Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林志萱zh_TW
dc.contributor.advisorJr-Shiuan Linen
dc.contributor.author陳詠心zh_TW
dc.contributor.authorYung-Hsin Chenen
dc.date.accessioned2025-09-22T16:07:06Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation1. Salvo Romero, E., et al., The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig, 2015. 107(11): p. 686-96.
2. Assimakopoulos, S.F., et al., The Role of the Gut Barrier Function in Health and Disease. Gastroenterology Res, 2018. 11(4): p. 261-263.
3. Valdes, A.M., et al., Role of the gut microbiota in nutrition and health. Bmj, 2018. 361: p. k2179.
4. Adak, A. and M.R. Khan, An insight into gut microbiota and its functionalities. Cell Mol Life Sci, 2019. 76(3): p. 473-493.
5. Ruff, W.E., T.M. Greiling, and M.A. Kriegel, Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol, 2020. 18(9): p. 521-538.
6. Rivera, C.A. and A.M. Lennon-Duménil, Gut immune cells and intestinal niche imprinting. Semin Cell Dev Biol, 2023. 150-151: p. 50-57.
7. Vancamelbeke, M. and S. Vermeire, The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol, 2017. 11(9): p. 821-834.
8. Suzuki, T., Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci, 2013. 70(4): p. 631-59.
9. Di Tommaso, N., A. Gasbarrini, and F.R. Ponziani, Intestinal Barrier in Human Health and Disease. Int J Environ Res Public Health, 2021. 18(23).
10. Lee, B., K.M. Moon, and C.Y. Kim, Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J Immunol Res, 2018. 2018: p. 2645465.
11. Slifer, Z.M. and A.T. Blikslager, The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium. Int J Mol Sci, 2020. 21(3).
12. Zhou, Q., et al., MicroRNA 29 targets nuclear factor-kappaB-repressing factor and Claudin 1 to increase intestinal permeability. Gastroenterology, 2015. 148(1): p. 158-169 e8.
13. Prasad, S., et al., Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest, 2005. 85(9): p. 1139-62.
14. Tsai, P.Y., et al., IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host Microbe, 2017. 21(6): p. 671-681 e4.
15. Rosenthal, R., et al., Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2. Acta Physiol (Oxf), 2020. 228(1): p. e13334.
16. Rao, R., Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci, 2009. 1165: p. 62-8.
17. Furuse, M., et al., Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol, 1994. 127(6 Pt 1): p. 1617-26.
18. Bazzoni, G. and E. Dejana, Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev, 2004. 84(3): p. 869-901.
19. Yu, A.S., et al., Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol, 2005. 288(6): p. C1231-41.
20. Schulzke, J.D., et al., Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta, 2005. 1669(1): p. 34-42.
21. Kuo, W.T., et al., Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression. Gastroenterology, 2019. 157(5): p. 1323-1337.
22. Hongmei, Z., Extrinsic and Intrinsic Apoptosis Signal Pathway Review. 2012, sine loco: IntechOpen.
23. Buschmann, M.M., et al., Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell, 2013. 24(19): p. 3056-68.
24. Herve, J.C., et al., Influence of the scaffolding protein Zonula Occludens (ZOs) on membrane channels. Biochim Biophys Acta, 2014. 1838(2): p. 595-604.
25. Brunner, J., S. Ragupathy, and G. Borchard, Target specific tight junction modulators. Adv Drug Deliv Rev, 2021. 171: p. 266-288.
26. Chelakkot, C., J. Ghim, and S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med, 2018. 50(8): p. 1-9.
27. Yu, S., J. He, and K. Xie, Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. Int J Biol Sci, 2023. 19(12): p. 3804-3815.
28. Balda, M.S. and K. Matter, The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J, 2000. 19(9): p. 2024-33.
29. Umeda, K., et al., Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem, 2004. 279(43): p. 44785-94.
30. Kuo, W.T., et al., The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology, 2021. 161(6): p. 1924-1939.
31. Zuo, L., W.T. Kuo, and J.R. Turner, Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol, 2020. 10(2): p. 327-340.
32. Pai, S.G., et al., Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol, 2017. 10(1): p. 101.
33. Jin, Y. and A.T. Blikslager, The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases. Int J Mol Sci, 2020. 21(10).
34. Clayburgh, D.R., et al., A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem, 2004. 279(53): p. 55506-13.
35. Chen, C., et al., Myosin light chain kinase mediates intestinal barrier disruption following burn injury. PLoS One, 2012. 7(4): p. e34946.
36. Blair, S.A., et al., Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest, 2006. 86(2): p. 191-201.
37. Capaldo, C.T. and A. Nusrat, Cytokine regulation of tight junctions. Biochim Biophys Acta, 2009. 1788(4): p. 864-71.
38. Bruewer, M., et al., Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J, 2005. 19(8): p. 923-33.
39. Scharl, M., et al., AMP-activated protein kinase mediates the interferon-gamma-induced decrease in intestinal epithelial barrier function. J Biol Chem, 2009. 284(41): p. 27952-27963.
40. Al-Sadi, R., et al., TNF-alpha Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-alpha Axis Activation of the Canonical NF-kappaB Pathway. Am J Pathol, 2016. 186(5): p. 1151-65.
41. He, W.Q., et al., IgCAM domain 3 is necessary for basal and TNF-induced MLCK1 trafficking in intestinal epithelial cells. Faseb Journal, 2013. 27.
42. Droessler, L., et al., Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1. Int J Mol Sci, 2021. 22(16).
43. Souza, R.F., et al., Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J Gastroenterol, 2023. 29(18): p. 2733-2746.
44. Billmeier, U., et al., Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol, 2016. 22(42): p. 9300-9313.
45. Al-Sadi, R., et al., IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol, 2010. 177(5): p. 2310-22.
46. Palmieri, V., et al., Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity. Mucosal Immunol, 2021. 14(4): p. 923-936.
47. Zhang, Y., et al., Notch/IL33/ST2 signaling was involved in the maintenance of intestinal epithelial barrier through regulating tight junction after LPS stimulation. Cell Mol Biol (Noisy-le-grand), 2025. 71(2): p. 36-42.
48. Pollo, S.M.J., et al., Transcriptional patterns of sexual dimorphism and in host developmental programs in the model parasitic nematode Heligmosomoides bakeri. Parasit Vectors, 2023. 16(1): p. 171.
49. Vacca, F. and G. Le Gros, Tissue-specific immunity in helminth infections. Mucosal Immunol, 2022. 15(6): p. 1212-1223.
50. Schneider, C., C.E. O'Leary, and R.M. Locksley, Regulation of immune responses by tuft cells. Nat Rev Immunol, 2019. 19(9): p. 584-593.
51. Hawerkamp, H.C. and P.G. Fallon, Expelliarmus helminthus! Harry Helminth and the Goblet of Alarmins. Immunity, 2022. 55(4): p. 575-577.
52. Bąska, P. and L.J. Norbury, The Role of the Intestinal Epithelium in the "Weep and Sweep" Response during Gastro-Intestinal Helminth Infections. Animals (Basel), 2022. 12(2).
53. McKay, D.M., A. Shute, and F. Lopes, Helminths and intestinal barrier function. Tissue Barriers, 2017. 5(1): p. e1283385.
54. Strunz, E.C., et al., Water, sanitation, hygiene, and soil-transmitted helminth infection: a systematic review and meta-analysis. PLoS Med, 2014. 11(3): p. e1001620.
55. Pullan, R.L., et al., Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors, 2014. 7: p. 37.
56. Chen, H., et al., The impact of helminth-induced immunity on infection with bacteria or viruses. Vet Res, 2023. 54(1): p. 87.
57. Brosschot, T.P., et al., Impaired host resistance to Salmonella during helminth co-infection is restored by anthelmintic treatment prior to bacterial challenge. PLoS Negl Trop Dis, 2021. 15(1): p. e0009052.
58. Desai, P., et al., Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell, 2021. 184(5): p. 1214-1231.e16.
59. McFarlane, A.J., et al., Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. J Allergy Clin Immunol, 2017. 140(4): p. 1068-1078.e6.
60. Chowaniec, W., R.B. Wescott, and L.L. Congdon, Interaction of Nematospiroides dubius and influenza virus in mice. Exp Parasitol, 1972. 32(1): p. 33-44.
61. Wolday, D., et al., Effect of co-infection with intestinal parasites on COVID-19 severity: A prospective observational cohort study. EClinicalMedicine, 2021. 39: p. 101054.
62. Elias, D., et al., Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin Exp Immunol, 2005. 139(3): p. 398-404.
63. Desai, P., M.S. Diamond, and L.B. Thackray, Helminth-virus interactions: determinants of coinfection outcomes. Gut Microbes, 2021. 13(1): p. 1961202.
64. Grygiel-Gorniak, B., Current Challenges in Yersinia Diagnosis and Treatment. Microorganisms, 2025. 13(5).
65. Fahlgren, A., et al., Colonization of cecum is important for development of persistent infection by Yersinia pseudotuberculosis. Infect Immun, 2014. 82(8): p. 3471-82.
66. Meinzer, U., et al., Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe, 2012. 11(4): p. 337-51.
67. Jung, C., et al., Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling. J Clin Invest, 2012. 122(6): p. 2239-51.
68. Lin, J.S., et al., Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol, 2019. 12(1): p. 258-264.
69. Woting, A. and M. Blaut, Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice. Nutrients, 2018. 10(6).
70. Ahrends, T., et al., Enteric pathogens induce tissue tolerance and prevent neuronal loss from subsequent infections. Cell, 2021. 184(23): p. 5715-+.
71. Mecsas, J., I. Bilis, and S. Falkow, Identification of attenuated Yersinia pseudotuberculosis strains and characterization of an orogastric infection in BALB/c mice on day 5 postinfection by signature-tagged mutagenesis. Infect Immun, 2001. 69(5): p. 2779-87.
72. Palmer, L.E., et al., YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Mol Microbiol, 1998. 27(5): p. 953-65.
73. Marchesini Tovar, G., et al., IL-33 Increases the Magnitude of the Tissue-Resident Memory T Cell Response in Intestinal Tissues during Local Infection. J Immunol, 2024. 213(12): p. 1884-1892.
74. Burns, K., F. Martinon, and J. Tschopp, New insights into the mechanism of IL-1beta maturation. Curr Opin Immunol, 2003. 15(1): p. 26-30.
75. Di Leo, V., et al., Factors regulating the effect of IL-4 on intestinal epithelial barrier function. Int Arch Allergy Immunol, 2002. 129(3): p. 219-27.
76. Ceponis, P.J., et al., Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem, 2000. 275(37): p. 29132-7.
77. Heller, F., et al., Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol, 2008. 1 Suppl 1: p. S58-61.
78. du Plessis, N., et al., Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Mucosal Immunol, 2013. 6(5): p. 931-41.
79. Rafi, W., et al., Neither primary nor memory immunity to Mycobacterium tuberculosis infection is compromised in mice with chronic enteric helminth infection. Infect Immun, 2015. 83(3): p. 1217-23.
80. Long, S.R., et al., Intestinal helminth infection enhances bacteria-induced recruitment of neutrophils to the airspace. Sci Rep, 2019. 9(1): p. 15703.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99951-
dc.description.abstract先前研究顯示,蠕蟲感染可能對宿主對抗後續病原體感染的免疫反應產生正向或負向影響,而這些相互矛盾的結果可能受到多種因素影響。我們實驗室建立了一個蠕蟲-細菌雙重感染的小鼠模型,並發現先前感染蠕蟲(Heligmosomoides polygyrus bakeri,簡稱 H. polygyrus 或 Hpb)的小鼠經過驅蟲治療後,在面對非相關腸道細菌病原(Yersinia pseudotuberculosis,Ypt)感染時具有保護作用;然而,若是感染蠕蟲但沒有驅蟲藥物治療的小鼠則對 Ypt 感染更為易感,造成此相反結果的原因尚不清楚。
我假設蠕蟲感染造成的腸道上皮屏障破壞,可能是導致宿主對後續病原感染易感性增加的因素之一。在我的研究中發現,H. polygyrus 感染會導致近端小腸組織明顯受損,並增加宿主腸道屏障的通透性,而在驅蟲治療後,通透性可恢復正常。這些結果顯示,蠕蟲感染會導致腸道滲漏,而受蠕蟲破壞的腸道在驅蟲治療後可被修復。此外,與有驅蟲治療的小鼠相比,沒有驅蟲治療的小鼠其空腸的連接蛋白claudin-15和myosin light chain kinase (MLCK) 基因表現有顯著上調的現象,而 claudin-3、occludin 的基因表現則下降。這些結果顯示claudin-15和MLCK可能與 H. polygyrus 感染後腸道通透性增加有關。此外,持續受蠕蟲感染的小鼠其空腸TNF-α的基因表現量也有顯著上調,顯示其有可能與腸道通透性的調控有關。另外,在腸道特異性缺失zonula occluden-1 (ZO-1KO.IEC) 小鼠的實驗中,發現此缺失似乎不會導致ZO-1KO.IEC小鼠對Ypt感染更加易感,然而菌落在不同組織的分布有所不同。
最後,我探討Ypt感染是否會使宿主原本已被蠕蟲破壞的腸道破損更嚴重,導致未驅蟲治療的宿主面對Ypt後更易感。雖然結果顯示Ypt並沒有加劇腸道破損,然而在雙重感染但未驅蟲的小鼠腸道中發現claudin-2和MLCK的基因表現有上調現象。而腸道IFN-γ、TNF-α、IL-1β和IL-33基因表現量在不同處理小鼠之間皆無顯著差異,說明在雙重感染的小鼠其腸道緊密連接蛋白可能並非由這四種細胞激素調控。然而後續仍需要透過蛋白質定量才能確定這四種細胞激素在雙重感染的情況下是否有參與腸道緊密連接的變化。
zh_TW
dc.description.abstractPrevious studies have shown that helminth infection can either positively or negatively impact the host's immunity to subsequent pathogen infections, and various factors may contribute to these conflicting outcomes. Our laboratory has established a mouse model of helminth-bacterial dual infection and found that prior helminth (Heligmosomoides polygyrus bakeri, H. polygyrus, or Hpb) infection can protect the host from subsequent unrelated intestinal bacterial pathogen (Yersinia pseudotuberculosis, Ypt) following deworm treatment (i.e., cured). In contrast, helminth-infected mice without deworm treatment (i.e., uncured) were more susceptible to Ypt infection, but the reason for this opposite outcome is unclear.
Here, I hypothesized that intestinal epithelial barrier disruption caused by helminth infection is one of the factors that increase host susceptibility to subsequent pathogen infections. In my study, I found significant damage in the proximal small intestine of H. polygyrus-infected mice, and confirmed that helminth infection increased intestinal barrier permeability. Importantly, the permeability was restored in cured mice. These findings suggested that helminth infection can lead to gut leakage, and the intestines disrupted by helminth are likely repaired after deworm treatment. Furthermore, compared to cured mice, gene expressions of jejunal claudin-15 and myosin light chain kinase (MLCK) were significantly upregulated in uncured mice, while the claudin-3 and occludin levels were downregulated, suggesting that claudin-15 and MLCK may contribute to increased gut permeability after H. polygyrus infection. The gene expression of TNF-α was significantly upregulated in uncured mice, suggesting that it may be involved in gut permeability regulation. Furthermore, using intestinal epithelial-specific deletion of zonula occluden-1 (ZO-1KO.IEC) mice, I found the overall susceptibility of ZO-1KO.IEC mice to Ypt infection did not seem to increase, but the bacterial distribution was changed.
Lastly, I explored whether Ypt infection would exacerbate helminth-induced intestinal damage and thereby increase susceptibility in the helminth-bacterial-dual infection model. Although the results did not indicate aggravated gut damage following Ypt infection, the gene expressions of intestinal claudin-2 and MLCK were upregulated in Ypt-infected uncured mice. Moreover, the gene expression levels of IFN-γ, TNF-α, IL-1β, and IL-33 were comparable among different treatment groups, suggesting that the expression of tight junctional proteins in dual-infected mice may not be regulated by these four cytokines. Protein-level quantification will be required to clarify whether these cytokines are involved in tight junction modulation during dual-infection.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:07:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:07:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Table of contents vi
List of Figures x
List of Tables xii
Chapter I. Introduction 2
1. The importance of the intestinal barrier 2
1.1 Claudin 3
1.2 Occludin 4
1.3 Zonula occludens (ZOs) 5
1.4 Myosin light chain kinase (MLCK) 7
1.5 The regulation of tight junction proteins by cytokines 7
2. Helminth infection in the intestine 9
2.1 Helminth-induced physical damage to the intestinal barrier 9
2.2 Epithelial barrier response to helminth infection 10
3. Immunomodulatory effects of helminth infection 11
4. Yersinia pseudotuberculosis infection in the intestine 12
Chapter II. Aim of the study 15
Chapter III. Materials and Methods 19
Part I. Materials 19
1. Mice 19
2. Solutions 19
3. Primer sequences used in Quantitative PCR (qPCR) 20
4. Chemicals and Reagents 22
5. Disposable 23
6. Equipment 24
Part II. Methods 25
1. Heligmosomoides polygyrus bakeri (H. polygyrus) propagation 25
2. Yersinia pseudotuberculosis (Ypt) culture 27
3. Mouse infection and treatment 28
4. Gut histology 29
5. Fluorescein Isothiocyanate (FITC) dextran permeability assay 29
6. Colony-forming units (CFUs) measurement 30
7. Quantitative real-time PCR (qPCR) 30
8. Statistics 31
Chapter IV. Results 33
1. Chronic helminth infection enhances susceptibility to subsequent bacterial infection 33
2. Helminth infection causes damage to the proximal intestine 33
3. Helminth infection increases the permeability of the intestinal barrier 34
4. Intestinal permeability is restored in helminth-experienced cured mice 35
5. The mRNA expressions of Cldn15 and Mylk are significantly upregulated in helminth-infected uncured mice 36
6. Tnfa expression level is significantly increased in helminth-infected uncured mice 37
7. The bacterial burdens in ZO-1KO.IEC mice show an increase in peripheral tissues but a decrease in the intestine 38
8. Subsequent Ypt infection may not further worsen the intestinal disruption caused by helminth infections 39
9. The expression levels of Cldn2 and Mylk are upregulated after subsequent Ypt infection in helminth-infected uncured mice 42
10. IFN-γ, TNF-α, IL-1β, and IL-33 might not be the primary cytokines that regulate the gene expression of tight junction proteins 43
Chapter V. Discussion 45
Figures 52
Tables 71
References 73
Supporting Figures 85
-
dc.language.isoen-
dc.subject假結核耶爾辛氏菌感染zh_TW
dc.subject蠕蟲感染zh_TW
dc.subject腸道連接蛋白zh_TW
dc.subject腸道通透性zh_TW
dc.subject雙重感染zh_TW
dc.subjectdual infectionen
dc.subjectgut permeabilityen
dc.subjectintestinal junctional proteinsen
dc.subjectYersinia pseudotuberculosis infectionen
dc.subjecthelminth infectionen
dc.title探討在蠕蟲與腸道型病原菌共同感染中蠕蟲引起的腸道破損對宿主的影響zh_TW
dc.titleTo explore the impact of helminth-induced gut alteration in subsequent intestinal infectionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王維樂;郭瑋庭zh_TW
dc.contributor.oralexamcommitteeWei-Le Wang;Wei-Ting Kuoen
dc.subject.keyword蠕蟲感染,假結核耶爾辛氏菌感染,雙重感染,腸道通透性,腸道連接蛋白,zh_TW
dc.subject.keywordhelminth infection,Yersinia pseudotuberculosis infection,dual infection,gut permeability,intestinal junctional proteins,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202504133-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college醫學院-
dc.contributor.author-dept免疫學研究所-
dc.date.embargo-lift2030-08-06-
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved