請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99952完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林志萱 | zh_TW |
| dc.contributor.advisor | Jr-Shiuan Lin | en |
| dc.contributor.author | 黃子維 | zh_TW |
| dc.contributor.author | Tzu-Wei Huang | en |
| dc.date.accessioned | 2025-09-22T16:07:18Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. T. Sosinowski et al., CD8a+ Dendritic Cell Trans Presentation of IL-15 to Naïve CD8+ T Cells Produces Antigen-Inexperienced T Cells in the Periphery with Memory Phenotype and Function. The Journal of Immunology 190, 1936-1947 (2013).
2. J. T. White et al., Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nature Communications 7, 11291 (2016). 3. J. T. White, E. W. Cross, R. M. Kedl, Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. Nature Reviews Immunology 17, 391-400 (2017). 4. D. Thiele, N. La Gruta, A. Nguyen, T. Hussain, Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8+ T cells. International Journal of Molecular Sciences 21, 8626 (2020). 5. T. Hussain, K. M. Quinn, Similar but different: virtual memory CD8 T cells as a memory-like cell population. Immunology & Cell Biology 97, 675-684 (2019). 6. J. S. Lin et al., Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol 12, 258-264 (2019). 7. M. Rolot et al., Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. Nature Communications 9 (2018). 8. J.-Y. Lee, S. E. Hamilton, A. D. Akue, K. A. Hogquist, S. C. Jameson, Virtual memory CD8 T cells display unique functional properties. Proceedings of the National Academy of Sciences 110, 13498-13503 (2013). 9. N. J. Maurice, A. K. Taber, M. Prlic, The Ugly Duckling Turned to Swan: A Change in Perception of Bystander-Activated Memory CD8 T Cells. The Journal of Immunology 206, 455-462 (2021). 10. E. M. Kwesi-Maliepaard, H. Jacobs, F. Van Leeuwen, Signals for antigen-independent differentiation of memory CD8+ T cells. Cellular and Molecular Life Sciences 78, 6395-6408 (2021). 11. H. Lee, S. Jeong, E.-C. Shin, Significance of bystander T cell activation in microbial infection. Nature Immunology 23, 13-22 (2021). 12. D. F. Tough, P. Borrow, J. Sprent, Induction of Bystander T Cell Proliferation by Viruses and Type I Interferon in Vivo. Science 272, 1947-1950 (1996). 13. Y. Simoni et al., Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575-579 (2018). 14. W. Scheper et al., Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med 25, 89-94 (2019). 15. S. L. Meier, A. T. Satpathy, D. K. Wells, Bystander T cells in cancer immunology and therapy. Nature Cancer 3, 143-155 (2022). 16. P. Kvistborg et al., TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients. OncoImmunology 1, 409-418 (2012). 17. G. P. Mognol et al., Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proceedings of the National Academy of Sciences 114, E2776-E2785 (2017). 18. D. Dangaj et al., Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell 35, 885-900.e810 (2019). 19. N. J. Maurice, M. J. McElrath, E. Andersen-Nissen, N. Frahm, M. Prlic, CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells. Nature Communications 10, 4987 (2019). 20. A. Knight, L. Karapetyan, J. M. Kirkwood, Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 15, 1106 (2023). 21. P. Armand et al., Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. Journal of Clinical Oncology 34, 3733-3739 (2016). 22. T. André et al., Pembrolizumab in Microsatellite-Instability─High Advanced Colorectal Cancer. New England Journal of Medicine 383, 2207-2218 (2020). 23. N. N. Bennani et al., Nivolumab in patients with relapsed or refractory peripheral T-cell lymphoma: modest activity and cases of hyperprogression. Journal for ImmunoTherapy of Cancer 10, e004984 (2022). 24. L. Ratner, T. A. Waldmann, M. Janakiram, J. E. Brammer, Rapid Progression of Adult T-Cell Leukemia─Lymphoma after PD-1 Inhibitor Therapy. New England Journal of Medicine 378, 1947-1948 (2018). 25. K. X. Lin et al., PD-1 and PD-L1 inhibitors in cold colorectal cancer: challenges and strategies. Cancer Immunology, Immunotherapy 72, 3875-3893 (2023). 26. E. J. Wherry, M. Kurachi, Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15, 486-499 (2015). 27. T. Parigger et al., Evidence for Non-Cancer-Specific T Cell Exhaustion in the Tcl1 Mouse Model for Chronic Lymphocytic Leukemia. Int J Mol Sci 22, (2021). 28. K. E. Pauken et al., Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160-1165 (2016). 29. K. R. Renkema et al., IL-4 sensitivity shapes the peripheral CD8+ T cell pool and response to infection. Journal of Experimental Medicine 213, 1319-1329 (2016). 30. C. H. Miller et al., Eomes identifies thymic precursors of self-specific memory-phenotype CD8+ T cells. Nature Immunology 21, 567-577 (2020). 31. C. Savid-Frontera et al., Exploring the immunomodulatory role of virtual memory CD8(+) T cells: Role of IFN gamma in tumor growth control. Front Immunol 13, 971001 (2022). 32. X. Wang et al., MHC class I-independent activation of virtual memory CD8 T cells induced by chemotherapeutic agent-treated cancer cells. Cellular & Molecular Immunology 18, 723-734 (2021). 33. G. Trinchieri, The choices of a natural killer. Nat Immunol 4, 509-510 (2003). 34. K. Prajapati, C. Perez, L. B. P. Rojas, B. Burke, J. A. Guevara-Patino, Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy. Cellular & Molecular Immunology 15, 470-479 (2018). 35. E. C. Lerner et al., CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D─NKG2DL axis. Nature Cancer 4, 1258-1272 (2023). 36. A. M. J. Andreas Diefenbach, Scot D. Liu, Nilabh Shastri and David H. Raulet, Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature immunology 1, 119-126 (2000). 37. T. Horng, J. S. Bezbradica, R. Medzhitov, NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nature Immunology 8, 1345-1352 (2007). 38. E. Aktas, U. C. Kucuksezer, S. Bilgic, G. Erten, G. Deniz, Relationship between CD107a expression and cytotoxic activity. Cellular Immunology 254, 149-154 (2009). 39. P. Wong, J. A. Wagner, M. M. Berrien-Elliott, T. Schappe, T. A. Fehniger, Flow cytometry-based ex vivo murine NK cell cytotoxicity assay. STAR Protocols 2, 100262 (2021). 40. Y. Agata et al., Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International Immunology 8, 765-772 (1996). 41. Laurent Monney et al., Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 6 (2002). 42. M. Das, C. Zhu, V. K. Kuchroo, Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 276, 97-111 (2017). 43. V. Aggarwal, C. J. Workman, D. A. A. Vignali, LAG-3 as the third checkpoint inhibitor. Nat Immunol 24, 1415-1422 (2023). 44. L. P. Andrews et al., LAG-3 and PD-1 synergize on CD8(+) T cells to drive T cell exhaustion and hinder autocrine IFN-gamma-dependent anti-tumor immunity. Cell 187, 4355-4372 e4322 (2024). 45. J. F. Grosso et al., LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117, 3383-3392 (2007). 46. H. Harjunpää, C. Guillerey, TIGIT as an emerging immune checkpoint. Clinical and Experimental Immunology 200, 108-119 (2020). 47. T. Chu et al., Bystander-Activated Memory CD8 T Cells Control Early Pathogen Load in an Innate-like, NKG2D-Dependent Manner. Cell Reports 3, 701-708 (2013). 48. N. Singh et al., Cutting edge: activation of NK T cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 163, 2373-2377 (1999). 49. J. T. Hung, J. R. Huang, A. L. Yu, Tailored design of NKT-stimulatory glycolipids for polarization of immune responses. J Biomed Sci 24, 22 (2017). 50. P. Muranski et al., Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat Clin Pract Oncol 3, 668-681 (2006). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99952 | - |
| dc.description.abstract | 虛擬記憶型T細胞(Virtual memory CD8+ T cells, TVM)是一群與傳統記憶型T細胞(Conventional memory T cells, TMEM)不同的CD8+ T細胞亞型。TVM細胞雖然未曾經歷過抗原刺激,卻可以表現出記憶型標誌,TVM細胞的細胞表面抗原表現為CD44hi CD62Lhi CXCR3hi CD49dlo CD122hi。作為類先天性記憶型T細胞(Innate-like memory T cells),TVM細胞可以透過對細胞激素(而非專一性抗原)的快速反應,提供對細菌或病毒感染的廣泛保護,並比初始型T細胞(Naïve T cells, TN)更快產生細胞激素,如干擾素-γ(Interferon γ, IFN-γ)。目前大多數的研究聚焦於TVM細胞在感染性疾病中的角色,然而其在腫瘤環境中的角色尚未被充分了解。
近期研究顯示,旁觀者T細胞(bystander T cells)在腫瘤中相當豐富,並且主要受到CXCL9吸引浸潤到腫瘤環境中。由於TVM細胞高度表現其受體CXCR3,我推測TVM細胞也會因此浸潤到腫瘤環境中。我使用了兩種腫瘤模型─E.G7-ova淋巴瘤模型及MC38-ova大腸直腸癌模型,兩種腫瘤細胞均會表現卵清蛋白(ovalbumin)─來進一步分析TVM細胞在脾臟、腫瘤引流淋巴結(tumor-draining lymph node, tdLN)與腫瘤浸潤性淋巴球(tumor-infiltrating lymphocytes, TILs)中的比例。結果顯示,TVM細胞可浸潤到腫瘤中,並佔CD8+ T細胞相當大的比例。在帶有MC38腫瘤的OT-I小鼠中可以發現不具有腫瘤特異性的TVM細胞依然可以浸潤到腫瘤中。TVM細胞在腫瘤中所表現的功能與其在脾臟、腫瘤引流淋巴結中有所不同,且具功能之TVM細胞比例與細胞數是與腫瘤中的TMEM細胞相當的。此外,在體外毒殺實驗中,無論是否為抗原特異性目標細胞,TVM細胞皆可展現出較TN細胞強的毒殺能力。雖然TVM可能作為腫瘤環境中的旁觀者細胞,它們仍像傳統記憶型T細胞一樣無可避免地走向耗竭的命運。但若是作為絕對旁觀者細胞的情況下,仍較傳統記憶型T細胞不易走向耗竭。 本研究指出TVM細胞可能參與抗腫瘤免疫反應,未來仍需進一步驗證TVM細胞在體內抗腫瘤免疫反應的貢獻。 | zh_TW |
| dc.description.abstract | Virtual memory CD8+ T cells (TVM) are a subset of CD8+ T cells distinct from conventional memory T cells (TMEM). They exhibit memory markers without prior cognate antigen exposure and are defined as CD44hi CD62Lhi CXCR3hi CD49dlo CD122hi. As innate-like memory T cells, TVM provides broad protection against bacterial and viral infections through rapid responses to cytokines rather than to cognate antigens, producing effector cytokines faster than naïve T cells (TN). While most studies have focused on their roles in infectious diseases, the involvement of TVM in tumors remains poorly understood.
Recent studies have shown that bystander T cells are abundant in tumors, predominantly recruited by CXCL9. Given that TVM expresses high levels of CXCR3, the receptor for CXCL9, I hypothesize that TVM can infiltrate tumors. I investigated their presence in the spleen, tumor-draining lymph node (tdLN), and tumor-infiltrating lymphocytes (TILs) in two different tumor models: the E.G7-ova lymphoma model and the MC38-ova colorectal carcinoma, both of which express ovalbumin. Results revealed that TVM cells infiltrated tumors and constituted a substantial proportion of CD8+ T cells in both tumor models. Notably, TVM infiltration was observed even in the absence of tumor antigen-specificity, as evidenced by OT-I mice bearing MC38 tumors. Tumor-infiltrating TVM exhibited unique expression of markers distinct from those in the spleen and tdLN, and the percentages and cell numbers of functional tumor-infiltrating TVM were comparable to those of tumor-infiltrating TMEM cells. In addition, in flow cytometry-based in vitro killing assays, TVM cells showed stronger killing capacity than TN cells in both antigen-specific and bystander scenarios. TVM may be the bystander cells in the tumor microenvironments; however, they inevitably undergo exhaustion like TMEM. Interestingly, TVM showed a less exhausted phenotype in the purely bystander scenario. This study highlights the potential role of TVM cells in tumor immunity. Further investigation is warranted to validate the contribution of TVM in anti-tumor immunity in vivo. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:07:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:07:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v Table of contents vii List of Figures x Chapter I. Introduction 2 1. Virtual memory CD8+ T cells 2 1.1 Phenotype 2 1.2 Bystander activation 2 2. Bystander T cells in the tumor 3 2.1. Definition 3 2.2. Most tumor-infiltrating lymphocytes are bystander T cells 4 2.3. Limitations of PD-1 blockade: Bystander T cells as a potential barrier 5 Chapter II. Aims of the Study 8 Chapter III. Materials and Methods 12 Part I. Materials 12 1. Mice 12 2. Cell lines 12 3. Antibodies 13 4. Solutions 14 5. Chemicals and Reagents 17 6. Disposable 19 7. Equipment 19 Part II. Methods 20 1. Tumor inoculation 20 2. Splenocytes isolation 20 3. Lymph node isolation 21 4. Tumor-infiltrating lymphocytes (TIL) isolation 21 5. Phorbol 12-myristate 13-acetate (PMA) and ionomycin in vitro stimulation 22 6. Fluorescent-conjugated antibodies staining for flow cytometry 23 7. B cell panning 23 8. TN / TVM sorting 24 9. TN / TVM cells in vitro activation 24 10. Flow cytometry-based in vitro killing assay 25 11. Statistics 26 Chapter IV. Results 28 1. TVM cells infiltrate the tumors 28 2. TVM without tumor antigen-specificity can still infiltrate the tumors, likely mediated by CXCR3 29 3. TVM cells in the tumor microenvironment exhibit multiple anti-tumor effector functions 30 4. The percentages and cell numbers of functional TVM cells are comparable to those of TMEM cells in the tumors 31 5. TVM cells conduct better tumor killing than TN cells in both antigen-specific and bystander contexts in vitro 32 6. Tumor-infiltrating TVM cells exhibit different exhaustion levels under different conditions 33 Chapter V. Discussion 37 Figures 42 Reference 65 | - |
| dc.language.iso | en | - |
| dc.subject | 抗腫瘤免疫 | zh_TW |
| dc.subject | 虛擬記憶型CD8+ T細胞 | zh_TW |
| dc.subject | 腫瘤毒殺 | zh_TW |
| dc.subject | CXCR3 | zh_TW |
| dc.subject | 旁觀者T細胞 | zh_TW |
| dc.subject | bystander T cells | en |
| dc.subject | CXCR3 | en |
| dc.subject | tumor killing | en |
| dc.subject | anti-tumor immunity | en |
| dc.subject | virtual memory CD8+ T cells | en |
| dc.title | 探討虛擬記憶型CD8+ T細胞的抗腫瘤功能性 | zh_TW |
| dc.title | To investigate the anti-tumor activity of virtual memory CD8+ T cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 柯俊榮;魏子堂 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Jung Ko;Tzu-Tang Wei | en |
| dc.subject.keyword | 虛擬記憶型CD8+ T細胞,抗腫瘤免疫,旁觀者T細胞,CXCR3,腫瘤毒殺, | zh_TW |
| dc.subject.keyword | virtual memory CD8+ T cells,anti-tumor immunity,bystander T cells,CXCR3,tumor killing, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202504190 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| dc.date.embargo-lift | 2030-08-06 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
