Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 健康數據拓析統計研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99895
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王彥雯zh_TW
dc.contributor.advisorCharlotte Wangen
dc.contributor.author吳亞璇zh_TW
dc.contributor.authorYa-Xuan Wuen
dc.date.accessioned2025-09-19T16:13:34Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation1. Caspersen, C.J., K.E. Powell, and G.M. Christenson, Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 1985. 100(2): p. 126.
2. Anokye, N.K., Green, C., Pavey, T.G., and Taylor, R.S., Physical activity and health related quality of life. BMC Public Health, 2012. 12: p. 624.
3. Mahindru, A., P. Patil, and V. Agrawal, Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus, 2023. 15(1): p. e33475.
4. Troiano, R.P., J.J. McClain, R.J. Brychta, and K.Y. Chen, Evolution of accelerometer methods for physical activity research. Br J Sports Med, 2014. 48(13): p. 1019-23.
5. Liang, Y.T., C. Wang, and C.K. Hsiao, Data Analytics in Physical Activity Studies With Accelerometers: Scoping Review. J Med Internet Res, 2024. 26: p. e59497.
6. Liang, Y.T. and C. Wang, Motif clustering and digital biomarker extraction for free-living physical activity analysis. BioData Min, 2025. 18(1): p. 8.
7. Arvidsson, D., J. Fridolfsson, and M. Börjesson, Measurement of physical activity in clinical practice using accelerometers. Journal of Internal Medicine, 2019. 286(2): p. 137-153.
8. van Hees, V.T., L. Gorzelniak, E.C. Dean León, M. Eder, M. Pias, S. Taherian, U. Ekelund, F. Renström, P.W. Franks, A. Horsch, and S. Brage, Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLOS ONE, 2013. 8(4): p. e61691.
9. van Hees, V.T., S. Sabia, S.E. Jones, A.R. Wood, K.N. Anderson, M. Kivimäki, T.M. Frayling, A.I. Pack, M. Bucan, M.I. Trenell, D.R. Mazzotti, P.R. Gehrman, B.A. Singh-Manoux, and M.N. Weedon, Estimating sleep parameters using an accelerometer without sleep diary. Scientific Reports, 2018. 8(1): p. 12975.
10. Nawab, K.A., B.C. Storey, N. Staplin, R. Walmsley, R. Haynes, S. Sutherland, S. Crosbie, C.W. Pugh, C.H.S. Harper, M.J. Landray, A. Doherty, and W.G. Herrington, Accelerometer-measured physical activity and functional behaviours among people on dialysis. Clinical Kidney Journal, 2020. 14(3): p. 950-958.
11. Cleland, V., A. Timperio, J. Salmon, C. Hume, A. Telford, and D. Crawford, A Longitudinal Study of the Family Physical Activity Environment and Physical Activity among Youth. American Journal of Health Promotion, 2011. 25(3): p. 159-167.
12. Agiovlasitis, S., B.K. Ballenger, E.E. Schultz, Q. Du, and R.W. Motl, Calibration of hip accelerometers for measuring physical activity and sedentary behaviours in adults with Down syndrome. Journal of Intellectual Disability Research, 2023. 67(2): p. 172-181.
13. Acar-Denizli, N. and P. Delicado, Functional data analysis for wearable sensor data: a systematic review. AStA Advances in Statistical Analysis, 2025: p. 1-41.
14. Ruiz, L.G.B., M.C. Pegalajar, R. Arcucci, and M. Molina-Solana, A time-series clustering methodology for knowledge extraction in energy consumption data. Expert Systems with Applications, 2020. 160.
15. Li, J., H. Izakian, W. Pedrycz, and I. Jamal, Clustering-based anomaly detection in multivariate time series data. Applied Soft Computing, 2021. 100.
16. Bezdek, J.C., R. Ehrlich, and W. Full, FCM: The fuzzy c-means clustering algorithm. Computers & geosciences, 1984. 10(2-3): p. 191-203.
17. Döring, C., M.-J. Lesot, and R. Kruse, Data analysis with fuzzy clustering methods. Computational Statistics & Data Analysis, 2006. 51(1): p. 192-214.
18. Wang, J.-L., J.-M. Chiou, and H.-G. Müller, Functional data analysis. Annual Review of Statistics and its application, 2016. 3(1): p. 257-295.
19. Ullah, S. and C.F. Finch, Applications of functional data analysis: A systematic review. BMC medical research methodology, 2013. 13: p. 1-12.
20. Srivastava, A. and E.P. Klassen, Functional and shape data analysis. Vol. 1. 2016: Springer.
21. Jacques, J. and C. Preda, Functional data clustering: a survey. Advances in Data Analysis and Classification, 2014. 8: p. 231-255.
22. Zhang, M. and A. Parnell, Review of clustering methods for functional data. ACM Transactions on Knowledge Discovery from Data, 2023. 17(7): p. 1-34.
23. Cremona, M.A. and F. Chiaromonte, Probabilistic K-means with Local Alignment for Clustering and Motif Discovery in Functional Data. Journal of Computational and Graphical Statistics, 2023. 32(3): p. 1119-1130.
24. Ramsay, J., Functional Data Analysis, in Encyclopedia of Statistics in Behavioral Science. 2005.
25. Eilers, P.H. and B.D. Marx, Flexible smoothing with B-splines and penalties. Statistical Science, 1996. 11(2): p. 89-121.
26. Ramsay, J.O. and B.W. Silverman, Functional Data Analysis. 2 ed. Springer Series in Statistics. 2005.
27. Craven, P. and G. Wahba, Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 1978. 31(4): p. 377-403.
28. Marron, J.S., J.O. Ramsay, L.M. Sangalli, and A. Srivastava, Functional Data Analysis of Amplitude and Phase Variation. Statistical Science, 2015. 30(4).
29. Adams, J., B. Berman, J. Michalenko, and J.D. Tucker, Conformal Anomaly Detection for Functional Data with Elastic Distance Metrics. arXiv preprint arXiv:2504.01172, 2025.
30. Ali, A.M., G.C. Karmakar, and L.S. Dooley, Review on fuzzy clustering algorithms. Journal of Advanced Computations, 2008. 2(3): p. 169-181.
31. Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 1987. 20: p. 53-65.
32. Campello, R.J. and E.R. Hruschka, A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 2006. 157(21): p. 2858-2875.
33. Jakobsen, P., E. Garcia-Ceja, L.A. Stabell, K.J. Oedegaard, J.O. Berle, V. Thambawita, S.A. Hicks, P. Halvorsen, O.B. Fasmer, and M.A. Riegler. Psykose: A Motor Activity Database of Patients with Schizophrenia. in 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). 2020. IEEE.
34. National Health and Nutrition Examination Survey. Available from: https://wwwn.cdc.gov/nchs/nhanes.
35. Machado, I.P., A.L. Gomes, H. Gamboa, V. Paixão, and R.M. Costa, Human activity data discovery from triaxial accelerometer sensor: Non-supervised learning sensitivity to feature extraction parametrization. Information Processing & Management, 2015. 51(2): p. 204-214.
36. Jurcic, K. and R. Magjarevic, Time Domain Cluster Analysis of Human Activity Using Triaxial Accelerometer Data. CMBES Proceedings, 2024. 46.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99895-
dc.description.abstract在真實世界中,時序資料應用於許多領域,其特性通常包含複雜的時間動態變化與資料的高變異性,這使得資料分析與建模變得具有挑戰性。函數型資料分析 (Functional Data Analysis, FDA) 可將離散的時間點轉換為連續的曲線,提供一種結構化的表示方式。這些曲線常常在單一個體內或跨個體之間出現重複的波形片段,稱為「motif」。Motif的探索對於解析資料中的潛在結構、簡化資料複雜度,以及提升解釋性具有重要意義。在生物醫學應用中,辨識人體活動中的重複運動模式,有助於發現異常活動或運動障礙,進而促進早期診斷與介入治療。
本研究聚焦於自然生活環境下,配戴穿戴式裝置所蒐集的身體活動資料。針對未受實驗控制的紀錄情境與缺乏標註資料的挑戰,我們提出一種基於分群的motif探索方法。這個方法結合函數型資料分析、模糊C均值分群演算法 (Fuzzy C-Means, FCM) 與彈性距離 (Elastic distance) 以萃取候選的motif。首先,透過函數平滑技術降低資料中的雜訊與變異,接著以固定長度的滑動窗口將長時間序列分割成較短的子序列。為了考量子序列的時間位移問題,我們採用彈性距離來同時衡量振幅與時間位移的差異,提升形狀相似度的準確評估。最後,我們修改 FCM 分群方法對子序列進行分群,每個群中心代表在原始資料中重複出現的motif種類,並且透過FCM獲得的隸屬度結果過濾掉不明確屬於任一群的樣本,從而實現基於motif的波形辨識。
我們將提出的方法應用於兩個真實的身體活動資料集:PSYKOSE Study和NHANES。實驗結果顯示,此方法能有效探索橫跨多個樣本的motif。在PSYKOSE Study和NHANES的資料集中,我們分別辨識出5個和10個不同的motif,並分析了這些motif出現於一整天中的分布情形。
本研究提出了一個適用於未標記的身體活動資料的分析方法,所標註的motif 具有作為數位生物標記的潛力,亦可用於後續分析,如:提供對行為模式的洞察、與健康結果的預測或關聯分析等。此外,也同時可為延伸至其他時間序列領域的motif發掘框架。
zh_TW
dc.description.abstractMany real-world applications generate time series data that capture complex temporal dynamics. Functional data analysis can transform discrete time points into continuous curves, providing a structured representation. These curves often exhibit recurring pattern segments within individual or across curves, known as motifs. Motif discovery is crucial for uncovering underlying structures, simplifying data complexity, and enhancing interpretability. In biomedical applications, identifying repeated movement patterns in human activity can help detect abnormal behaviors or motor impairments, thereby facilitating early diagnosis and intervention. This work focuses on physical activity data collected from wearable devices in free-living environments. We propose a clustering-based motif discovery approach to address the challenge of uncontrolled recordings and the absence of annotated labels.
This approach integrates functional data analysis, fuzzy c-means (FCM) clustering, and elastic distance to extract candidate motifs. We first apply functional smoothing to reduce noise and variation. Subsequently, we segment the long time series into shorter subsequences using a fixed-length sliding window. To account for temporal shifts within subsequences, we use elastic distance, quantifying both amplitude and phase differences, ensuring a more accurate assessment of shape similarity. An extended FCM algorithm is employed to cluster these subsequences. Each cluster center represents a candidate motif that appears repeatedly in the original curves, enabling motif-based pattern recognition in functional data. Additionally, we utilize the membership degrees provided by FCM to filter out ambiguous subsequences that do not belong to any specific cluster.
Our proposed method was applied to two real-world physical activity datasets: the PSYKOSE Study and NHANES. Experimental results demonstrate that this method effectively explores motifs across multiple samples. We identified 5 and 10 distinct motifs in the PSYKOSE Study and NHANES datasets, respectively. Furthermore, we analyzed how these motifs were distributed throughout the day.
This study proposes an analytical method applicable to unlabeled physical activity data. The motifs identified through this method are potential digital biomarkers and can be utilized for further analysis, including offering insights into behavioral patterns, predictive health outcomes, or performing association analysis. In addition, the proposed motif discovery framework is highly extensible and can be adapted to other time-series domains.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:13:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:13:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 iii
摘要 v
Abstract vii
Table of Contents ix
List of Figures xiii
List of Tables xv
Chapter 1 Introduction 1
1.1 Physical Activity Data Analytics 1
1.2 Cluster Analysis 2
1.3 Functional Data Analysis 3
1.4 Functional Clustering Methods 5
1.5 Research Motivation and Aims 6
Chapter 2 Methodology Background 9
2.1 Functional Data Analysis 9
2.1.1 Data Representation 9
2.1.2 B-spline Smoothing 10
2.1.3 Data Registration 11
2.2 Elastic Functional Data Analysis 13
2.2.1 SRVF Representation and Time Warping 13
2.2.2 Similarity Measure between Curves 14
2.3 Fuzzy Clustering 15
2.3.1 Fuzzy C-Means Algorithm 15
2.3.2 Silhouette Index 17
Chapter 3 Proposed Motif Fuzzy Clustering Methods 19
3.1 Overview of the Proposed Pipeline 19
3.2 Physical Activity Data Preprocessing 21
3.2.1 Smoothing 21
3.2.2 Scaling and Normalization 21
3.2.3 Define Sliding Window 22
3.3 Proposed Fuzzy Clustering Algorithm 23
Chapter 4 Experimental Results 25
4.1 PSYKOSE Study 25
4.1.1 Data Description 25
4.1.2 Preprocessing 25
4.1.3 Analytical Results 26
4.2 NHANES 34
4.2.1 Data Description 34
4.2.2 Preprocessing 35
4.2.3 Analytical Results 35
Chapter 5 Discussion 47
5.1 Methodological Contributions 47
5.2 Findings from Experimental Results 48
5.3 Development Insights and Limitations 49
5.4 Future Work and Applications 51
Chapter 6 Conclusions 53
References 55
Appendix 59
-
dc.language.isoen-
dc.subject活動模式zh_TW
dc.subject彈性距離zh_TW
dc.subject模糊分群zh_TW
dc.subject函數型資料分析zh_TW
dc.subject身體活動zh_TW
dc.subject穿戴式裝置資料zh_TW
dc.subjectfuzzy clusteringen
dc.subjectactivity patternen
dc.subjectwearable device dataen
dc.subjectphysical activityen
dc.subjectfunctional data analysisen
dc.subjectelastic distanceen
dc.title利用彈性距離建構分群方法對未標記之身體活動資料進行波形探索zh_TW
dc.titleClustering-based Motif Discovery Method in Unlabeled Physical Activity Data with Elastic Distanceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭朱杏;李百靈;林煜軒zh_TW
dc.contributor.oralexamcommitteeChuhsing Kate Hsiao;Pai-Ling Li;Yu-Hsuan Linen
dc.subject.keyword活動模式,彈性距離,模糊分群,函數型資料分析,身體活動,穿戴式裝置資料,zh_TW
dc.subject.keywordactivity pattern,elastic distance,fuzzy clustering,functional data analysis,physical activity,wearable device data,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202502934-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept健康數據拓析統計研究所-
dc.date.embargo-lift2030-07-29-
顯示於系所單位:健康數據拓析統計研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved