請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99948完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 湯志永 | zh_TW |
| dc.contributor.advisor | Chih-Yung Tang | en |
| dc.contributor.author | 蔡佩臻 | zh_TW |
| dc.contributor.author | Pei-Chen Tsai | en |
| dc.date.accessioned | 2025-09-22T16:06:24Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Accardi, A. (2015). "Structure and gating of CLC channels and exchangers." The Journal of physiology 593(18): 4129–4138.
Accardi, A., L. Ferrera and M. Pusch (2001). "Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S." J Physiol 534(Pt 3): 745–752. Accardi, A. and A. Picollo (2010). "CLC channels and transporters: proteins with borderline personalities." Biochim Biophys Acta 1798(8): 1457–1464. Accardi, A. and M. Pusch (2000). "Fast and slow gating relaxations in the muscle chloride channel CLC-1." J Gen Physiol 116(3): 433–444. Adrian, R. H. and S. H. Bryant (1974). "On the repetitive discharge in myotonic muscle fibres." J Physiol 240(2): 505–515. Altamura, C., J.-F. Desaphy, D. Conte, A. De Luca and P. Imbrici (2020). "Skeletal muscle ClC-1 chloride channels in health and diseases." Pflugers Archiv : European journal of physiology 472(7): 961–975. Bennetts, B. and M. W. Parker (2013). "Molecular determinants of common gating of a ClC chloride channel." Nat Commun 4: 2507. Blanz, J., M. Schweizer, M. Auberson, H. Maier, A. Muenscher, C. A. Hübner and T. J. Jentsch (2007). "Leukoencephalopathy upon disruption of the chloride channel ClC-2." Journal of Neuroscience 27(24): 6581–6589. Brenes, O., M. Pusch and F. Morales (2023). "ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations." Biomedicines 11(10). Brugnoni, R., D. Kapetis, P. Imbrici, M. Pessia, E. Canioni, L. Colleoni, N. K. de Rosbo, L. Morandi, P. Cudia, N. Gashemi, P. Bernasconi, J.-F. Desaphy, D. Conte and R. Mantegazza (2013). "A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene." Journal of Human Genetics 58(9): 581–587. Cannon, S. C. (2015). "Channelopathies of skeletal muscle excitability." Compr Physiol 5(2): 761–790. Colding-Jørgensen, E. (2005). "Phenotypic variability in myotonia congenita." Muscle Nerve 32(1): 19–34. de Diego, C., J. Gámez, E. Plassart-Schiess, A. Lasa, E. Del Río, C. Cervera, M. Baiget, P. Gallano and B. Fontaine (1999). "Novel mutations in the muscle chloride channel CLCN1 gene causing myotonia congenita in Spanish families." Journal of Neurology 246(9): 825–829. De Jesús-Pérez, J. J., G. A. Méndez-Maldonado, A. E. López-Romero, D. Esparza-Jasso, I. L. González-Hernández, V. De la Rosa, R. Gastélum-Garibaldi, J. E. Sánchez-Rodríguez and J. Arreola (2021). "Electro-steric opening of the clc-2 chloride channel gate." Scientific Reports 11(1): 13127. Duffield, M., G. Rychkov, A. Bretag and M. Roberts (2003). "Involvement of helices at the dimer interface in ClC-1 common gating." J Gen Physiol 121(2): 149–161. Dutzler, R., E. B. Campbell, M. Cadene, B. T. Chait and R. MacKinnon (2002). "X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity." Nature 415(6869): 287–294. Dutzler, R., E. B. Campbell and R. MacKinnon (2003). "Gating the selectivity filter in ClC chloride channels." Science 300(5616): 108–112. Estévez, R., T. Boettger, V. Stein, R. Birkenhäger, E. Otto, F. Hildebrandt and T. J. Jentsch (2001). "Barttin is a Cl- channel β-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion." Nature 414(6863): 558–561. Estévez, R., M. Pusch, C. Ferrer-Costa, M. Orozco and T. J. Jentsch (2004). "Functional and structural conservation of CBS domains from CLC chloride channels." J Physiol 557(Pt 2): 363–378. Fahlke, C. (2001). "Ion permeation and selectivity in ClC-type chloride channels." American