Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99941
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周涵怡zh_TW
dc.contributor.advisorHan-Yi Elizabeth Chouen
dc.contributor.author鍾曜宇zh_TW
dc.contributor.authorYao-Yu Chungen
dc.date.accessioned2025-09-22T16:04:52Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citation[1] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram, and A. Jemal, “Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A cancer journal for clinicians, vol. 74, no. 3, p. 229, 2024.
[2] T. Ong, C. Murphy, A. Smith, A. Kanatas, and D. Mitchell, “Survival after surgery for oral cancer: a 30-year experience,” British journal of oral and maxillofacial surgery, vol. 55, no. 9, p. 911, 2017.
[3] W.-C. Tsai, P.-T. Kung, S.-T. Wang, K.-H. Huang, and S.-A. Liu, “Beneficial impact of multidisciplinary team management on the survival in different stages of oral cavity cancer patients: results of a nationwide cohort study in Taiwan,” Oral oncology, vol. 51, no. 2, p. 105, 2015.
[4] H.-C. Chou, H.-W. Lin, J.-H. Yang, P.-Y. Lin, S.-J. Cheng, Y.-H. Wu, and Y.-S. Kuo, “Clinical outcomes of oral cancer patients who survive for more than 5 years in Taiwan,” Journal of the formosan medical association, vol. 118, no. 12, p. 1616, 2019.
[5] J. R. Cracchiolo, B. Xu, J. C. Migliacci, N. Katabi, D. G. Pfister, N. Y. Lee, S. G. Patel, R. A. Ghossein, and R. J. Wong, “Patterns of recurrence in oral tongue cancer with perineural invasion,” Head & neck, vol. 40, no. 6, p. 1287, 2018.
[6] R. González-García, L. Naval-Gías, F. J. Rodríguez-Campo, J. Sastre-Pérez, M. F. Muñoz-Guerra, and J. L. G.-D. Usandizaga, “Contralateral lymph neck node metastasis of squamous cell carcinoma of the oral cavity: a retrospective analytic study in 315 patients,” Journal of oral and maxillofacial surgery, vol. 66, no. 7, p. 1390, 2008.
[7] K. Sandu, L. Nisa, P. Monnier, C. Simon, S. Andrejevic-Blant, and L. Bron, “Clinicobiological progression and prognosis of oral squamous cell carcinoma in relation to the tumor invasive front: impact on prognosis,” Acta oto-laryngologica, vol. 134, no. 4, p. 416, 2014.
[8] S.-C. Chen, C.-T. Liao, and J. T.-C. Chang, “Orofacial pain and predictors in oral squamous cell carcinoma patients receiving treatment,” Oral oncology, vol. 47, no. 2, p. 131, 2011.
[9] A. Kolokythas, “Long-term surgical complications in the oral cancer patient: a comprehensive review. Part I,” Journal of oral & maxillofacial research, vol. 1, no. 3, p. e1, 2010.
[10] T. Mücke, J. Koschinski, K.-D. Wolff, A. Kanatas, D. A. Mitchell, D. J. Loeffelbein, H. Deppe, and A. Rau, “Quality of life after different oncologic interventions in head and neck cancer patients,” Journal of cranio-maxillofacial surgery, vol. 43, no. 9, p. 1895, 2015.
[11] F.-H. Liu, J.-Y. Huang, C. Lin, and T.-J. Kuo, “Suicide risk after head and neck cancer diagnosis in Taiwan: a retrospective cohort study,” Journal of affective disorders, vol. 320, p. 610, 2023.
[12] K. Y. Choi, S. C. Park, J. H. Kim, and D. J. Lee, “The occult nodal metastasis rate of early tongue cancer (T1–T2): A protocol for a systematic review and meta-analysis,” Medicine (Baltimore), vol. 100, no. 3, p. e24327, 2021.
[13] E. A. Al-Moraissi, A. S. Alkhutari, R. de Bree, A. Kaur, N. Al-Tairi, and M. Pérez- Sayáns, “Management of clinically node-negative early-stage oral cancer: network meta-analysis of randomized clinical trials,” International journal of oral and maxillofacial surgery, vol. 53, no. 3, p. 179, 2024.
[14] S. M. Eickmeyer, C. K. Walczak, K. B. Myers, D. R. Lindstrom, P. Layde, and B. H. Campbell, “Quality of life, shoulder range of motion, and spinal accessory nerve status in 5-year survivors of head and neck cancer,” PM&R, vol. 6, no. 12, p. 1073, 2014.
[15] Y. T. Lee, Y. J. Tan, and C. E. Oon, “Molecular targeted therapy: treating cancer with specificity,” European journal of pharmacology, vol. 834, p. 188, 2018.
[16] J. Rubío-Casadevall, B. Cirauqui Cirauqui, J. Martínez Trufero, M. Plana Serrahima, A. García Castaño, A. Carral Maseda, L. Iglesias Docampo, P. Pérez Segura, I. Ceballos Lenza, V. Gutiérrez Calderón, J. Fuster Salvà, C. Pena Álvarez, I. Hernández, E. del Barco Morillo, M. Chaves Conde, J. Martínez Galán, M. Durán Sánchez, V. Quiroga, E. Ortega, and R. Mesià, “TTCC-2019-02: real-world evidence of first-line cetuximab plus paclitaxel in recurrent or metastatic squamous cell carcinoma of the head and neck,” Frontiers in oncology, vol. 13, p. 1226939, 2023.
[17] A. Cirillo, D. Marinelli, U. Romeo, D. Messineo, F. De Felice, M. De Vincentiis, V. Valentini, S. Mezi, F. Valentini, L. Vivona, A. Chiavassa, B. Cerbelli, D. Santini, P. Bossi, A. Polimeni, P. Marchetti, and A. Botticelli, “Pembrolizumab-based first-line treatment for PD-L1-positive, recurrent or metastatic head and neck squamous cell carcinoma: a retrospective analysis,” BMC cancer, vol. 24, no. 1, p. 430, 2024.
[18] H. Li, Y. Zhang, M. Xu, and D. Yang, “Current trends of targeted therapy for oral squamous cell carcinoma,” Journal of cancer research and clinical oncology, vol. 148, no. 9, p. 2169, 2022.
[19] L. C. Silva, G. B. Borgato, V. P. Wagner, M. D. Martins, M. A. Lopes, A. R. Santos- Silva, G. De Castro, L. P. Kowalski, C. H. Squarize, P. A. Vargas, and R. M. Castilho, “Repurposing NFκB and HDAC inhibitors to individually target cancer stem cells and non-cancer stem cells from mucoepidermoid carcinomas,” American journal of cancer research, vol. 13, no. 4, p. 1547, 2023.
[20] Y. Ohnishi, Y. Minamino, K. Kakudo, and M. Nozaki, “Resistance of oral squamous cell carcinoma cells to cetuximab is associated with EGFR insensitivity and enhanced stem cell-like potency,” Oncology reports, vol. 32, no. 2, p. 780, 2014.
[21] L. Liu, J. Chen, X. Cai, Z. Yao, and J. Huang, “Progress in targeted therapeutic drugs for oral squamous cell carcinoma,” Surgical oncology, vol. 31, p. 90, 2019.
[22] R. Kleszcz, “Advantages of the combinatorial molecular targeted therapy of head and neck cancer—a step before anakoinosis-based personalized treatment,” Cancers, vol. 15, no. 17, p. 4247, 2023.
[23] N. Jørgensen, A. Sayed, H. B. Jeppesen, G. Persson, I. Weisdorf, T. Funck, and T. V. F. Hviid, “Characterization of HLA-G regulation and HLA expression in breast cancer and malignant melanoma cell lines upon IFN-γ stimulation and inhibition of DNA methylation,” International journal of molecular sciences, vol. 21, no. 12, p. 4307, 2020.
[24] R. Váraljai, L. Zimmer, Y. Al-Matary, P. Kaptein, L. J. Albrecht, B. Shannan, J. C. Brase, D. Gusenleitner, T. Amaral, N. Wyss, J. Utikal, L. Flatz, F. Rambow, H. C. Reinhardt, J. Dick, D. R. Engel, S. Horn, S. Ugurel, W. Sondermann, E. Livingstone, A. Sucker, A. Paschen, F. Zhao, J. M. Placke, J. M. Klose, W. P. Fendler, D. S. Thommen, I. Helfrich, D. Schadendorf, and A. Roesch, “Interleukin 17 signaling supports clinical benefit of dual CTLA-4 and PD-1 checkpoint inhibition in melanoma,” Nature cancer, vol. 4, no. 9, p. 1292, 2023.
[25] N. E. Navin, “Tumor evolution in response to chemotherapy: phenotype versus genotype,” Cell reports, vol. 6, no. 3, p. 417, 2014.
[26] F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, X. Wang, J. Bodeau, B. B. Tuch, A. Siddiqui, K. Lao, and M. A. Surani, “mRNA-Seq whole-transcriptome analysis of a single cell,” Nature methods, vol. 6, no. 5, p. 377, 2009.
[27] D. Lähnemann, J. Köster, E. Szczurek, D. J. McCarthy, S. C. Hicks, M. D. Robinson, C. A. Vallejos, K. R. Campbell, N. Beerenwinkel, A. Mahfouz, L. Pinello, P. Skums, A. Stamatakis, C. Stephan-Otto Attolini, S. Aparicio, J. Baaijens, M. Balvert, B. de Barbanson, A. Cappuccio, G. Corleone, B. E. Dutilh, M. Florescu, V. Guryev, R. Holmer, K. Jahn, T. Jessurun Lobo, E. M. Keizer, I. Khatri, S. M. Kielbasa, J. O. Korbel, A. M. Kozlov, T.-H. Kuo, B. P. F. Lelieveldt, I. I. Mandoiu, J. C. Marioni, T. Marschall, F. Mölder, A. Niknejad, A. Rączkowska, M. Reinders, J. de Ridder, A.-E. Saliba, A. Somarakis, O. Stegle, F. J. Theis, H. Yang, A. Zelikovsky, A. C. McHardy, B. J. Raphael, S. P. Shah, and A. Schönhuth, “Eleven grand challenges in single-cell data science,” Genome biology, vol. 21, no. 1, p. 31, 2020.
[28] N. E. Navin, “Delineating cancer evolution with single-cell sequencing,” Science translational medicine, vol. 7, no. 296, p. 296fs29, 2015.
[29] C. E. Meacham and S. J. Morrison, “Tumour heterogeneity and cancer cell plasticity,” Nature, vol. 501, no. 7467, p. 328, 2013.
[30] Y.-C. Chen, S. Sahoo, R. Brien, S. Jung, B. Humphries, W. Lee, Y.-H. Cheng, Z. Zhang, K. E. Luker, M. S. Wicha, G. D. Luker, and E. Yoon, “Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis,” Analyst, vol. 144, no. 24, p. 7296, 2019.
[31] B. Hwang, J. H. Lee, and D. Bang, “Single-cell RNA sequencing technologies and bioinformatics pipelines,” Experimental & molecular medicine, vol. 50, no. 8, p. 1, 2018.
[32] E. Hedlund and Q. Deng, “Single-cell RNA sequencing: technical advancements and biological applications,” Molecular aspects of medicine, vol. 59, p. 36, 2018.
[33] D. Rosati and A. Giordano, “Single-cell RNA sequencing and bioinformatics as tools to decipher cancer heterogenicity and mechanisms of drug resistance,” Biochemical pharmacology, vol. 195, p. 114811, 2022.
[34] J. Zhao, C. Guo, F. Xiong, J. Yu, J. Ge, H. Wang, Q. Liao, Y. Zhou, Q. Gong, B. Xiang, M. Zhou, X. Li, G. Li, W. Xiong, J. Fang, and Z. Zeng, “Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma,” Cancer letters, vol. 477, p. 131, 2020.
[35] C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J. Livak, T. S. Mikkelsen, and J. L. Rinn, “The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells,” Nature biotechnology, vol. 32, no. 4, p. 381, 2014.
[36] S. V. Puram, I. Tirosh, A. S. Parikh, A. P. Patel, K. Yizhak, S. Gillespie, C. Rodman, C. L. Luo, E. A. Mroz, K. S. Emerick, D. G. Deschler, M. A. Varvares, R. Mylvaganam, O. Rozenblatt-Rosen, J. W. Rocco, W. C. Faquin, D. T. Lin, A. Regev, and B. E. Bernstein, “Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer,” Cell, vol. 171, no. 7, p. 1611, 2017.
[37] J.-H. Choi, B.-S. Lee, J. Y. Jang, Y. S. Lee, H. J. Kim, J. Roh, Y. S. Shin, H. G. Woo, and C.-H. Kim, “Single-cell transcriptome profiling of the stepwise progression of head and neck cancer,” Nature communications, vol. 14, no. 1, p. 1055, 2023.
[38] S. Kurkalang, S. Roy, A. Acharya, P. Mazumder, S. Mazumder, S. Patra, S. Ghosh, S. Sarkar, S. Kundu, N. K. Biswas, S. Ghose, P. P. Majumder, and A. Maitra, “Single-cell transcriptomic analysis of gingivo-buccal oral cancer reveals two dominant cellular programs,” Cancer science, vol. 114, no. 12, p. 4732, 2023.
[39] Y. Peng, L. Xiao, H. Rong, Z. Ou, T. Cai, N. Liu, B. Li, L. Zhang, F. Wu, T. Lan, X. Lin, Q. Li, S. Ren, S. Fan, and J. Li, “Single-cell profiling of tumor-infiltrating TCF1/TCF7+ T cells reveals a T lymphocyte subset associated with tertiary lymphoid structures/organs and a superior prognosis in oral cancer,” Oral oncology, vol. 119, p. 105348, 2021.
[40] X. Chen, Y. Cai, X. Hu, C. Ding, L. He, X. Zhang, F. Chen, and J. Yan, “Differential metabolic requirement governed by transcription factor c-Maf dictates innate γδT17 effector functionality in mice and humans,” Science advances, vol. 8, no. 21, p. eabm9120, 2022.
[41] Y. Maniwa, M. Yoshimura, S. Hashimoto, M. Takata, and W. Nishio, “Chemosensitivity of lung cancer: Differences between the primary lesion and lymph node metastasis,” Oncology letters, vol. 1, no. 2, p. 345, 2010.
[42] F. A. Muhale, B. A. Wetmore, R. S. Thomas, and H. L. McLeod, “Systems pharmacology assessment of the 5-fluorouracil pathway,” Pharmacogenomics, vol. 12, no. 3, p. 341, 2011.
[43] W.-Y. Shie, P.-H. Chu, M. Y.-P. Kuo, H.-W. Chen, M.-T. Lin, X.-J. Su, Y.-L. Hong, and H.-Y. E. Chou, “Acidosis promotes the metastatic colonization of lung cancer via remodeling of the extracellular matrix and vasculogenic mimicry,” International journal of oncology, vol. 63, no. 6, p. 136, 2023.
[44] W.-Y. Shie, S.-J. Cheng, K.-C. Chen, C.-C. Tang, H.-H. Peng, H.-H. Ko, H.-H. Hou, and H.-Y. E. Chou, “Fibroblast growth factor 5 expression predicts the progression of oral squamous cell carcinoma,” Journal of the formosan medical association, vol. 123, no. 3, p. 390, 2024.
[45] Y. Liu, Q. Zhou, G. Zou, and W. Zhang, “Inhibin subunit beta B (INHBB): an emerging role in tumor progression,” Journal of physiology and biochemistry, vol. 80, no. 4, p. 775, 2024.
[46] R. Wijayarathna and D. M. De Kretser, “Activins in reproductive biology and beyond,” Human reproduction update, vol. 22, no. 3, p. 342, 2016.
[47] W. Vale, J. Rivier, J. Vaughan, R. McClintock, A. Corrigan, W. Woo, D. Karr, and J. Spiess, “Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid,” Nature, vol. 321, no. 6072, p. 776, 1986.
[48] N. Ling, S.-Y. Ying, N. Ueno, S. Shimasaki, F. Esch, M. Hotta, and R. Guillemin, “Pituitary FSH is released by a heterodimer of the β-subunits from the two forms of inhibin,” Nature, vol. 321, no. 6072, p. 779, 1986.
[49] Z. Qian, G. Zhang, G. Song, J. Shi, L. Gong, Y. Mou, and Y. Han, “Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis,” Oncotarget, vol. 8, no. 15, p. 25500, 2017.
[50] J. Yuan, A. Xie, Q. Cao, X. Li, and J. Chen, “INHBB is a novel prognostic biomarker associated with cancer-promoting pathways in colorectal cancer,” BioMed research international, vol. 2020, no. 1, p. 6909672, 2020.
[51] Y. Chen, B. Qian, X. Sun, Z. Kang, Z. Huang, Z. Ding, L. Dong, J. Chen, J. Zhang, and Y. Zang, “Sox9/INHBB axis-mediated crosstalk between the hepatoma and hepatic stellate cells promotes the metastasis of hepatocellular carcinoma,” Cancer letters, vol. 499, p. 243, 2021.
[52] C. Lachat, D. Bruyère, A. Etcheverry, M. Aubry, J. Mosser, W. Warda, M. Herfs, E. Hendrick, C. Ferrand, C. Borg, R. Delage-Mourroux, J.-P. Feugeas, M. Guittaut, E. Hervouet, and P. Peixoto, “EZH2 and KDM6B expressions are associated with specific epigenetic signatures during EMT in non small cell lung carcinomas,” Cancers, vol. 12, no. 12, p. 3649, 2020.
[53] P. Karpinski, D. Ramsey, Z. Grzebieniak, M. M. Sasiadek, and N. Blin, “The CpG island methylator phenotype correlates with long-range epigenetic silencing in colorectal cancer,” Molecular cancer research, vol. 6, no. 4, p. 585, 2008.
[54] A. Kita, A. Kasamatsu, D. Nakashima, Y. Endo-Sakamoto, S. Ishida, T. Shimizu, Y. Kimura, I. Miyamoto, S. Yoshimura, M. Shiiba, H. Tanzawa, and K. Uzawa, “Activin B regulates adhesion, invasiveness, and migratory activities in oral cancer: a potential biomarker for metastasis,” Journal of cancer, vol. 8, no. 11, p. 2033, 2017.
[55] S. Li, Z. Mai, W. Gu, A. C. Ogbuehi, A. Acharya, G. Pelekos, W. Ning, X. Liu, Y. Deng, H. Li, B. Lethaus, V. Savkovic, R. Zimmerer, D. Ziebolz, G. Schmalz, H. Wang, H. Xiao, and J. Zhao, “Molecular subtypes of oral squamous cell carcinoma based on immunosuppression genes using a deep learning approach,” Frontiers in cell and developmental biology, vol. 9, p. 687245, 2021.
[56] S. Gherardi, D. Ripoche, I. Mikaelian, M. Chanal, R. Teinturier, D. Goehrig, M. Cordier-Bussat, C. X. Zhang, A. Hennino, and P. Bertolino, “Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification,” Biochimica et biophysica acta-gene regulatory mechanisms, vol. 1860, no. 4, p. 427, 2017.
[57] Z. Wang, X. Hou, M. Li, R. Ji, Z. Li, Y. Wang, Y. Guo, D. Liu, B. Huang, and H. Du, “Active fractions of golden-flowered tea (Camellia nitidissima Chi) inhibit epidermal growth factor receptor mutated non-small cell lung cancer via multiple pathways and targets in vitro and in vivo,” Frontiers in nutrition, vol. 9, p. 1014414, 2022.
[58] M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan, Z. Wang, S. Koplev, S. L. Jenkins, K. M. Jagodnik, A. Lachmann, M. G. McDermott, C. D. Monteiro, G. W. Gundersen, and A. Ma’ayan, “Enrichr: a comprehensive gene set enrichment analysis web server 2016 update,” Nucleic acids research, vol. 44, no. W1, p. W90, 2016.
[59] Y. Zhao, J. Zhao, M. Zhong, Q. Zhang, F. Yan, Y. Feng, and Y. Guo, “The expression and methylation of PITX genes is associated with the prognosis of head and neck squamous cell carcinoma,” Frontiers in genetics, vol. 13, p. 982241, 2022.
[60] H. Liu, J. Li, H. Zhao, X. Liu, and X. Ye, “DNAJC2 is reversely regulated by mir-627-3p, promoting the proliferation of colorectal cancer,” Molecular medicine reports, vol. 24, no. 2, p. 589, 2021.
[61] L. Cao, S. Zhang, D. Yao, Y. Ba, Q. Weng, J. Yang, H. Zhang, and Y. Ren, “Comparative analyses of the prognosis, tumor immune microenvironment, and drug treatment response between left-sided and right-sided colon cancer by integrating scRNA-seq and bulk RNA-seq data,” Aging (Albany NY), vol. 15, no. 14, p. 7098, 2023.
[62] H. Ma, Q. Qiu, D. Tan, Q. Chen, Y. Liu, B. Chen, and M. Wang, “The cancer-associated fibroblasts-related gene COMP is a novel predictor for prognosis and immunotherapy efficacy and is correlated with M2 macrophage infiltration in colon cancer,” Biomolecules, vol. 13, no. 1, p. 62, 2022.
[63] C. N. Valdez, G. A. Sánchez-Zuno, R. Bucala, and T. T. Tran, “Macrophage migration inhibitory factor (MIF) and D-Dopachrome tautomerase (DDT): Pathways to tumorigenesis and therapeutic opportunities,” International journal of molecular sciences, vol. 25, no. 9, p. 4849, 2024.
[64] J. S. Zepeda-Nuño, E. Gutiérrez-Cortés, J. Hernández-Bello, J. Ángeles-Sánchez, U. De la Cruz-Mosso, Á. Cruz, and J. F. Muñoz-Valle, “Macrophage migration inhibitory factor: A promising oncogenic serological biomarker for oral squamous cell carcinoma,” International journal of immunopathology and pharmacology, vol. 35, 2021.
[65] L. Wang, C. Wang, Z. Tao, W. Zhu, Y. Su, and W. S. Choi, “Tumor-associated macrophages facilitate oral squamous cell carcinomas migration and invasion by MIF/NLRP3/IL-1β circuit: A crosstalk interrupted by melatonin,” Biochimica et biophysica acta-molecular basis of disease, vol. 1869, no. 5, p. 166695, 2023.
[66] Y. Huang, H.-C. Wang, J. Zhao, M.-H. Wu, and T.-C. Shih, “Immunosuppressive roles of galectin-1 in the tumor microenvironment,” Biomolecules, vol. 11, no. 10, p. 1398, 2021.
[67] A. M. Rudjord-Levann, Z. Ye, L. Hafkenscheid, S. Horn, R. Wiegertjes, M. A. I. Nielsen, M. Song, C. B. K. Mathiesen, J. Stoop, S. Stowell, P. T. Straten, H. Leffler, S. Y. Vakhrushev, S. Dabelsteen, J. V. Olsen, and H. H. Wandall, “Galectin-1 induces a tumor-associated macrophage phenotype and upregulates indoleamine 2, 3-dioxygenase-1,” iScience, vol. 26, no. 7, p. 106984, 2023.
[68] S. Chawla, T. A. Warren, L. F. Wockner, D. L. Lambie, I. S. Brown, T. P. Martin, R. Khanna, G. R. Leggatt, and B. J. Panizza, “Galectin-1 is associated with poor prognosis in patients with cutaneous head and neck cancer with perineural spread,” Cancer immunology, immunotherapy, vol. 65, no. 2, p. 213, 2016.
[69] P. F. Greer, A. Rich, and D. E. Coates, “Effects of galectin-1 inhibitor OTX008 on oral squamous cell carcinoma cells in vitro and the role of AP-1 and the MAPK/ERK pathway,” Archives of oral biology, vol. 134, p. 105335, 2022.
[70] J. D. Coppock, A. M. Mills, and E. B. Stelow, “Galectin-3 expression in high-risk HPV-positive and negative head & neck squamous cell carcinomas and regional lymph node metastases,” Head and neck pathology, vol. 15, no. 1, p. 163, 2021.
[71] M. Farhad, A. S. Rolig, and W. L. Redmond, “The role of galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment,” Oncoimmunology, vol. 7, no. 6, p. e1434467, 2018.
[72] J. D. Klement, A. V. Paschall, P. S. Redd, M. L. Ibrahim, C. Lu, D. Yang, E. Celis, S. I. Abrams, K. Ozato, and K. Liu, “An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion,” The journal of clinical investigation, vol. 128, no. 12, p. 5549, 2018.
[73] J. Zhang, Q. Peng, J. Fan, F. Liu, H. Chen, X. Bi, S. Yuan, W. Jiang, T. Pan, K. Li, S. Tan, and P. Chen, “Single-cell and spatial transcriptomics reveal SPP1-CD44 signaling drives primary resistance to immune checkpoint inhibitors in RCC,” Journal of translational medicine, vol. 22, no. 1, p. 1157, 2024.
[74] C. Liu, K. Wu, C. Li, Z. Zhang, P. Zhai, H. Guo, and J. Zhang, “SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β,” Journal of experimental & clinical cancer research, vol. 43, no. 1, p. 332, 2024.
[75] W. Jiang, K. Hu, X. Liu, J. Gao, and L. Zhu, “Single-cell transcriptome analysis reveals the clinical implications of myeloid-derived suppressor cells in head and neck squamous cell carcinoma,” Pathology and oncology research, vol. 29, p. 1611210, 2023.
[76] E. Semerena, A. Nencioni, and K. Masternak, “Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker,” Frontiers in immunology, vol. 14, p. 1268756, 2023.
[77] S. Yang, J.-H. Ryu, H. Oh, J. Jeon, J.-S. Kwak, J.-H. Kim, H. A. Kim, C.-H. Chun, and J.-S. Chun, “NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis,” Annals of the rheumatic diseases, vol. 74, no. 3, p. 595, 2015.
[78] X. Lv, J. Zhang, J. Zhang, W. Guan, W. Ren, Y. Liu, and G. Xu, “A negative feedback loop between NAMPT and TGF-β signaling pathway in colorectal cancer cells,” OncoTargets and therapy, vol. 14, p. 187, 2021.
[79] Y. Yang, H. Lu, C. Chen, Y. Lyu, R. N. Cole, and G. L. Semenza, “HIF-1 interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia,” Nature communications, vol. 13, no. 1, p. 316, 2022.
[80] 謝宛宜, “微環境酸化對於腫瘤細胞幹性維持之影響(碩士論文).” 國立臺灣大學口腔生物科學研究所, 2013.
[81] R. Migale, M. Neumann, R. Mitter, M.-R. Rafiee, S. Wood, J. Olsen, and R. Lovell-Badge, “FOXL2 interaction with different binding partners regulates the dynamics of ovarian development,” Science advances, vol. 10, no. 12, p. eadl0788, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99941-
dc.description.abstract口腔癌是全球常見癌症之一,具有高度侵襲性及轉移性,使早期診斷及有效治療成為迫切的研究議題。儘管標靶治療因其高準確性與低副作用逐漸成為癌症治療的重要方向,目前口腔癌治療僅核准少數標靶藥物,且對於靶點蛋白表現不明顯的患者療效有限,因此必須發掘新穎的治療標靶。本研究結合公開單細胞RNA定序資料集分析以及本實驗室先前研究之長期酸化環境對口腔癌細胞影響之成果,透過蛋白質層級的表現量化驗證,探索口腔癌新穎治療標靶及其可能的分子調控機制。研究結果指出,INHBB於口腔癌組織中具有顯著較高的表現比例,且其表現強度與臨床分期高度相關,顯示INHBB具有作為早期診斷及預後評估的潛力,亦透過單細胞RNA定序分析,了解腫瘤微環境中細胞間通訊與高INHBB表達癌細胞之差異表達基因與上游調控因子,並提出假設性腫瘤酸化微環境與INHBB調控模型,為癌症靶點探索提供了新的研究方向。zh_TW
dc.description.abstractOral squamous cell carcinoma (OSCC) ranks among the most prevalent malignancies worldwide and is characterized by pronounced invasiveness and metastatic potential, rendering early diagnosis and effective therapy essential. Although targeted treatments provide high specificity with relatively low toxicity, only a few have been approved for OSCC, and their efficacy is restricted in tumors lacking strong expression of the relevant molecular targets, highlighting the need for novel therapeutic candidates. By integrating single-cell RNA sequencing with prior evidence on the effects of chronic extracellular acidification in OSCC cells and validating findings at the protein level, potential targets and their regulatory mechanisms were interrogated. INHBB was identified as markedly overexpressed in OSCC tissues, with expression intensity strongly correlated with clinical stage, suggesting value as both an early diagnostic biomarker and a prognostic indicator. Single-cell analyses further elucidated cell–cell communication networks, differentially expressed genes, and upstream regulators associated with INHBB-high malignant cells. On this basis, a working hypothesis model is proposed in which an acidified tumor microenvironment modulates INHBB expression, providing a conceptual framework for future target discovery in OSCC.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:04:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:04:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables xiii
Chapter 1 Introduction 1
1.1 Clinical Burden and Unmet Needs in OSCC 1
1.2 Current Limitations of Targeted Therapies in OSCC 2
1.3 Single-cell Transcriptomics in Cancer Research 3
1.4 Insights from scRNA-seq in OSCC 4
1.4.1 Intratumoral Heterogeneity and EMT-Associated States 4
1.4.2 Immune Landscape and Prognostic Cell Subsets 5
1.4.3 Metastatic Adaptation and Chemotherapy Resistance 5
1.5 Integrative Strategies for Target Discovery 6
1.6 Inhibin Beta B 7
1.7 Aim of the Study 8
1.8 Study Significance 8
Chapter 2 Materials and methods 10
2.1 Histological Staining 10
2.1.1 Tissue Microarrays 10
2.1.2 Immunohistochemistry (IHC) 10
2.2 Processing of IHC Image 11
2.2.1 Image Acquisition 11
2.2.2 Image Quantification 12
2.3 Acquisition and Processing of Transcriptome Data 12
2.4 Analysis of Transcriptome Data 13
2.4.1 GO and KEGG Pathway Enrichment 13
2.4.2 Cell–Cell Communication Analysis 14
2.4.3 Transcription Factor Enrichment Analysis 14
2.5 Statistical Analysis 14
Chapter 3 Results 15
3.1 Expression of INHBB Protein in OSCC 15
3.1.1 Diagnosis Distribution of TMA 15
3.1.2 IHC Characterization 16
3.1.3 Comparison of INHBB Expression Between Normal and OSCC Tissues 16
3.1.4 Comparison of INHBB Expression with Sex 18
3.1.5 Comparison of INHBB Expression with Age (<65 vs. ≥65) 20
3.1.6 Comparison of INHBB Expression with Clinical Stages 22
3.1.7 Comparison of INHBB Expression with T Status 24
3.1.8 Comparison of INHBB Expression with N Status 26
3.2 Association of INHBB Expression with Clinical Characteristics 28
3.3 Expression of Menin Protein in OSCC 31
3.4 scRNA-seq Dataset Characteristics 32
3.4.1 UMAP Projection and Cell Type Annotation 32
3.4.2 Cell Type Composition Across Samples 37
3.5 Differential Expression Genes in OSCC 39
3.5.1 Differential Expression Between Malignant and Non‑malignant Cells 39
3.5.2 Differential Expression Between Metastatic and Primary OSCC Cells 42
3.6 INHBB Gene Expression in scRNA-seq Database 47
3.6.1 Differential Gene Expression in INHBB-high Malignant Cells 48
3.6.2 Transcriptional Factors of Differentially Expressed Genes in INHBB-high Malignant Cells 50
3.6.3 Differential Gene Expression in INHBB-high Endothelial Cells 52
3.6.4 Differential Gene Expression in INHBB-high Fibroblasts 55
3.7 Cell Interaction in scRNA-seq Datasets 55
3.7.1 MIF Signaling 56
3.7.2 GALECTIN Signaling 62
3.7.3 SPP1 Signaling 62
3.7.4 VISFATIN (NAMPT) Signaling 64
Chapter 4 Discussion 66
Chapter 5 Conclusion 69
References 70
-
dc.language.isozh_TW-
dc.subject單細胞分析zh_TW
dc.subject口腔癌zh_TW
dc.subjectmeninzh_TW
dc.subjectINHBBzh_TW
dc.subject轉錄體zh_TW
dc.subjecttranscriptomeen
dc.subjectINHBBen
dc.subjectmeninen
dc.subjectsingle cell analysisen
dc.subjectoral canceren
dc.title口腔癌新穎靶點探索的轉錄體整合分析:聚焦於 INHBBzh_TW
dc.titleIntegrative Transcriptomic Analysis for Target Identification in OSCC: Spotlight on INHBBen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李財坤;郭彥彬zh_TW
dc.contributor.oralexamcommitteeTsai-Kun Li;Mark Yen-Ping Kuoen
dc.subject.keyword口腔癌,單細胞分析,轉錄體,INHBB,menin,zh_TW
dc.subject.keywordoral cancer,single cell analysis,transcriptome,INHBB,menin,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202501806-
dc.rights.note未授權-
dc.date.accepted2025-07-18-
dc.contributor.author-college醫學院-
dc.contributor.author-dept口腔生物科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved