 7
2-5. Research Questions 8
2-6. Study Purposes 9
2-7. Hypothesis 10
CHAPTER 3. METHODOLOGY 11
3-1. Study Design 11
3-2. Study Procedure 11
3-3. Participant Recruitment 12
3-4. Local Muscle Vibration with Movement 12
3-5. Data Collection Analysis 14
3-5-1. Participant Characteristics 14
3-5-2. Muscle Power 14
3-5-3. Knee Joint Position Sense 14
3-5-4. Hemodynamic Changes 16
3-5-5. Functional Performance and Pain 18
3-5-6. Statistical Analysis 19
CHAPTER 4. RESULTS 21
4-1. Demographic Data 21
4-2. Muscle Power 21
4-3. Knee Joint Position Sense 22
4-4. Hemodynamic Changes in Dorsal Medial Prefrontal Cortex (DMPFC) during Joint Position Sense 23
4-5. The Relationship between Absolute Error and tHb Change in DMPFC 24
4-6. Hemodynamic Changes in Vastus Medialis 24
4-7. Functional Performance 25
4-8. Pain 26
CHAPTER 5. DISCUSSION 27
5-1. Muscle Power 27
5-2. Knee Joint Position Sense 28
5-3. Hemodynamic Changes in DMPFC during Joint Position Sense 29
5-4. The Relationship between Absolute Error and tHb Change in DMPFC 30
5-5. Hemodynamic Changes in Vastus Medialis 31
5-6. Functional Performance 31
5-7. Pain 33
5-8. Interaction of Proprioception with Other Parameters after Vibration 33
5-9. Clinical Application 34
5-10. Study Limitations 36
CHAPTER 6. CONCLUSION 37
CHAPTER 7. REFERENCE 38
APPENDIX 1. CLINICAL TRIAL/ RESEARCH APPROVAL 44

INDEX OF FIGURES
Figure 1. Mechanism of local muscle vibration to improve proprioception 46
Figure 2. The theoretical framework 46
Figure 3. Flowchart of this study 47
Figure 4. Local muscle vibration with movement protocol 48
Figure 5. Placement of the wearable local muscle vibration device over the mid-belly of the vastus medialis on the affected side, secured with adjustable elastic straps. 49
Figure 6. Measurement of knee joint position sense 50
Figure 7. Experimental setup for the fNIRS sensor placement method to monitor hemodynamic changes in DMPFC and vastus medialis 51
Figure 8. An example of fNIRS hemodynamic changes during vibration intervention 52
Figure 9. Knee extensor muscle power in knee OA individuals among baseline, continuous mode, and intermittent mode vibration 53
Figure 10. Knee flexion 60-degree joint position sense absolute error in knee OA individuals among baseline, continuous mode, and intermittent mode vibration 54
Figure 11. Knee flexion 40-degree joint position sense absolute error in knee OA individuals among baseline, continuous mode, and intermittent mode vibration 55
Figure 12. Knee flexion 20-degree joint position sense absolute error in knee OA individuals among baseline, continuous mode, and intermittent mode vibration 56
Figure 13. Total joint position sense absolute error in knee OA individuals among baseline, continuous mode, and intermittent mode vibration 57
Figure 14. The tHb change in dmpfc during joint position sense in knee OA individuals among baseline, continuous mode, and intermittent mode vibration 58
Figure 15. The HBO2 change in vastus medialis during vibration in knee OA individuals between the continuous and intermittent modes 59
Figure 16. The tHb change in vastus medialis during vibration in knee OA individuals between the continuous and intermittent modes 60
Figure 17. The HHb change in vastus medialis during vibration in knee OA individuals between the continuous and intermittent modes 61
Figure 18. The 5STS test in knee OA individuals between baseline, continuous mode, and intermittent mode vibration 62
Figure 19. The tug test in knee OA individuals between baseline, continuous mode, and intermittent mode vibration 63
Figure 20. The VAS score during the 5STS test in knee OA individuals between baseline, continuous mode, and intermittent mode vibration 64

INDEX OF TABLE
Table 1. Outcome measurements in this study 65
Table 2. Demographic data of the participants 66
Table 3. The joint position sense absolute error in knee OA individuals between baseline, continuous mode, and intermittent mode vibration 67
Table 4. The relationship between absolute error and dmpfc hemodynamics 68
Table 5. The 10-meter walk test performance in knee OA individuals between baseline, continuous mode, and intermittent mode vibration 69
-
dc.language.isoen-
dc.subject振動治療zh_TW
dc.subject膝關節炎zh_TW
dc.subject復健zh_TW
dc.subjectRehabilitationen
dc.subjectKnee osteoarthritisen
dc.subjectVibration therapyen
dc.title不同振動模式對於退化性膝關節炎患者在局部振動介入後的立即性效益zh_TW
dc.titleImmediate Effects of Different Modes for Local Muscle Vibration in Individuals with Knee Osteoarthritisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉宴齊;林居正;陳佑安;詹益坤zh_TW
dc.contributor.oralexamcommitteeYan-Ci Liu;Jiu-Jenq Lin;Yu-An Chen;Yih-Kuen Janen
dc.subject.keyword膝關節炎,振動治療,復健,zh_TW
dc.subject.keywordKnee osteoarthritis,Vibration therapy,Rehabilitation,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202502700-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
dc.date.embargo-lift2030-07-28-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved