Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99940
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭景暉zh_TW
dc.contributor.advisorJiiang-Huei Jengen
dc.contributor.author張瑀芯zh_TW
dc.contributor.authorYu-Hsin Changen
dc.date.accessioned2025-09-22T16:04:40Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-06-11-
dc.identifier.citation1. World Health Organization, 2025. Oral health. [online] World Health Organization. Available at: https://www.who.int/health-topics/oral-health#tab=tab_1 [Accessed 19 March 2025]
2. Glick M. The relevance of oral health. The Journal of the American Dental Association (2019) 150: 637-638.
3. Zuzelo PR. Oral health: A critical influence on the health of the whole. Holistic Nursing Practice (2016) 30: 386-388.
4. Leite RS, Marlow NM, Fernandes JK, Hermayer K. Oral health and type 2 diabetes. (2013) The American Journal of the Medical Sciences (2013) 345: 271-273.
5. Leech MT, Bartold PM. The association between rheumatoid arthritis and periodontitis. Best Practice & Research: Clinical Rheumatology (2015) 29: 189-201.
6. Kaye EK. Bone health and oral health. The Journal of the American Dental Association (2007) 138: 616-619.
7. Elemek E, Almas K. Multiple sclerosis and oral health: an update. New York State Dental Journal (2013) 79: 16-21.
8. Popovac A, Čelebić A, Peršić S, Stefanova E, Milić Lemić A, Stančić I. Oral health status and nutritional habits as predictors for developing Alzheimer's disease. Medical Principles and Practice (2021) 30: 448-454.
9. Shueb SS, Nixdorf DR, John MT, Fonseca Alonso B, J. What is the impact of acute and chronic Durham orofacial pain on quality of life? Journal of Dentistry (2015) 43: 1203-1210.
10. Scannapieco FA. Poor oral health in the etiology and prevention of aspiration pneumonia. Dental Clinics of North America (2021) 65: 307-321.
11. Taiwan Centers for Disease Control. Available at: https://www.cdc.gov.tw/Uploads/96f0dec7-499d-4c92-ad88-60a56d5b920e.pdf. [Accessed 25 Sep 2024]
12. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology (2005) 43: 5721-5732.
13. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Archives of Microbiology (2018) 200: 525-540.
14. Expanded Human Oral Microbiome Database V4.0. Available at: https://www.homd.org/.[Accessed 25 Sep 2024]
15. Avila M, Ojcius DM, Yilmaz O. The oral microbiota: living with a permanent guest. DNA and Cell Biology (2009) 28: 405-411.
16. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunology Letters (2014) 162: 22-38.
17. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, nonrandomized study of cancer-free and oral squamous cell carcinoma subjects. Journal of Translational Medicine (2005) 3: 27.
18. Lynge Pedersen AM, Belstrøm D. The role of natural salivary defenses in maintaining a healthy oral microbiota. Journal of Dentistry (2019) 80 (Suppl. 1): S3-S12.
19. Hall MW, Singh N, Ng KF, Lam DK, Goldberg MB, Tenenbaum HC, Neufeld JD, G Beiko R, Senadheera DB. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. NPJ Biofilms and Microbiomes (2017) 3: 2.
20. Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. Journal of Clinical Microbiology (2003) 41: 558-563.
21. Seerangaiyan K, Jüch F, Winkel EG. Tongue coating: its characteristics and role in intra-oral halitosis and general health-a review. Journal of Breath Research (2018) 12: 034001.
22. Struzycka I. The oral microbiome in dental caries. Polish Journal of Microbiology
(2014) 63: 127-135. 23. Marsh PD. Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health (2006) 6 (Suppl. 1): S14.
24. Keijser BJF, Zaura E, Huse SM, van der Vossen JMBM, Schuren FHJ, Montijn RC, ten Cate JM, Crielaard W. Pyrosequencing analysis of the oral microflora of healthy adults. Journal of Dental Research (2008) 87: 1016-1020.
25. Palmer RJ Jr. Supragingival and subgingival plaque: paradigm of biofilms. Compendium of Continuing Education in Dentistry (2010) 31: 104-106.
26. Espinoza JL, Harkins DM, Torralba M, Gomez A, Highlander SK, Jones MB, Leong P, Saffery R, Bockmann M, Kuelbs C, Inman JM, Hughes T, Craig JM, Nelson KE, Dupont CL. Supragingival plaque microbiome ecology and functional potential in the context of health and disease. mBio (2018) 9: e01631-18.
27. Baraniya D, Chen T, Nahar A, Alakwaa F, Hill J, Tellez M, Ismail A, Puri S, Al- Hebshi NN. Supragingival mycobiome and inter-kingdom interactions in dental caries. Journal of Oral Microbiology (2020) 12: 1729305.
28. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE. Bacterial diversity in human subgingival plaque. Journal of Bacteriology (2001) 183: 3770-3783.
29. Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS, Wade WG, Zaura E. The oral microbiome – an update for oral healthcare professionals. British Dental Journal (2016) 221: 657-666.
30. Yamashita Y, Takeshita T. The oral microbiome and human health. Journal of Oral Science (2017) 59: 201-206.
31. Tuganbaev T, Yoshida K, Honda K. The effects of oral microbiota on health. Science (2022) 376: 934-936.
32. Kumar PS. Oral microbiota and systemic disease. Anaerobe (2013) 24: 90-93.
33. Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease.Periodontology 2000 (2021) 87: 107-131.
34. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet (2007) 369: 51-59.
35. Takahashi N, Nyvad B. The role of bacteria in the caries process ecological perspectives, Journal of Dental Research (2011) 90: 294-303.
36. Smith DJ, Vanhoute J, Kent R, Taubman MA. Effect of antibody in gingival crevicular fluid on early colonization of exposed root surfaces by mutans streptococci. Oral Microbiology and Immunology (1994) 9: 65-69.
37. Nogueira RD, Talarico Sesso ML, Loureiro Borges MC, Mattos-Graner RO, Smith DJ, Leme Ferriani VP. Salivary IgA antibody responses to Streptococcus mitis and Streptococcus mutans in preterm and full-term newborn children. Archives of Oral Biolology (2012) 57: 647-653.
38. Köhler B, Pettersson BM, Bratthall D. Streptococcus mutans in plaque and saliva and the development of caries. Scandinavian Journal of Dental Research (1981) 89: 19-25.
39. Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, Janies DA, Asnani K, Griffen AL. Bacterial 16S sequence analysis of severe caries in young permanent teeth. Journal of Clinical Microbiology (2010) 48: 4121-4128.
40. Valdez RMA, Duque C, Caiaffa KS, Dos Santos VR, Loesch MLA, Colombo NH, Arthur RA, Negrini TC, Boriollo MFG, Delbem ACB. Genotypic diversity and phenotypic traits of Streptococcus mutans isolates and their relation to severity of early childhood caries. BMC Oral Health (2017) 17: 115.
41. Burne RA, Marquis RE. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiology Letters (2000) 193: 1-6.
42. Igic M, Kesic L, Lekovic V, Apostolovic M, Mihailovic D, Kostadinovic L, Milasin J. Chronic gingivitis: the prevalence of periodontopathogens and therapy efficiency. European Journal of Clinical Microbiology and Infectious Diseases (2012) 31: 1911-1915.
43. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet (2005) 366: 1809-1820.
44. Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, Prochazkova J, Duskova J.Porphyromonas gingivalis: major periodontopathic pathogen overview. Journal of Immunology Research (2014) 2014: 476068.
45. Kumar PS. Oral microbiota and systemic disease. Anaerobe (2013) 24: 90-93.
46. Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Frontiers in Cellular and Infection Microbiology (2020) 9: 476.
47. Markopoulos AK. Current aspects on oral squamous cell carcinoma. The Open Dentistry Journal (2012) 6: 126-130.
48. Nagy KN, Sonkodi I, Szoke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncology (1998) 34: 304-308.
49. Hooper SJ, Crean SJ, Fardy MJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ. A molecular analysis of the bacteria present within oral squamous cell carcinoma. Journal of Medical Microbiology (2007) 56: 1651-1659.
50. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, Li X, Saxena D. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiology (2012) 12.
51. Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis. Seminars in Cancer Biology (2022) 86: 633-642.
52. Akintoye SO, Greenberg MS, Recurrent aphthous stomatitis. Dental Clinics of North America (2014) 58: 281-297.
53. Marchini L, Campos MS, Silva AM, Paulino LC, Nobrega FG. Bacterial diversity in aphthous ulcers. Oral Microbiology and Immunology (2007) 22: 225-231.
54. Seoudi N, Bergmeier LA, Drobniewski F, Paster B, Fortune F. The oral mucosal and salivary microbial community of behcet’s syndrome and recurrent aphthous stomatitis. Journal of Oral Microbiology (2015) 7.
55. Kim YJ, Choi YS, Baek KJ, Yoon SH, Park HK, Choi Y. Mucosal and salivary microbiota associated with recurrent aphthous stomatitis. BMC Microbiology (2016) 16 (Suppl. 1): 57.
