請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99938完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林思洸 | zh_TW |
| dc.contributor.advisor | Sze-Kwan Lin | en |
| dc.contributor.author | 徐維暄 | zh_TW |
| dc.contributor.author | Wei-Hsuan Hsu | en |
| dc.date.accessioned | 2025-09-22T16:04:08Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-08 | - |
| dc.identifier.citation | 1. Smolen, J.S., D. Aletaha, and I.B. McInnes, Rheumatoid arthritis. Lancet, 2016. 388(10055): p. 2023-2038.
2. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020. 396(10258): p. 1204-1222. 3. Radu, A.F. and S.G. Bungau, Management of Rheumatoid Arthritis: An Overview. Cells, 2021. 10(11). 4. Komatsu, N. and H. Takayanagi, Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol, 2022. 18(7): p. 415-429. 5. Kim, J.M., et al., Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells, 2020. 9(9). 6. Salhotra, A., et al., Mechanisms of bone development and repair. Nat Rev Mol Cell Biol, 2020. 21(11): p. 696-711. 7. Roodman, G.D. and W.C. Dougall, RANK ligand as a therapeutic target for bone metastases and multiple myeloma. Cancer Treat Rev, 2008. 34(1): p. 92-101. 8. Adamopoulos, I.E. and E.D. Mellins, Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol, 2015. 11(3): p. 189-94. 9. Organization, W.H., Obesity: preventing and managing the global epidemic: report of a WHO consultation. 2000. 10. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet, 2024. 403(10431): p. 1027-1050. 11. Blüher, M., Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol, 2019. 15(5): p. 288-298. 12. Hariharan, R., et al., The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes Rev, 2022. 23(1): p. e13349. 13. Tournadre, A. and M. Beauger, Weight loss affects disease activity and treatment response in inflammatory rheumatic diseases. Joint Bone Spine, 2024. 91(3): p. 105647. 14. Yu, L., et al., Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice. Nat Commun, 2023. 14(1): p. 4101. 15. Li, T. and J.Y. Chiang, Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev, 2014. 66(4): p. 948-83. 16. Nelson, E.R., et al., 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 2013. 342(6162): p. 1094-8. 17. Komati, R., et al., Ligands of Therapeutic Utility for the Liver X Receptors. Molecules, 2017. 22(1). 18. Janowski, B.A., et al., An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature, 1996. 383(6602): p. 728-31. 19. Mai, C.T., et al., Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res, 2021. 170: p. 105747. 20. Jakobsson, T., et al., Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci, 2012. 33(7): p. 394-404. 21. Joseph, S.B., et al., Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med, 2003. 9(2): p. 213-9. 22. Töröcsik, D., et al., Activation of liver X receptor sensitizes human dendritic cells to inflammatory stimuli. J Immunol, 2010. 184(10): p. 5456-65. 23. Xie, Y., et al., Suppression of up-regulated LXRα by silybin ameliorates experimental rheumatoid arthritis and abnormal lipid metabolism. Phytomedicine, 2021. 80: p. 153339. 24. Amezaga Urruela, M. and M.E. Suarez-Almazor, Lipid paradox in rheumatoid arthritis: changes with rheumatoid arthritis therapies. Curr Rheumatol Rep, 2012. 14(5): p. 428-37. 25. Myasoedova, E., et al., Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis, 2011. 70(3): p. 482-7. 26. Burkhardt, H., et al., Epitope-specific recognition of type II collagen by rheumatoid arthritis antibodies is shared with recognition by antibodies that are arthritogenic in collagen-induced arthritis in the mouse. Arthritis Rheum, 2002. 46(9): p. 2339-48. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99938 | - |
| dc.description.abstract | 類風溼性關節炎(Rheumatoid arthritis, RA)是一種慢性自體免疫疾病,其主要病理特徵包括骨侵蝕。RA的病程受多種因素影響,其中肥胖已被證實與其發展及嚴重程度相關。根據先前的研究顯示,肥胖症中的代謝產物——27-羥基膽固醇(27-Hydroxycholesterol, 27HC)可能是影響兩者關聯的重要因子。因此,本研究旨在探討肥胖合併類風溼性關節炎時,27HC對骨侵蝕的影響,並提出其可能透過肝X受體(Liver X receptor, LXR)參與調控。
細胞實驗結果顯示,在27HC的刺激下,破骨細胞生成的相關分子訊號表現增加,確認27HC會誘導破骨細胞生成作用。此外,LXR拮抗劑的預處理可降低27HC促進破骨細胞生成的效果,表明LXR可能在其中發揮關鍵調控功能。而動物實驗則利用膠原誘導性關節炎大鼠模型,發現接受高油脂高膽固醇飲食的大鼠關節骨組織出現嚴重的發炎與骨吸收現象,且免疫組織化學染色分析顯示與破骨細胞生成相關的分子訊號表現增加,恰巧呼應細胞實驗結果,表示在肥胖合併RA的狀況下會進一步加劇骨侵蝕。 本研究證實27HC可促進破骨細胞生成作用,進一步加劇RA的骨侵蝕現象,並提出LXR可能在其中發揮關鍵調控功能。未來或許能透過更深入的機制探討,進一步釐清27HC與LXR於RA病理環境中的交互作用,以期發展針對肥胖合併RA的潛在治療方法。 | zh_TW |
| dc.description.abstract | Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized primarily by bone erosion. The progression of RA is influenced by various factors, among which obesity has been confirmed to be related to its development and severity. Previous studies have indicated that a metabolic product associated with obesity—27-hydroxycholesterol (27HC)—may be an important factor affecting the relationship between the two. Therefore, this study aims to investigate the impact of 27HC on bone erosion in individuals with both obesity and rheumatoid arthritis, proposing that it may be regulated through the liver X receptor (LXR).
Cellular experimental results show that under the stimulation of 27HC, the expression of signaling molecules related to osteoclastogenesis increases, confirming that 27HC induces osteoclast formation. Furthermore, pretreatment with an LXR antagonist can reduce the effect of 27HC in promoting osteoclastogenesis, indicating that LXR may play a key regulatory role in this process. In vivo studies utilizing a collagen-induced arthritis rat model further validated these findings. Rats subjected to a high-fat and high-cholesterol diet exhibited exacerbated joint inflammation and severe bone resorption. Immunohistochemical staining analysis showed an increase in the expression of signaling molecules related to osteoclastogenesis, which aligns with the cellular experimental results, indicating that the combination of obesity and RA further intensifies bone erosion. This study confirms that 27HC can promote osteoclastogenesis, further exacerbating bone erosion in RA, and suggests that LXR might be a crucial regulatory factor in this process. Future investigations into the mechanisms involved could shed light on the relationship between 27HC and LXR in the pathological context of RA, potentially leading to new treatment options for individuals with both obesity and RA. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:04:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:04:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目次 vi 圖次 viii 表次 ix 第一章 導論 1 1.1 研究背景 1 1.1.1 類風溼性關節炎(Rheumatoid arthritis, RA) 1 1.1.2 骨穩態(Bone homeostasis)與骨侵蝕 1 1.1.3 肥胖症(Obesity) 2 1.1.4 27-羥基膽固醇(27-Hydroxycholesterol, 27HC) 3 1.1.5 肝X受體(Liver X receptor, LXR) 3 1.2 研究動機 5 1.3 研究目的 5 第二章 材料與方法 6 2.1 實驗細胞株培養 6 2.1.1 細胞培養與繼代 6 2.2 27-羥基膽固醇(27HC)刺激 6 2.3 GSK2033(Liver X Receptor antagonist)預處理 7 2.4 蛋白質萃取與濃度定量(Bicinchoninic acid Assay) 7 2.5 西方墨點法(Western blot) 7 2.6 蘇木精–伊紅染色(Hematoxylin and eosin stain) 8 2.7 免疫組織化學染色(Immunohistochemistry) 8 2.8 統計方法 9 第三章 實驗結果 10 3.1 27HC促進破骨細胞生成作用(Osteoclastogenesis) 10 3.1.1 27HC促進MC3T3-E1細胞中RANKL表現 10 3.1.2 27HC促進RAW264.7細胞中TRAP表現 10 3.2 LXR影響27HC參與Osteoclastogenesis 10 3.2.1 抑制LXR降低MC3T3-E1細胞中RANKL表現 10 3.2.2 抑制LXR降低RAW264.7細胞中TRAP表現 11 3.3動物模型探討:Obesity狀態下RA骨侵蝕加劇 11 3.3.1 HFHCD誘導27HC生成,惡化RA發炎與骨吸收 11 3.3.2 HFHCD增強RANKL表現 12 3.3.3 HFHCD增強CD68表現 12 第四章 結論與未來展望 17 參考文獻 18 附錄 20 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 肥胖症 | zh_TW |
| dc.subject | 肝X受體 | zh_TW |
| dc.subject | 類風濕性關節炎 | zh_TW |
| dc.subject | 骨侵蝕 | zh_TW |
| dc.subject | 27-羥基膽固醇 | zh_TW |
| dc.subject | 破骨細胞生成作用 | zh_TW |
| dc.subject | Rheumatoid arthritis | en |
| dc.subject | Bone erosion | en |
| dc.subject | 27-hydroxycholesterol | en |
| dc.subject | Liver X receptor | en |
| dc.subject | Osteoclastogenesis | en |
| dc.subject | Obesity | en |
| dc.title | 探討肥胖合併類風溼性關節炎中27-羥基膽固醇對骨侵蝕的影響 | zh_TW |
| dc.title | Effects of 27-hydroxycholesterol on Bone Erosion in Rheumatoid Arthritis under Obesity Status | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 鄭世榮 | zh_TW |
| dc.contributor.coadvisor | Shih-Jung Cheng | en |
| dc.contributor.oralexamcommittee | 王翰偉;洪志遠 | zh_TW |
| dc.contributor.oralexamcommittee | Han-Wei Wang;Chi-Yuan Hong | en |
| dc.subject.keyword | 類風濕性關節炎,肥胖症,27-羥基膽固醇,骨侵蝕,破骨細胞生成作用,肝X受體, | zh_TW |
| dc.subject.keyword | Rheumatoid arthritis,Obesity,27-hydroxycholesterol,Bone erosion,Osteoclastogenesis,Liver X receptor, | en |
| dc.relation.page | 22 | - |
| dc.identifier.doi | 10.6342/NTU202500848 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-05-09 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 口腔生物科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