Journal of Physiology-Renal Physiology 280(5): F748–F757. Fahlke, C., C. Dürr and A. L. George, Jr. (1997). "Mechanism of ion permeation in skeletal muscle chloride channels." J Gen Physiol 110(5): 551–564. Fahlke, C., A. Rosenbohm, N. Mitrovic, A. L. George, Jr. and R. Rüdel (1996). "Mechanism of voltage-dependent gating in skeletal muscle chloride channels." Biophysical Journal 71(2): 695–706. Feng, L., E. B. Campbell, Y. Hsiung and R. MacKinnon (2010). "Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle." Science 330(6004): 635–641. Fernandes-Rosa, F. L., G. Daniil, I. J. Orozco, C. Göppner, R. El Zein, V. Jain, S. Boulkroun, X. Jeunemaitre, L. Amar and H. Lefebvre (2018). "A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism." Nature genetics 50(3): 355–361. Fialho, D., S. Schorge, U. Pucovska, N. P. Davies, R. Labrum, A. Haworth, E. Stanley, R. Sud, W. Wakeling, M. B. Davis, D. M. Kullmann and M. G. Hanna (2007). "Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions." Brain 130(12): 3265–3274. Fialho, D., S. Schorge, U. Pucovska, N. P. Davies, R. Labrum, A. Haworth, E. Stanley, R. Sud, W. Wakeling, M. B. Davis, D. M. Kullmann and M. G. Hanna (2007). "Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions." Brain 130(Pt 12): 3265–3274. Gaitán-Peñas, H., A. P. l. Perez-Gonzalez, M. González-Subías, A. A. Zdebik, X. Gasull, R. M. Buey, E. Errasti-Murugarren and R. Estévez (2025). "Identification of a crosstalk between ClC-1 C-terminal CBS domains and the transmembrane region." The Journal of Physiology 603(5): 1123–1140. Gronemeier, M., A. Condie, J. Prosser, K. Steinmeyer, T. J. Jentsch and H. Jockusch (1994). "Nonsense and missense mutations in the muscular chloride channel gene Clc-1 of myotonic mice." J Biol Chem 269(8): 5963–5967. Gutmann, L. and L. H. Phillips, 2nd (1991). "Myotonia congenita." Semin Neurol 11(3): 244–248. Jentsch, T. J. (2008). "CLC chloride channels and transporters: from genes to protein structure, pathology and physiology." Critical reviews in biochemistry and molecular biology 43(1): 3–36. Jentsch, T. J., T. Friedrich, A. Schriever and H. Yamada (1999). "The CLC chloride channel family." Pflügers Archiv 437(6): 783–795. Jentsch, T. J. and M. Pusch (2018). "CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease." Physiol Rev 98(3): 1493–1590. Jentsch, T. J., V. Stein, F. Weinreich and A. A. Zdebik (2002). "Molecular structure and physiological function of chloride channels." Physiol Rev 82(2): 503–568. Jentsch, T. J., K. Steinmeyer and G. Schwarz (1990). "Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes." Nature 348(6301): 510–514. Kubisch, C., T. Schmidt-Rose, B. Fontaine, A. H. Bretag and T. J. Jentsch (1998). "ClC-1 Chloride Channel Mutations in Myotonia Congenita: Variable Penetrance of Mutations Shifting the Voltage Dependence." Human Molecular Genetics 7(11): 1753–1760. Lee, T. T., X. D. Zhang, C. C. Chuang, J. J. Chen, Y. A. Chen, S. C. Chen, T. Y. Chen and C. Y. Tang (2013). "Myotonia congenita mutation enhances the degradation of human CLC-1 chloride channels." PLoS One 8(2): e55930. Lossin, C. and A. L. George, Jr. (2008). "Myotonia congenita." Adv Genet 63: 25–55. Macías, M. J., O. Teijido, G. Zifarelli, P. Martin, X. Ramirez-Espain, A. Zorzano, M. Palacín, M. Pusch and R. Estévez (2007). "Myotonia-related mutations in the distal C-terminus of ClC-1 and ClC-0 chloride channels affect the structure of a poly-proline helix." Biochemical Journal 403(1): 79–87. Mazón, M. J., F. Barros, P. De la Peña, J. F. Quesada, A. Escudero, A. M. Cobo, S. I. Pascual-Pascual, E. Gutiérrez-Rivas, E. Guillén, J. Arpa, P. Eraso, F. Portillo and J. Molano (2012). "Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in <em>CLCN1</em> gene." Neuromuscular Disorders 22(3): 231–243. Meyer-Kleine, C., K. Steinmeyer, K. Ricker, T. J. Jentsch and M. C. Koch (1995). "Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia." Am J Hum Genet 57(6): 1325–1334. Miller, C. (2006). "ClC chloride channels viewed through a transporter lens." Nature 440(7083): 484–489. Mindell, J. A., M. Maduke, C. Miller and N. Grigorieff (2001). "Projection structure of a ClC-type chloride channel at 6.5 Å resolution." Nature 409(6817): 219–223. Papponen, H., M. Nissinen, T. Kaisto, V. V. Myllylä, R. Myllylä and K. Metsikkö (2008). "F413C and A531V but not R894X myotonia congenita mutations cause defective endoplasmic reticulum export of the muscle-specific chloride channel CLC-1." Muscle Nerve 37(3): 317–325. Papponen, H., T. Toppinen, P. Baumann, V. Myllylä, J. Leisti, H. Kuivaniemi, G. Tromp and R. Myllylä (1999). "Founder mutations and the high prevalence of myotonia congenita in northern Finland." Neurology 53(2): 297–297. Park, E. and R. MacKinnon (2018). "Structure of the CLC-1 chloride channel from Homo sapiens." Elife 7. Pedersen, T. H., A. Riisager, F. V. de Paoli, T. Y. Chen and O. B. Nielsen (2016). "Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle." J Gen Physiol 147(4): 291–308. Ptacek Louis, J., J. Johnson Keith and C. Griggs Robert "Genetics and Physiology of the Myotonic Muscle Disorders." New England Journal of Medicine 328(7): 482–489. Pusch, M. (2002). "Myotonia caused by mutations in the muscle chloride channel gene CLCN1." Hum Mutat 19(4): 423–434. Pusch, M., U. Ludewig, A. Rehfeldt and T. J. Jentsch (1995). "Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion." Nature 373(6514): 527–531. Pusch, M., K. Steinmeyer, M. C. Koch and T. J. Jentsch (1995). "Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel." Neuron 15(6): 1455–1463. Ronstedt, K., D. Sternberg, S. Detro-Dassen, T. Gramkow, B. Begemann, T. Becher, P. Kilian, M. Grieschat, J. P. Machtens, G. Schmalzing, M. Fischer and C. Fahlke (2015). "Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations." Sci Rep 5: 15382. Ruff, R. L. and V. A. Lennon (2008). "How myasthenia gravis alters the safety factor for neuromuscular transmission." J Neuroimmunol 201-202: 13–20. Rychkov, G. Y., M. Pusch, M. L. Roberts, T. J. Jentsch and A. H. Bretag (1998). "Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions." J Gen Physiol 111(5): 653–665. Saviane, C., F. Conti and M. Pusch (1999). "The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia." The Journal of general physiology 113(3): 457–468. Scheel, O., A. A. Zdebik, S. Lourdel and T. J. Jentsch (2005). "Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins." Nature 436(7049): 424–427. Skálová, D., J. Zídková, S. Voháňka, R. Mazanec, Z. Mušová, P. Vondráček, L. Mrázová, J. Kraus, K. Réblová and L. Fajkusová (2013). "CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel." PLOS ONE 8(12): e82549. Stefani, E. and D. J. Chiarandini (1982). "Ionic channels in skeletal muscle." Annu Rev Physiol 44: 357–372. Steinmeyer, K., R. Klocke, C. Ortland, M. Gronemeier, H. Jockusch, S. Gründer and T. J. Jentsch (1991). "Inactivation of muscle chloride channel by transposon insertion in myotonic mice." Nature 354(6351): 304–308. Steinmeyer, K., C. Ortland and T. J. Jentsch (1991). "Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel." Nature 354(6351): 301–304. Stölting, G., M. Fischer and C. Fahlke (2014). "CLC channel function and dysfunction in health and disease." Front Physiol 5: 378. Struyk, A. F., K. A. Scoggan, D. E. Bulman and S. C. Cannon (2000). "The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation." J Neurosci 20(23): 8610–8617. Suetterlin, K., E. Matthews, R. Sud, S. McCall, D. Fialho, J. Burge, D. Jayaseelan, A. Haworth, M. G. Sweeney, D. M. Kullmann, S. Schorge, M. G. Hanna and R. Männikkö (2022). "Translating genetic and functional data into clinical practice: a series of 223 families with myotonia." Brain 145(2): 607–620. Tang, C. Y. and T. Y. Chen (2011). "Physiology and pathophysiology of CLC-1: mechanisms of a chloride channel disease, myotonia." J Biomed Biotechnol 2011: 685328. van Lunteren, E., M. Moyer, J. Cooperrider and J. Pollarine (2011). "Impaired Wheel Running Exercise in CLC-1 Chloride Channel-Deficient Myotonic Mice." Front Physiol 2: 47. Verkman, A. S. and L. J. Galietta (2021). "Chloride transport modulators as drug candidates." American Journal of Physiology-Cell Physiology 321(6): C932–C946. Vindas-Smith, R., M. Fiore, M. Vásquez, P. Cuenca, G. Del Valle, L. Lagostena, H. Gaitán-Peñas, R. Estevez, M. Pusch and F. Morales (2016). "Identification and Functional Characterization of CLCN1 Mutations Found in Nondystrophic Myotonia Patients." Hum Mutat 37(1): 74–83. Wang, K., S. S. Preisler, L. Zhang, Y. Cui, J. W. Missel, C. Grønberg, K. Gotfryd, E. Lindahl, M. Andersson, K. Calloe, P. F. Egea, D. A. Klaerke, M. Pusch, P. A. Pedersen, Z. H. Zhou and P. Gourdon (2019). "Structure of the human ClC-1 chloride channel." PLOS Biology 17(4): e3000218. Wollnik, B., C. Kubisch, K. Steinmeyer and M. Pusch (1997). "Identification of functionally important regions of the muscular chloride channel CIC-1 by analysis of recessive and dominant myotonic mutations." Hum Mol Genet 6(5): 805–811. Zhang, J., M. C. Sanguinetti, H. Kwiecinski and L. J. Ptác̆ek (2000). "Mechanism of Inverted Activation of ClC-1 Channels Caused by a Novel Myotonia Congenita Mutation *." Journal of Biological Chemistry 275(4): 2999–3005. Zifarelli, G. and M. Pusch (2007). "CLC chloride channels and transporters: a biophysical and physiological perspective." Rev Physiol Biochem Pharmacol 158: 23–76. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99948 | - |
| dc.description.abstract | ClC-1是電壓依賴性氯離子通道,為homodimer的雙槍管結構,每個單體成獨立孔道,氯離子在通道中有三結合位點,分別是外側、中央、內側,並且有兩種門控機制,protopore gate主要由孔道內的glutamate gate與氯離子競爭外側結合位,而common gate則涉及蛋白質構型變化。ClC-1會在骨骼肌中大量表現,若突變會導致先天性肌強直症,患者會因肌肉膜電位無法迅速恢復,出現肌肉僵直與動作困難等症狀。
本研究旨在探討ClC-1突變型的門控變化與疾病的關聯。我們選定多個ClC-1突變位點(如A218、A313、A525、A531、A529、A535、A566),進行點突變。並利用非洲爪蟾(Xenopus laevis)卵母細胞進行異源表現模式,進行電生理(TEVC)實驗分析。我們發現突變後的ClC-1通道,其一類會嚴重影響common gate的電壓依賴性,使其開啟速率變慢,關閉速率變快 (A218T、A218V、A313T、A313V、A535V),另一類會使通道表現量下降很多 (A529V、A531V、A566T、A566V),兩類皆會導致先天性肌強直症發生。此外,藉由共同表現野生型與突變型通道,可以模擬異型合子患者的生理狀態,進一步分析dominant negative效應與臨床遺傳模式之關聯性。 有研究指出common gating可能是透過 E232 與中央陰離子結合位點中的高度保留的tyrosine (Y578) 之間的交互作用來關閉通道孔。因此在本研究中,我們置換細胞外溶液,改成不同濃度比例之碘離子,結果發現細胞外碘離子會影響通道的門控機制,使ClC-1傾向開啟的狀態,相較於WT,A313T、A313V通道在deactivation的過程中對點離子的親和力下降,而A566T則類似於WT,由此推論,細胞外碘離子對於WT以及突變型通道A313T、A313V有著不同的作用,可能也顯示了A313T、A313V會影響E232 與Y578的互動,進而改變ClC-1的common gating。 | zh_TW |
| dc.description.abstract | ClC-1 is a voltage-dependent chloride channel with a homodimeric double-barrel structure, where each monomer forms an independent pore. Within the pore, chloride ions interact with three binding sites: external, central, and internal. The channel exhibits two types of gating mechanisms: the protopore gate, primarily governed by a glutamate residue that competes with chloride ions at the external binding site, and the common gate, which involves larger conformational changes in the protein. ClC-1 is highly expressed in skeletal muscle, and mutations in this channel can lead to myotonia congenita, characterized by muscle stiffness and impaired relaxation due to delayed membrane repolarization.
This study aims to investigate the gating alterations of ClC-1 mutations and their association with disease. Several ClC-1 mutants (e.g., A218, A313, A525, A529, A531, A535, A566) were generated via site-directed mutagenesis and expressed in Xenopus laevis oocytes for two-electrode voltage clamp (TEVC) recordings. We found that one group of mutations (A218T, A218V, A313T, A313V, A535V) severely disrupted the voltage dependence of the common gate, leading to slower activation and faster deactivation. Another group (A529V, A531V, A566T, A566V) significantly reduced the overall channel expression. Both types of mutations can cause congenital myotonia. Furthermore, co-expression of wild-type and mutant channels was used to mimic the heterozygous condition in patients, allowing us to assess dominant negative effects and their implications for the clinical inheritance pattern. Previous studies suggest that common gating may involve an interaction between E232 and a highly conserved tyrosine residue (Y578) at the central anion-binding site. In this study, we substituted extracellular chloride with varying concentrations of iodide and observed that iodide promoted channel opening. Compared to WT, the A313T and A313V mutants showed reduced affinity for iodide during deactivation, while A566T behaved similarly to WT. These findings suggest that extracellular iodide affects the gating of both WT and mutant channels differently and may indicate that A313T and A313V mutations disrupt the E232–Y578 interaction, thereby altering ClC-1 common gating. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:06:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:06:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………………………...…….i
中文摘要…………………………………………………………………………...……ii 英文摘要………………………………………………………………………………..iii 目次…………………………………………………………………………………..….v 表次……………………………………………………………………………………..ix 圖次…………………………………………………………………………………..…xi 第一章 導論………………………………………………………………………….…1 1.1 氯離子運輸………………………………………………………………….…..1 1.2 CLC蛋白質家族………………………………………………………………...2 1.3 CLC蛋白質家族結構…………………………………………………………...3 1.4 CLC蛋白質家族門控機制……………………………………………………...5 1.5 ClC-1氯離子通道……………………………………………………………….6 1.5.1 ClC-1通道的結構與門控機制………………………………………….6 1.5.2 ClC-1通道的離子選擇性……………………………………………….8 1.5.3 ClC-1通道的生理功能……………………………………………….....9 1.5.4 ClC-1缺失型病變: 先天性肌強直症 (Myotonia congenita) ………..10 1.5.5 顯性遺傳抑制 (dominant-negative effect) ……………………………13 1.6 研究目的……………………………………………………………………….14 第二章 材料與方法…………………………………………………………………...16 2.1 cDNA constructs lists………………………………………………………….16 2.2 DNA 轉殖 (transformation) 與放大………………………………………...16 2.3 DNA換vector (ligation) ……………………………………………………..18 2.4 Xenopus oocyte的分離 (isolation) 與顯微注射技術 (microinjection) …...20 2.4.1 cRNA 轉錄 (in vitro transcription) …………………………………...21 2.4.2 Xenopus laevis多次存活性取卵手術…………………………………21 2.4.3 Xenopus oocyte脫膜處理……………………………………………...21 2.4.4 顯微注射技術 (Microinjection) ………………………………………22 2.5 電生理紀錄 (Electrophysiological recording) ………………………………23 2.5.1 Two-electrode voltage clamp (TEVC) …………………………………23 2.5.2 置換細胞外液…………………………………………………………..23 2.5.3 Voltage protocols………………………………………………………..24 2.6 數據分析……………………………………………………………………...24 2.6.1 Current amplitude………………………………………………………24 2.6.2 Open probability (Po) ………………………………………………….25 2.6.3 Gating kinetics………………………………………………………….25 2.6.4 IC50……………………………………………………………………..26 第三章 結果…………………………………………………………………………...27 3.1 在Xenopus oocyte中大量表達ClC-1 WT的steady-state voltage dependent properties…………………………………………………………………….28 3.2 ClC-1突變型通道…………………………………………………………….29 3.2.1 ClC-1 helix E A218突變……………………………………………..29 3.2.2 ClC-1 helix I A313突變……………………………………………...30 3.2.3 ClC-1 helix Q A566突變…………………………………………….30 3.2.4 ClC-1 helix O突變……………………………………………………...31 3.3 ClC-1 的顯性突變抑制效應 (dominant negative effect) …………………...32 3.3.1 ClC-1 helix E A218T、A218V會發生顯性突變抑制效應…………..32 3.3.2 ClC-1 helix I A313T、A313V會發生顯性突變抑制效應…………...33 3.3.3 ClC-1 helix Q A566T、A566V沒有顯性突變抑制效應…………….33 3.3.4 ClC-1 helix O A531T、A531V沒有顯性突變抑制效應…………….34 3.3.5 ClC-1 helix O A535V會發生顯性突變抑制效應……………………...34 3.4 ClC-1 的gating kinetics………………………………………………………34 3.4.1 123 ClC-1 WT gating kinetic分析……………………………………...35 3.4.2 123 ClC-1 helix E A218位點gating kinetic分析…………………….35 3.4.3 123 ClC-1 helix I A313位點gating kinetic分析……………………..36 3.4.4 ClC-1 helix Q A566T gating kinetic分析…………………………….37 3.4.5 ClC-1 helix O A531V、A535V gating kinetic分析……………………..37 3.5 細胞外碘離子對ClC-1通道特性之影響…………………………………….38 3.5.1 細胞外溶液置換不同比例的碘影響ClC-1 WT之特性………………39 3.5.2 細胞外溶液置換不同比例的碘影響ClC-1 A313T之特性…………...40 3.5.3 細胞外溶液置換不同比例的碘影響ClC-1 A313V之特性…………..42 3.5.4 細胞外溶液置換不同比例的碘影響ClC-1 A566T之特性…………...43 第四章 討論…………………………………………………………………………...45 4.1 ClC-1 alanine突變………………………………………………………….45 4.1.1 ClC-1 helix E A218突變……………………………………………..45 4.1.2 ClC-1 helix I A313突變……………………………………………...45 4.1.3 ClC-1 helix Q A566突變…………………………………………….46 4.1.4 ClC-1 helix O突變…………………………………………………...46 4.2 ClC-1的顯性突變抑制效應與遺傳模式之關聯……………………………...47 4.2.1 ClC-1 helix E A218T、A218V………………………………………..47 4.2.2 ClC-1 helix I A313T、A313V………………………………………...48 4.2.3 ClC-1 helix Q A566T、A566V………………………………………..49 4.2.4 ClC-1 helix O 531T、A531V…………………………………………49 4.2.5 ClC-1 helix O A535V………………………………………………...49 4.3 ClC-1 gating kinetic…………………………………………………………...50 4.3.1 ClC-1 helix E A218T、A218V………………………………………..50 4.3.2 ClC-1 helix I A313T、A313V………………………………………...51 4.3.3 ClC-1 helix Q A566T………………………………………………...52 4.3.4 ClC-1 helix O A531T、A535V……………………………………….52 4.4 置換細胞外成不同比例之碘離子影響ClC-1的deactivation過程…………53 4.4.1 ClC-1 helix I A313T、A313V………………………………………...54 4.4.2 ClC-1 helix Q A566T…………………………………………………...57 4.5 未來待解決的問題及實驗方向……………………………………………….58 4.5.1 ClC-1 common Po-V以及protopore Po-V的確認………………….58 4.5.2 共同表達實驗的電流大小…………………………………………….58 4.5.3 共同表達實驗分析異型合子的gating kinetics………………………..59 4.5.4 置換細胞外碘離子做A218T、A218V、A535V突變型……………..59 4.5.5 用其他離子置換細胞外液…………………………………………….59 4.5.6 置換細胞內溶液……………………………………………………….59 結論…………………………………………………………………………………….60 圖表…………………………………………………………………………………….61 附圖…………………………………………………………………………………...120 參考文獻……………………………………………………………………………...121 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 先天性肌強直症 | zh_TW |
| dc.subject | 氯離子通道 | zh_TW |
| dc.subject | 顯性突變抑制效應 | zh_TW |
| dc.subject | ClC-1 | zh_TW |
| dc.subject | dominant-negative effect | en |
| dc.subject | myotonia congenita | en |
| dc.subject | ClC-1 chloride channel | en |
| dc.title | 致病性 ClC-1 氯離子通道突變導致電壓依賴門控特性改變 | zh_TW |
| dc.title | Alteration of voltage-dependent gating properties of ClC-1 chloride channel by disease-causing mutations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭鐘金;楊世斌 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Chin Kuo;Shi-Bing Yang | en |
| dc.subject.keyword | ClC-1,氯離子通道,先天性肌強直症,顯性突變抑制效應, | zh_TW |
| dc.subject.keyword | ClC-1 chloride channel,myotonia congenita,dominant-negative effect, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202503838 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生理學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