56. Noorul Ain Adil, Christabel Omo-Erigbe, Hariom Yadav, and Shalini Jain. The Oral– Gut Microbiome–Brain Axis in Cognition. Microorganisms (2025) 13: 814.
57. Dong Zhang, Boyang Qi, Dongxiao Li, Jiali Feng, Xiao Huang, Xiaohong Ma, Lina Huang, Xiaozhi Wang, and Xiangyong Liu. Phillyrin Relieves Lipopolysaccharide- Induced AKI by Protecting Against Glycocalyx Damage and Inhibiting Inflammatory Responses. Inflammation, (2020) 43: 540-551.
58. Rajesh Kumar, Shamsher S. Kanwar. Oral Microbiome Hygiene and Health. (2025) CRC Press. pp.1-392.
59. Petersilka GJ, Ehmke B, Flemmig TE. Antimicrobial effects of mechanical debridement. Periodontology (2000) 28: 56-71.
60. Yan Y, Zhan Y, Wang X, Hou J. Clinical evaluation of ultrasonic subgingival debridement versus ultrasonic subgingival scaling combined with manual root planing in the treatment of periodontitis: study protocol for a randomized controlled trial. Trials (2020) 21: 113.
61. Sakamoto M, Huang Y, Ohnishi M, Umeda M, Ishikawa I, Benno Y. Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. Journal of Medical Microbiology (2004) 53: 563-571.
62. Nathan C. Antibiotics at the crossroads. Nature (2004) 431: 899-902.
63. Oberoi SS, Dhingra C, Sharma G, Sardana D. Antibiotics in dental practice: how justified are we. International Dental Journal (2015) 65: 4-10.
64. Winkel EG, van Winkelhoff AJ, Timmerman MF, van der Velden U, van der Weijden GA. Amoxicillin plus metronidazole in the treatment of adult periodontitis patients. A double-blind placebo-controlled study, Journal of Clinical Periodontology (2001) 28: 296-305.
65. Williams NT. Probiotics. American Journal of Health-System Pharmacy (2010) 67: 449-458.
66. Lingam L, Ramesh T, Lavanya R. Bacteria in oral health - probiotics and prebiotics: A review. International Journal of Biological and Medical Research (2011) 2: 1226- 1233.
67. Caglar E, Sandalli N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S. Effect of yogurt with bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontologica Scandinavica (2005) 63: 317-320.
68. Caglar E, Kavaloglu Cildir S, Ergeneli S, Sandalli N, Twetman S. Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontologica Scandinavica (2006) 64: 314-318.
69. Cildir SK, Germec D, Sandalli N, Ozdemir FI, Arun T, Twetman S, Caglar E. Reduction of salivary mutans streptococci in orthodontic patients during daily consumption of yoghurt containing probiotic bacteria. European Journal of Orthodontics (2009) 31: 407-411.
70. Holz C, Alexander C, Balcke C, More M, Auinger A, Bauer M, Junker L, Grunwald J, Lang C, Pompejus M. Lactobacillus paracasei DSMZ16671 reduces mutans streptococci: a short-term pilot study. Probiotics and Antimicrobial Proteins (2013) 5: 259-263.
71. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swedish Dental
Journal (2006) 30: 55-60.
72. Morales A, Carvajal P, Silva N, Hernandez M, Godoy C, Rodriguez G, Cabello R, Garcia-Sesnich J, Hoare A, Diaz PI, Gamonal J. Clinical effects of Lactobacillus rhamnosus in non-surgical treatment of chronic periodontitis: a randomized placebo- controlled trial with 1-year follow-up. Journal of Periodontology (2016) 87: 944-952.
73. S, Kalakonda B, Pathakota KR, Jayakumar A, Koppolu P, Lakshmi BV, Pandey R, Mishra A. Efficacy of local use of probiotics as an adjunct to scaling and root planing in chronic periodontitis and halitosis: a randomized controlled trial. Journal of Research in Pharmacy Practice (2016) 5: 86-93.
74. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients (2013) 5: 1417-1435.
75. Ohshima T, Kojima Y, Seneviratne CJ, Maeda N. Therapeutic application of synbiotics, a fusion of probiotics and prebiotics, and biogenics as a new concept for oral Candida infections: a mini review. Frontiers in Microbiology (2016) 7.
76. Kojima Y, Ohshima T, Seneviratne CJ, Maeda N. Combining prebiotics and probiotics to develop novel synbiotics that suppress oral pathogens. Journal of Oral Bioscience (2016) 58: 27-32.
77. Yamanaka W, Takeshita T, Shibata Y, Matsuo K, Eshima N, Yokoyama T, Yamashita Y. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy. PLoS One (2012) 7.
78. Haffajee AD, Teles RP, Socransky SS. The effect of periodontal therapy on the composition of the subgingival microbiota. Periodontology (2000) 42: 219-258.
79. Poveda Roda R, Bagan JV, Sanchis Bielsa JM, Carbonell Pastor E. Antibiotic use in dental practice: A review. Medicina Oral, Patologia Oral, Cirugia Bucal (2007) 12: E186-E192.
80. Ready D, Lancaster H, Qureshi F, Bedi R, Mullany P, Wilson M. Effect of amoxicillin use on oral microbiota in young children. Antimicrobial Agents and Chemotherapy (2004) 48: 2883-2887.
81. Teughels W, Loozen G, Quirynen M. Do probiotics offer opportunities to manipulate the periodontal oral microbiota? Journal of Clinical Periodontology (2011) 38: 159- 177.
82. Cooke B, Ernst E. Aromatherapy: A systemic review. British Journal of General Practice (2000) 50: 493-496.
83. Bienenstock J, Kunze WA, Forsythe P. Disruptive physiology: olfaction and the microbiome-gut-brain axis. Biological Reviews of the Cambridge Philosophical Society (2018) 93: 390-403.
84. Lazarini F, Roze E, Lannuzel A, Lledo PM. The microbiome-nose-brain axis in health and disease. Trends in Neuroscience (2022) 45: 718-721.
85. Liao WC, Yao RA, Chen LY, Renn TY, Klimenkov IV, Sudakov NP, Mai FD, Chen YT, Chang HM. Olfactory stimulation successfully modulates the neurochemical, biochemical, and behavioral phenotypes of the visceral pain. Molecules (2022) 27: 7659.
86. Nazzaro F, Fratianni F, de Martino L, Coppola R, de Feo V. Effects of essential oils on pathogenic bacteria. Pharmaceuticals (2013) 6: 1451-1474.
87. Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine (2018) 13: 20.
88. Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (2016) 3: 25.
89. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food and Chemical Toxicology (2008) 46: 446-475.
90. Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Dí az J, Gil A. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systemic review. Nutrients (2019) 11: 2786.
91. Bhatti HN, Khan SS, Khan A, Rani M, Ahmad VU, Choudhary MI. Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine (2014) 21: 1597-1626.
92. Lu M, Dai T, Murray CK, Wu MX. Bactericidal property of oregano oil against multidrug-resistant clinical isolates. Frontiers in Microbiology (2018) 9: 2329.
93. Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB. Essential oils of oregano: biological activity beyond their antimicrobial properties. Molecules (2017) 22: 989.
94. Kosakowska O, Węglarz Z, Pióro-Jabrucka E, Przybył JL, Kraśniewska K, Gniewosz M, Bączek K. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. Hirtum) and common oregano (O. vulgare L. subsp. vulgare). Molecules (2021) 26: 988.
95. Thosar N, Basak S, Bahadure RN, Rajurkar M. Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study. European Journal of Dentistry (2013) 7 (Suppl. 1): S071-S077.
96. Han X, Parker TL. Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano (Origanum vulgare) essential oil in a human skin disease model. Biochim Open (2017) 4: 73-77.
97. Hosny K, Asfour H, Rizg W, Alhakamy NA, Sindi A, Alkhalidi H, Abualsunun W, Bakhaidar R, Almehmady AM, Akeel S, Ali S, Alghaith A, Alshehri S, Khallaf R. Formulation, optimization, and evaluation of oregano oil nanoemulsions for the treatment of infections due to oral microbiota. International Journal of Nanomedicine (2021) 16: 5465-5478.
98. Timothy K H Fung, Benson W M Lau, Shirley P C Ngai, and Hector W H Tsang. Therapeutic Effect and Mechanisms of Essential Oils in Mood Disorders: Interaction between the Nervous and Respiratory Systems. International Journal of Molecular Sciences (2021) 22: 4844.
99. Jieqiong Cui, Meng Li, Yuanyuan Wei, Huayan Li, Xiying He, Qi Yang, Zhengkun Li, Jinfeng Duan, Zhao Wu, Qian Chen, Bojun Chen, Gang Li, Xi Ming, Lei Xiong, and Dongdong Qin. Inhalation Aromatherapy via Brain-Targeted Nasal Delivery: Natural Volatiles or Essential Oils on Mood Disorders. Front Pharmacol (2022) 13:860043.
100. Sachiko Koyama, and Thomas Heinbockel. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application (2020) 21: 1558.
101. Janice K. Kiecolt-Glaser, , Jennifer E. Grahamc, William B. Malarkey, Kyle Porterf, Stanley Lemeshow, and Ronald Glaser. Olfactory influences on mood and autonomic, endocrine, and immune function (2008) 33: 328-339.
102. Yoshinori Masuo, Tadaaki Satou, Hiroaki Takemoto, and Kazuo Koike. Smell and Stress Response in the Brain: Review of the Connection between Chemistry and
Neuropharmacology. (2021) 26: 2571.
103. Yea-Tzy Chen, Li-You Chen, Ting-Yi Renn, Meng-Shan Cheng, Chi-Te Wang, Igor V Klimenkov, Nikolay P Sudakov, Wen-Chieh Liao, Yea-Jyh Chen, asd Hung-Ming Chang. Olfactory Stimulation Successfully Improves Swallowing Function of Aged Rats Through Activating Central Neuronal Networks and Downstream DHPR-RyR- mediated Neuromuscular Activities (2022) 77: 235-242.
104. Pandey N, Bodduluri S, Mathis S, Bodduluri H, Kumar A. Role of oral microbiota in preserving health and disease management. J. Clin. Immunol. Microbiol. (2024) 5: 1-17.
105. Di Spirito F, Giordano F, Di Palo MP, D'Ambrosio F, Scognamiglio B, Sangiovanni G, Caggiano M, Gasparro R. Microbiota of peri-implant healthy tissues, peri-implant mucositis, and peri-implantitis: A comprehensive review. Microorganisms. (2024) 12: 1137.
106. Nath S, Pulikkotil SJ, Weyrich L, Zilm P, Kapellas K, Jamieson L. Effect of periodontal interventions on characteristics of the periodontal microbial profile: A systematic review and meta-analysis. Microorganisms. (2022) 10: 1582.
107. Cao Y, Yang Y, Liang Z, Guo W, Lv X, Ni L, Chen Y. Synthesis of ganoderic acids loaded zein-chitosan nanoparticles and evaluation of their hepatoprotective effect on mice given excessive alcohol. Foods. (2024) 13: 2760.
108. Pan T, Zheng S, Zheng W, Shi C, Ning K, Zhang Q, Xie Y, Xiang H, Xie Q. Christensenella regulated by Huang-Qi-Ling-Hua-San is a key factor by which to improve type 2 diabetes. Front Microbiol. (2022) 13: 1022403.
109. Smith BJ, Miller RA, Schmidt TM. Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice. mSphere. (2021) 6: e0085121.
110. Żukowski P, Maciejczyk M, Waszkiel D. Sources of free radicles and oxidative stress in the oral cavity. Arch Oral Biol. (2018) 92: 8-17.an F, Ma GQ, Yang M, Yan L, Xiong W, Shu JC, Zhao ZD, Xu HL. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. J Zhejiang Univ Sci B. (2017) 18: 79-84.
111. Han F, Ma GQ, Yang M, Yan L, Xiong W, Shu JC, Zhao ZD, Xu HL. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. J Zhejiang Univ Sci B. (2017) 18: 79-84.
112. Kuo PJ, Hung TF, Lin CY, Hsiao HY, Fu MW, Hong PD, Chiu HC, Fu E. Carvacrol ameliorates ligation-induced periodontitis in rats. J Periodontol. (2017) 88: e120-e128.
113. Botelho MA, Martins JG, Ruela RS, I R, Santos JA, Soares JB, França MC, Montenegro D, Ruela WS, Barros LP, Queiroz DB, Araujo RS, Sampio FC. Protective effect of locally applied carvacrol gel on ligature-induced periodontitis in rats: a tapping mode AFM study. Phytother Res. (2009) 23: 1439-1448.
114. Lauritano D, Pazzi D, Iapichino A, Gaudio RM, Di Muzio M, Lo Russo L, Pezzetti F. Evaluation of the efficacy of a new oral gel containing carvacrol and thymol for home oral care in the management of chronic periodontitis using PCR analysis: a microbiological pilot study. J Biol Regul Homeost Agents. (2016) 30: 129-134.
115. Flamee S, Gizani S, Caroni C, Papagiannoulis L, Twetman S. Effect of a chlorhexidine/thymol and a fluoride varnish on caries development in erupting permanent molars: a comparative study. Eur Arch Paediatr Dent. (2015) 16: 449-454.
116. Zdarilová A, Svobodová A, Simánek V, Ulrichová J. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival
fibroblasts. Toxicol in Vitro. (2009) 23: 386-392.
117. Issa S, Karpukhina N, Sleibi A. Effect of rosmarinic acid on microtensile bond strength of 1-step self-etch adhesive on artificial caries-affected dentine with or without NaOCl treatment: An in-vitro study. Dent Mater J. (2024) 43: 805-812.
118. Arkali G, Aksakal M, Kaya ŞÖ. Protective effects of carvacrol against diabetes- induced reproductive damage in male rats: Modulation of Nrf2/HO-1 signaling pathway and inhibition of Nf-κB-mediated testicular apoptosis and inflammation. Andrologia. (2021) 53: e13899.
119. Shah S, Pushpa Tryphena K, Singh G, Kulkarni A, Pinjala P, Kumar Khatri D. Neuroprotective role of carvacrol via Nrf2/HO-1/NLRP3 axis in rotenone-induced PD mice model. Brain Res. (2024) 1836: 148954.
120. Fang F, Li H, Qin T, Li M, Ma S. Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating Nrf2/HO-1 pathway. Metab Brain Dis. (2017) 32: 385-393.
121. Peirovy Y, Asle-Rousta M. Thymol and p-cymene protect the liver by mitigating oxidative stress, suppressing TNF-α/NF-κB, and enhancing Nrf2/HO-1 expression in immobilized rats. Chem Biol Drug Des. (2024) 104: e14618.
122. Abduh MS, Alruhaimi RS, Alqhtani HA, Hussein OE, Abukhalil MH, Kamel EM, Mahmoud AM. Rosmarinic acid mitigates chlorpyrifos-induced oxidative stress, inflammation, and kidney injury in rats by modulating SIRT1 and Nrf2/HO-1 signaling. Life Sci. (2023) 313: 121281.
123. Shim KS, Kim HJ, Ji KY, Jung DH, Park SH, Song HK, Kim T, Kim KM. Rosmarinic acid ameliorates dermatophagoides farinae extract-induced atopic dermatitis-like skin inflammation by activating the Nrf2/HO-1 signaling pathway. Int J Mol Sci. (2024) 25: 12737.
124. Botelho MA, Rao VS, Montenegro D, Bandeira MA, Fonseca SG, Nogueira NA, Ribeiro RA, Brito GA. Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis. Phytother Res. (2008) 22: 442-449.
125. Zhou L, Teng N, Gao T, Wang H, Gao X. Protective effect of carvacrol hydrogel on the alveolar bone in rats with periodontitis. Hua Xi Kou Qiang Yi Xue Za Zhi. (2024) 42: 593-608.
126. Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and head and neck cancer: Updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants. (2022) 11: 145.
127. Neish AS. Mucosal immunity and the microbiome. Ann Am Thorac Soc. (2014) 11 (Suppl 1): S28-S32.
128. Şenel S. An overview of physical, microbiological and immune barriers of oral mucosa. Int J Mol Sci. (2021) 22: 7821.
129. Sharma K, Lanzilotto A, Yakubu J, Therkelsen S, Vöegel CD, Du Toit T, Jørgensen FS, Pandey AV. Effect of essential oil components on the activity of steroidogenic cytochrome P450. Biomolecules. (2024) 14: 203.
130. Czerniewicz P, Chrzanowski G, Sprawka I, Sytykiewicz H. Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pestic Biochem Physiol. (2018) 145: 84-92.
131. Baldissera MD, Souza CF, Baldisserotto B. Melaleuca alternifolia essential oil prevents bioenergetics dysfunction in spleen of silver catfish naturally infected with Ichthyophthirius multifiliis. Microb Pathog. (2018) 123: 47-51.
132. Lama A, Pirozzi C, Mollica MP, Trinchese G, Di Guida F, Cavaliere G, Calignano A, Mattace Raso G, Berni Canani R, Meli R. Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Mol Nutr Food Res. (2017) 61: 1600418.
133. You JH, Kang P, Min SS, Seol GH. Bergamot essential oil differentially modulates intracellular Ca2+ levels in vascular endothelial and smooth muscle cells: a new finding seen with fura-2. J Cardiovasc Pharmacol. (2013) 61: 324-328.
134. Lima FJ, Brito TS, Freire WB, Costa RC, Linhares MI, Sousa FC, Lahlou S, Leal- Cardoso JH, Santos AA, Magalhães PJ. The essential oil of Eucalyptus tereticornis, and its constituents alpha- and beta-pinene, potentiate acetylcholine-induced contractions in isolated rat trachea. Fitoterapia. (2010) 81: 649-655.
135. Huang Y, Lei Y, Shi J, Liu W, Zhang X, He P, Ma Y, Zhang X, Cao Y, Cheng Q, Zhang Z, Lei Z. Effects of dietary oregano essential oil supplementation on carcass traits, muscle fiber structure, oxidative stability, meat quality, and regulatory mechanisms in Holstein steers. J Sci Food Agric. (2025) 105: 3097-3110. 136. Nakajima D, Yamachi M, Misaka S, Shimomura K, Maejima Y. Sex differences in the effects of aromatherapy on anxiety and salivary oxytocin levels. Front Endocrinol. (2024) 15: 1380779.
137. Ceccarelli I, Masi F, Fiorenzani P, Aloisi AM. Sex differences in the citrus lemon essential oil-induced increase of hippocampal acetylcholine release in rats exposed to a persistent painful stimulation. Neurosci Lett. (2002) 330: 25-28.
138. Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil Á. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients. (2019) 11: 2786.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99940-
dc.description.abstract口腔菌叢 (oral microbiota) 是人體内第二大微生物菌叢。維持口腔菌叢的菌相平衡 (eubiosis) 不僅有助於維護口腔健康,更對促進人體各系統之健康發展有莫大的助益。先前研究已證實嗅覺刺激 (olfactory stimulation) 可有效調節腸道菌叢(gut microbiota),且具有顯著的抗氧化能力 (anti-oxidative activity),因此本研究即旨在探討嗅覺刺激是否亦能有效改善口腔菌叢,抑低牙齦氧化壓力,成功達到提升或促進口腔功能的目的。本研究使用成年雄性 Wistar 大鼠,利用擴香儀釋放奧勒岡 (Origanum vulgare) 精油進行嗅覺刺激。嗅覺刺激每次持續一小時,每日兩次,連續兩週。16S rRNA 菌相定序分析結果顯示,嗅覺刺激可有效改善口腔菌叢,顯著提升菌相的豐富度 (richness) 與歧異性(diversity)。西方墨點反應的結果亦顯示,嗅覺刺激可巨幅活化 Nrf2/HO-1 抗氧化訊息傳遞路徑,進而誘使下游抗氧化酵素 (anti-oxidative enzymes) 的活性同步增強。生物組織能量 (bioenergetics) 的研究結果與菌叢分析和生化實驗所獲致的成果相當吻合,無論是細胞色素氧化酵素(cytochrome oxidase)、Na+/K+ ATPase 活性表現與咀嚼肌細胞內的鈣離子強度 (代表咀嚼肌收縮功能),在嗅覺刺激後皆顯著增加。此外,掃描式電子顯微鏡的型態分析亦進一步證實,接受嗅覺刺激的實驗鼠,其齒槽骨骨小樑 (alveolar trabeculae)之平均厚度顯著大於對照組。綜合上述研究成果我們推斷,嗅覺刺激可透過改善口腔菌叢,增強抗氧化活性,提升咀嚼肌的生物組織能量,以及強化齒槽骨結構,成功達到促進口腔健康與對抗口腔疾病發生的潛在效益。zh_TW
dc.description.abstractThe oral microbiota constitutes the second most extensive microbial community in the body. Maintaining eubiosis of the oral microbiota will not only support oral health but also significantly contribute to the development of overall well-being. Concerning olfactory stimulation (OS) possesses significant microbial modulating and anti-oxidative effects, the present study aims to determine whether OS would successfully improve oral microbiota, depress oxidative stress, and subsequently give rise to the betterment of oral bioenergetics. Adult male Wistar rats underwent OS by inhaling the essential oil of Origanum vulgare dispersed by a nebulizer diffuser twice daily for two weeks, with each session lasting for one hour, were used in this study. Data from 16S rRNA sequencing revealed that OS effectively improves the oral microbial composition, as indicated by increased richness and diversity compared to that of untreated rats. Immunoblotted results also showed that OS significantly enhanced the Nrf2/HO-1 signaling pathway, and consequently up-regulates the activities of several downstream anti-oxidative enzymes. Bioenergetic data corresponded well with both microbial and biochemical findings, in which considerably higher cytochrome oxidase expression, Na+/K+ ATPase activity, and intracellular Ca2+ intensity was all detected in the mastication muscles of OS rats compared to those of untreated ones. Moreover, morphological data from scanning electron microscopy further showed that the averaged trabecular thickness of alveolar bone was much higher in OS rats than in untreated ones. As OS successfully improves oral microbiota, enhances anti-oxidative activity, increases bioenergetics of mastication muscle, and strengthens microarchitecture of alveolar bone, applying OS may serve as a promising strategy to preserve oral function or to counter the pathogenesis of oral diseases.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:04:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:04:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract Ⅳ
Graphical abstract Ⅴ
Table of Contents VI
Figure Contents IX
1. Introduction 1
1.1 Oral health is the foundation for well-being 1
1.2 Poor oral health is closely related to the occurrence of systemic diseases 1
1.3 Oral microbiota plays a crucial role in modulating oral health 2
1.3.1 Microbiota in the saliva 2
1.3.2 Microbial communities adhering to the surfaces of soft tissues 2
1.3.3 Microbial communities adhering to the surfaces of hard tissues 3
1.4 Alterations in microbiota distribution can cause dysbiosis, which is a key factor in the development of oral diseases 4
1.4.1 Dental caries 5
1.4.2 Periodontitis 6
1.4.3 Oral cancer 6
1.4.4 Recurrent aphthous stomatitis 7
1.5 Oxidative stress is the mechanism interlinking oral dysbiosis and oral diseases 8
1.6 Given that an imbalance in oral flora significantly impacts the development of oral and systemic diseases, maintaining the dynamic balance of the oral microecology is essential for preventing and treating these conditions 9
1.6.1 Mechanical debridement 9
1.6.2 Use of antibiotics 9
1.6.3 Take probiotics 10
1.6.4 Take prebiotics 11
1.7 Traditional methods for improving oral microbiota 11
1.7.1 Limitations on mechanical debridement 11
1.7.2 Limitations on the use of antibiotics 11
1.7.3 Limitations on taking probiotics and prebiotics 12
1.8 Introduction of olfactory stimulation 12
1.8.1 The benefits of olfactory stimulation 13
1.8.2 The oregano essential oil (OEO) 14
1.8.3 The transmission pathway of olfactory stimulation 14
Research Motivation 16
Research Aim 17
2. Materials and Methods 18
2.1 Experimental animals 18
2.2 Experimental chemical agents 18
2.3 Olfactory stimulation procedures 18
2.4 Oral microbiota collection 19
2.5 Analysis of the composition (profile) of the oral microbiota 19
2.6 Transcardial perfusion and sample preparation 19
2.7 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) study 20
2.8 Cytochrome oxidase histochemistry 20
2.9 Immunoblot detection of Nrf2/HO-1 signaling activity 20
2.10 Detection of downstream anti-oxidative enzyme activity 21
2.11 Measurement of gingival lipid peroxidation 22
2.12 Evaluation of Na+-K+ ATPase activity 22
2.13 Trabecular meshwork analysis using scanning electron microscopy 23
2.14 Computerized quantitative image analysis 23
2.15 Statistical analysis 23
3. Results 25
3.1 Olfactory stimulation significantly alters the diversity and composition of the oral microbiota 25
3.2 Olfactory stimulation successfully increased the abundance of beneficial genera 25
3.3 Olfactory stimulation considerably depresses oxidative stress by promoting Nrf2/HO-1 signaling mediates downstream anti-oxidative enzyme activities 26
3.4 Olfactory stimulation successfully improves the trabecular micro-architecture of the alveolar bone 27
3.5 Olfactory stimulation remarkably enhances the bioenergetics of the mastication
muscles and greatly improves oral health 27
4. Discussion 29
5. Conclusion 34
6. Future Perspectives 35
7. Figures 36
Reference 42
-
dc.language.isoen-
dc.subject生物組織能量zh_TW
dc.subject口腔菌叢zh_TW
dc.subject嗅覺刺激zh_TW
dc.subject抗氧化壓力zh_TW
dc.subject口腔功能zh_TW
dc.subjectOlfactory stimulationen
dc.subjectOral microbiotaen
dc.subjectAnti-oxidative stressen
dc.subjectBioenergeticsen
dc.subjectOral functionen
dc.title奧勒岡精油嗅覺刺激可調控口腔菌叢,活化 Nrf2/HO-1 抗氧化路徑與降低牙齦氧化壓力,改善口腔功能zh_TW
dc.titleOlfactory Stimulation by Oregano Essential Oil Improves Oral Function by Ameliorating Oral Microbiota and Depressing Gingival Oxidative Stress through Nrf2/HO-1 Signalingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor鄭世榮;張宏名zh_TW
dc.contributor.coadvisorShih-Jung Cheng;Hung-Ming Changen
dc.contributor.oralexamcommittee張博鈞;張美姬zh_TW
dc.contributor.oralexamcommitteePo-Chun Chang;Mei-Chi Changen
dc.subject.keyword嗅覺刺激,口腔菌叢,抗氧化壓力,生物組織能量,口腔功能,zh_TW
dc.subject.keywordOlfactory stimulation,Oral microbiota,Anti-oxidative stress,Bioenergetics,Oral function,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202501078-
dc.rights.note未授權-
dc.date.accepted2025-06-12-
dc.contributor.author-college醫學院-
dc.contributor.author-dept口腔生物科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved