Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方啓泰zh_TW
dc.contributor.advisorChi-Tai Fangen
dc.contributor.author陳亦余zh_TW
dc.contributor.authorYi-Yu Chenen
dc.date.accessioned2025-09-19T16:06:51Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-07-15-
dc.identifier.citation1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265–9.
2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727–33.
3. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China - The Lancet [Internet]. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/fulltext?ref=https://codemonkey.link
4. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV) [Internet]. [cited 2025 Apr 11]. Available from: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
5. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2 | Nature Medicine [Internet]. [cited 2025 Apr 10]. Available from: https://www.nature.com/articles/s41591-022-01816-0
6. Westblom TU, Belshe RB, Gorse GJ, Anderson EL, Berry CF. Characteristics of a population volunteering for human immunodeficiency virus immunization. NIAID AIDS Clinical Trials Network. Int J STD AIDS. 1990 Mar;1(2):126–8.
7. Zhao H, Lu X, Deng Y, Tang Y, Lu J. COVID-19: asymptomatic carrier transmission is an underestimated problem. Epidemiology & Infection [Internet]. 2020 Jan [cited 2025 Apr 14];148:e116. Available from: https://www.cambridge.org/core/journals/epidemiology-and-infection/article/covid19-asymptomatic-carrier-transmission-is-an-underestimated-problem/3CEA0495478ADFFBFEFE34DAB474A99F
8. Wang R, Chen J, Hozumi Y, Yin C, Wei GW. Decoding Asymptomatic COVID-19 Infection and Transmission. J Phys Chem Lett [Internet]. 2020 Dec 3 [cited 2025 Apr 14];11(23):10007–15. Available from: https://doi.org/10.1021/acs.jpclett.0c02765
9. COVID-19 cases | WHO COVID-19 dashboard [Internet]. datadot. [cited 2025 Apr 10]. Available from: https://data.who.int/dashboards/covid19/cases
10. The World Health Organization. Key considerations for repatriation and quarantine of travellers in relation to the outbreak of novel coronavirus 2019-nCoV [Internet]. Available from: https://www.who.int/news-room/articles-detail/key-considerations-for-repatriation-and-quarantine-of-travellers-in-relation-to-the-outbreak-of-novel-coronavirus-2019-ncov
11. The International Air Transport Association. IATA Annual Review 2020.
12. Government of Iceland | Information for travellers arriving in Iceland from 15 June 2020 [Internet]. [cited 2025 Apr 10]. Available from: https://www.government.is/diplomatic-missions/embassy-article/2020/06/08/Information-for-travellers-arriving-in-Iceland-from-15-June-2020/
13. The Directorate of Health. COVID-19 in Iceland - Statistics [Internet]. [cited 2025 Apr 10]. Available from: https://infogram.com/sept22-ens-1hxr4zxn3d93o6y
14. Double border screening for all arriving passengers [Internet]. [cited 2025 Apr 10]. Available from: https://www.government.is/diplomatic-missions/embassy-article/2020/08/14/Double-border-screening-for-all-arriving-passengers/
15. Wei HY, 魏欣怡. 應用傳染病數理模型SEIR模擬冰島以檢驗取代檢疫之邊境管理 對台灣之本土感染COVID-19病例和人群擴散之影響 [Internet] [Thesis]. 2021 [cited 2025 Apr 14]. Available from: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18065
16. Zhu Z, Weber E, Strohsal T, Serhan D. Sustainable border control policy in the COVID-19 pandemic: A math modeling study. Travel Medicine and Infectious Disease [Internet]. 2021 May 1 [cited 2025 Jun 10];41:102044. Available from: https://www.sciencedirect.com/science/article/pii/S1477893921000855
17. Kang N, Kim B. The Effects of Border Shutdowns on the Spread of COVID-19. J Prev Med Public Health [Internet]. 2020 Sep [cited 2025 Jun 10];53(5):293–301. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569011/
18. Linka K, Rahman P, Goriely A, Kuhl E. Is it safe to lift COVID-19 travel bans? The Newfoundland story. Comput Mech [Internet]. 2020 Nov 1 [cited 2025 Apr 14];66(5):1081–92. Available from: https://doi.org/10.1007/s00466-020-01899-x
19. Chen YH, Fang CT. Combined interventions to suppress R0 and border quarantine to contain COVID-19 in Taiwan. J Formos Med Assoc [Internet]. 2021 Feb;120(2):903–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413087/
20. Dickens BL, Koo JR, Lim JT, Park M, Sun H, Sun Y, et al. Determining quarantine length and testing frequency for international border opening during the COVID-19 pandemic. Journal of Travel Medicine [Internet]. 2021 Oct 1;28(7):taab088. Available from: https://doi.org/10.1093/jtm/taab088
21. Nealon J, Cowling BJ. Omicron severity: milder but not mild. The Lancet [Internet]. 2022 Jan 29 [cited 2025 May 21];399(10323):412–3. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(22)00056-3/fulltext
22. Keeling, M.J., P. Rohani. Modeling Infectious Diseases in Humans and Animals. 2008.
23. 王怡雅, 陳俊銘, 許家瑜, 張秀芳, 劉慧蓉, 楊靖慧. 臺灣COVID-19居家檢疫措施與成果. 疫情報導 [Internet]. 2024 Feb 27 [cited 2025 Apr 14];40(4):58–69. Available from: https://www.airitilibrary.com/Article/Detail/10213651-N202402290013-00002
24. Li Q. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia | New England Journal of Medicine [Internet]. 2020. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2001316
25. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med [Internet]. 2020 May;26(5):672–5. Available from: https://www.nature.com/articles/s41591-020-0869-5
26. Cheng HY, Jian SW, Liu DP, Ng TC, Huang WT, Lin HH, et al. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Internal Medicine [Internet]. 2020 Sep 1;180(9):1156–63. Available from: https://doi.org/10.1001/jamainternmed.2020.2020
27. 疾病管制署. 各地方政府自3月10日起至4月10日加碼提供65歲以上尚未接種COVID-19疫苗民眾500元(含)以下衛教品 [Internet]. 疾病管制署. 疾病管制署; 2022 [cited 2025 Apr 21]. Available from: https://www.mohw.gov.tw/cp-5266-67473-1.html
28. Buchan SA, Chung H, Brown KA, Austin PC, Fell DB, Gubbay JB, et al. Estimated Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and Severe Outcomes. JAMA Network Open [Internet]. 2022 Sep 22 [cited 2025 May 21];5(9):e2232760. Available from: https://doi.org/10.1001/jamanetworkopen.2022.32760
29. 客運量-桃園國際機場股份有限公司 [Internet]. [cited 2025 Jun 9]. Available from: https://www.taoyuanairport.com.tw/passengervolume
30. 外交部領事事務局. 外交部領事事務局全球資訊網 [Internet]. 外交部領事事務局. 外交部領事事務局; 2020 [cited 2025 May 23]. Available from: https://www.boca.gov.tw/cp-56-5402-fc2ac-1.html
31. 內政統計月報 [Internet]. 2025 [cited 2025 May 21]. Available from: https://statis.moi.gov.tw/micst/webMain.aspx?k=menum
32. 傳染病統計資料查詢系統 [Internet]. [cited 2025 May 21]. Available from: https://nidss.cdc.gov.tw/Home/Index
33. Taiwan Central Epidemic Command Center for COVID-19. CECC confirms 5 more imported COVID-19 cases [Internet]. 2020. Available from: https://www.cdc.gov.tw/En/Bulletin/Detail/JmH_uHg0gDLpreJdK8l22w?typeid=158
34. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA [Internet]. 2020 Jun 9;323(22):2249–51. Available from: https://doi.org/10.1001/jama.2020.8259
35. 張哲皓. 全面提供抗病毒藥物治療預期成效:數理模式研究. 2023; Available from: https://hdl.handle.net/11296/ddy9n7
36. 行政院全球資訊網. 蘇揆:「新臺灣模式」下「重症求清零、有效管控輕症」 [Internet]. 2.16.886.101.20003. 2.16.886.101.20003; 2022 [cited 2025 Jun 12]. Available from: https://www.ey.gov.tw/Page/9277F759E41CCD91/1a2b306f-7786-413e-863e-3d5558037b03
37. Oliveira E, Parikh A, Lopez-Ruiz A, Carrilo M, Goldberg J, Cearras M, et al. ICU outcomes and survival in patients with severe COVID-19 in the largest health care system in central Florida. PLoS One [Internet]. 2021 Mar 25 [cited 2025 Feb 21];16(3):e0249038. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993561/
38. Nguyen NT, Chinn J, Nahmias J, Yuen S, Kirby KA, Hohmann S, et al. Outcomes and Mortality Among Adults Hospitalized With COVID-19 at US Medical Centers. JAMA Network Open [Internet]. 2021 Mar 5;4(3):e210417. Available from: https://doi.org/10.1001/jamanetworkopen.2021.0417
39. Jassat W, Karim SSA, Mudara C, Welch R, Ozougwu L, Groome MJ, et al. Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study. The Lancet Global Health [Internet]. 2022 Jul 1 [cited 2025 Mar 28];10(7):e961–9. Available from: https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00114-0/fulltext
40. Reese H, Iuliano AD, Patel NN, Garg S, Kim L, Silk BJ, et al. Estimated Incidence of Coronavirus Disease 2019 (COVID-19) Illness and Hospitalization—United States, February–September 2020. Clinical Infectious Diseases [Internet]. 2021 Jun 15 [cited 2025 Mar 28];72(12):e1010–7. Available from: https://doi.org/10.1093/cid/ciaa1780
41. 疾病管制署. 建立邊境防線,阻絕病毒於境外 [Internet]. 疾病管制署. 疾病管制署; 2020 [cited 2025 Jun 12]. Available from: https://covid19.mohw.gov.tw/ch/cp-4838-53625-205.html
42. 外交部領事事務局. 因應全球武漢肺炎疫情擴大,外交部自2020年3月19日起將美國的旅遊警示燈號調整為「橙色」,加拿大調整為「紅色」 [Internet]. 外交部領事事務局. 外交部領事事務局; 2020 [cited 2025 May 23]. Available from: https://www.boca.gov.tw/cp-56-5402-fc2ac-1.html
43. Summers J, Cheng HY, Lin HH, Barnard LT, Kvalsvig A, Wilson N, et al. Potential lessons from the Taiwan and New Zealand health responses to the COVID-19 pandemic. The Lancet Regional Health – Western Pacific [Internet]. 2020 Nov 1 [cited 2025 Jun 19];4. Available from: https://www.thelancet.com/journals/lanwpc/article/PIIS2666-6065(20)30044-4/fulltext
44. Hwang W, Paik W, Lim H. The US–China Competition, Restructuring the Global Supply Chain, and Economic Security. Journal of East Asian Studies. 2024 Nov;24(3):324–42.
45. Mbah RE, Wasum D. Russian-Ukraine 2022 War: A Review of the Economic Impact of Russian-Ukraine Crisis on the USA, UK, Canada, and Europe. ASSRJ. 2022 Mar 28;9(3):144–53.
46. 疾病管制署. 建立邊境防線,阻絕病毒於境外 [Internet]. 疾病管制署. 疾病管制署; 2020 [cited 2025 Jun 12]. Available from: https://covid19.mohw.gov.tw/ch/cp-4838-53625-205.html
47. 疾病管制署. 新增203例COVID-19確定病例,分別為83例本土及120例境外移入 [Internet]. 疾病管制署. 疾病管制署; 2022 [cited 2025 Jun 12]. Available from: https://www.mohw.gov.tw/cp-5266-67815-1.html
48. Hossain MP, Junus A, Zhu X, Jia P, Wen TH, Pfeiffer D, et al. The effects of border control and quarantine measures on the spread of COVID-19. Epidemics [Internet]. 2020 Sep 1 [cited 2025 Jun 10];32:100397. Available from: https://www.sciencedirect.com/science/article/pii/S1755436520300244
49. COVID: How is India tackling a surge in fake test reports? – DW – 09/17/2021 [Internet]. dw.com. [cited 2025 Jun 19]. Available from: https://www.dw.com/en/covid-how-is-india-tackling-a-surge-in-fake-test-reports/a-59214657
50. Coronavirus: Fake test certificate gang foiled at Paris airport [Internet]. [cited 2025 Jun 19]. Available from: https://www.bbc.com/news/world-europe-54839434
51. Bauer K. COVID Lab Owner Pleads Guilty To $14 Million Scheme To Defraud Government [Internet]. Block Club Chicago. 2024 [cited 2025 Jun 19]. Available from: https://blockclubchicago.org/2024/10/01/covid-lab-owner-pleads-guilty-to-14-million-scheme-to-defraud-government/
52. Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents | American Journal of Epidemiology | Oxford Academic [Internet]. Available from: https://academic.oup.com/aje/article-abstract/164/10/936/162511?login=false
53. 張尹瑄. SARS-CoV-2 Omicron BA.2 變異株群體免疫:數理模式研究. 2022; Available from: https://hdl.handle.net/11296/qp663x
54. 2020/4/18 14:00 中央流行疫情指揮中心嚴重特殊傳染性肺炎記者會 [Internet]. 2020 [cited 2025 May 20]. Available from: https://www.youtube.com/watch?v=v1ellQ2cV4Y
55. Wong J, Abdul Aziz ABZ, Chaw L, Mahamud A, Griffith MM, Lo YR, et al. High proportion of asymptomatic and presymptomatic COVID-19 infections in air passengers to Brunei. Journal of Travel Medicine [Internet]. 2020 Aug 20;27(5):taaa066. Available from: https://doi.org/10.1093/jtm/taaa066
56. Arons MM. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility | New England Journal of Medicine [Internet]. 2020. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2008457
57. Oran DP. The Proportion of SARS-CoV-2 Infections That Are Asymptomatic: A Systematic Review: Annals of Internal Medicine: Vol 174, No 5 [Internet]. 2021. Available from: https://www.acpjournals.org/doi/full/10.7326/M20-6976
58. Hu S, Wang W, Wang Y, Litvinova M, Luo K, Ren L, et al. Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. Nat Commun [Internet]. 2021 Mar 9;12(1):1533. Available from: https://www.nature.com/articles/s41467-021-21710-6
59. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis - The Lancet [Internet]. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31142-9/fulltext
60. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, Cdc Weekly C. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. China CDC Weekly [Internet]. 2020;2(8):113–22. Available from: http://weekly.chinacdc.cn/en/article/doi/10.46234/ccdcw2020.032
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99858-
dc.description.abstract背景:2019年底 2019 新型冠狀病毒疾病 (Coronavirus disease 2019, COVID-19) 疫情爆發後,COVID-19疫情迅速蔓延全球,對公共衛生體系及國際經濟貿易往來造成重大衝擊。為減緩病毒輸入風險與境內傳播壓力,各國實施不同程度的邊境管制措施以遏制COVID-19的擴散。尤其在疫情初期,疫苗尚未問世、醫療資源有限的情況下,邊境檢疫政策成為延緩社區流行、爭取防疫準備時間的關鍵措施。然而,入境檢疫日數與社會成本間取捨兩難。在難以無限期管制邊境出入的前提下,如何在疫情初期建立一套兼具防堵疫情效果與經濟可行性的邊境管理策略,成為關鍵政策議題。本研究呼應流行病預防創新聯盟 (CEPI) 提出的「百日疫苗任務」(100 Days Mission) 理念,亦即在新興傳染病出現後的關鍵100天內,透過科學建模輔助決策,在疫苗問世前的空窗期延緩疫情爆發降低死亡與公衛醫療崩潰風險,維持社會與經濟秩序的穩定。因此,本研究以COVID-19疫情初期為背景,運用動態數理模型模擬不同邊境政策對本土疫情之影響,旨在為未來面對新興傳染病時,提供可迅速部署並具防疫效益的邊境應變依據,提供具實證基礎之政策建議。
方法:本研究採用SEIR動態流行病學模型,評估不同邊境檢疫策略組合和國內控制措施對國內COVID-19疫情控制的影響。我們模擬不同檢疫日數 (0、3、5、7及14日) 、入境人數 (每日1,500、3,000、6,000、10,000、20,000、30,000) 及不同傳播力參數 (包含不同的傳染率、住院率及無症狀比例) 對社區病毒傳播的影響。並納入社區防疫措施,包括口罩佩戴 (高配戴率90%;低配戴率77%) 及其防護效力、接觸者追蹤率、有症狀者就醫率等。並模擬三個情境 (base scenario、high carriage scenario 以及 Omicron scenario) ,以真實地模擬在不同政策組合下的疫情發展曲線,再利用4項政策可行性指標 (每日確診個案數、ICU人數、住院人數以及隔離人數) 對情境是否能維持在低度流行狀態,進行量化評估。本研究也以敏感度分析 (sensitivity analysis) 檢視兩項無法直接觀測的關鍵參數–接觸者追蹤率與感染者就醫率–的不確定性對模型模擬結果的影響。
結果:模擬結果顯示:在基本情境下,即便每日入境人數達 30,000 人,若能夠維持5天入境檢疫配合解隔時採檢,仍可將國內疫情4項指標維持於低度流行水準。然而,若入境者帶原率升高至 5% 或是 Omicron 傳播力更強的情境,每日入境人數需降至 3,000 人以下,方能控制境內疫情不爆發;若口罩配戴率下降至 77% ,臨界值進一步降至 1,500 人。敏感度分析顯示若接觸者追蹤率或症狀者就醫率降至 50%,則隔離人數將迅速突破 3,000 人之安全閾值,成為首波超載指標,顯示公衛系統在社區防疫效率下降時將最先承受壓力。為驗證模型真實性,本研究將模擬結果與 2020 年 3 月至 6 月間台灣實際數據進行擬合,結果顯示 14 天、7 天與 5 天檢疫情境皆高度符合實際數據,驗證模型具預測效能。分析 Omicron 期間台灣每日實際入境人數與確診數變化,發現自 2022 年 3 月 7 日起每日入境人數突破本研究分析顯示的臨界值1,500 人後,國內確診人數迅速上升,最終導致 2022 年境內疫情大爆發,與本研究模型之預測一致。
討論:本研究透過數理模型模擬與實證資料分析,首度明確指出每日入境人數為以往邊境政策研究中被忽略的關鍵變數。相較以往僅著重檢疫天數之政策評估模式,本研究以整合檢疫日數及入境量能的分析架構,估計入境人數臨界值,提供防疫政策具體且操作性高之建議。擬合2020年台灣真實數據亦驗證本研究使用模型之準確性。而2022年Omicron流行期間邊境管制鬆綁與後續疫情發展驗證當入境人數突破1,500人後,本土疫情迅速升高,顯示境內防疫量能有限的情境下,邊境政策鬆綁確實就是疫情失控主因。在面對高傳染力變異株時,入境檢疫天數與每日入境人數均必須嚴格管控,才能兼顧防疫與經濟。本研究結論為:在疫苗出現前,臺灣 2020-2021年間防疫成功之關鍵是:以邊境檢疫措施管控入境人數,防止境內防疫量能崩潰,成功地達到防疫需求與經貿需求之間的平衡。此每日入境人數須保持在臨界值以下的原則,可提供未來在類似情境時的重要決策參考。
zh_TW
dc.description.abstractBackground: The COVID-19 pandemic highlighted the challenge of balancing border controls and socio-economic costs before vaccines. Echoing CEPI's "100 Days Mission," this study uses dynamic mathematical modeling to simulate early COVID-19 border policies. Our goal is to provide evidence-based guidance for effective and rapidly deployable border management strategies during the initial 100 days of future emerging infectious diseases, aiming to mitigate outbreaks, protect healthcare, and ensure stability.
Methods: This study employs an SEIR dynamic epidemiological model to evaluate the impact of various border quarantine strategy combinations and domestic control measures on COVID-19 epidemic control. We simulated different quarantine durations (0, 3, 5, 7, and 14 days), inbound traveler numbers (1,500, 3,000, 6,000, 10,000, 20,000, and 30,000 per day), and different transmissibility parameters (including varying infection rates, hospitalization rates, and asymptomatic proportions) on community virus transmission. Concurrently, we incorporated community prevention measures, including mask-wearing rates (high compliance set at 90%; low compliance at 77%) and their protective efficacy, contact tracing ratios, and the rate of symptomatic individuals seeking medical attention and reporting. We also simulated three distinct scenarios: the Base Scenario, a High Carriage Rate scenario, and the Omicron scenario. This allowed us to more realistically model the epidemic's progression under different policy combinations. Subsequently, we conducted a quantitative assessment of these scenarios using four policy feasibility indicators: daily confirmed cases, ICU patient numbers, hospitalized patient numbers, and isolated individuals. To examine the model's stability and evaluate the impact of key policy parameters on the results, this study conducted a sensitivity analysis. We focused on two crucial sources of uncertainty: contact tracing ratio and infected individual isolation ratio. The contact tracing ratio was simulated from a high-efficiency scenario (90%) down to an overloaded epidemic scenario (25%), to reflect the actual availability of public health investigation resources as the epidemic evolves. The infected individual isolation ratio was set at two parameter groups (50% and 90%), to assess the impact of symptomatic individuals actively seeking medical attention and reporting behavior on epidemic control.
Results: Simulation results indicated that under the baseline scenario, even with daily inbound traveler numbers reaching 30,000, maintaining a 5-day quarantine period could keep all four key indicators of domestic epidemic burden within a low-transmission threshold. However, if the carriage rate among inbound travelers increased to 5% or in a scenario reflecting Omicron’s higher transmissibility, the number of daily inbound travelers would need to be reduced to below 3,000 to keep the epidemic under control. Furthermore, in a scenario where mask-wearing compliance dropped to 77%, this threshold would need to be lowered further to 1,500 per day.
Sensitivity analysis revealed that if either the contact tracing rate or the isolation rate of symptomatic cases dropped to 50%, the number of individuals requiring isolation would rapidly exceed the safety threshold of 3,000, becoming the earliest indicator of system overload. This highlights that the public health system would bear the initial burden when community-based control efficiency declines. To validate the reliability of the model, the simulation results were fitted to Taiwan’s actual confirmed case data between March and June 2020. The model accurately reproduced the observed trends under 14-day, 7-day, and 5-day quarantine scenarios, demonstrating strong predictive performance. Finally, empirical analysis of Taiwan’s inbound traveler data and confirmed case numbers during the Omicron period showed a sharp increase in domestic cases shortly after daily arrivals exceeded 1,500 on March 7, 2022, suggesting a strong temporal correlation between increased inbound volume and the subsequent outbreak.
Discussion: This study developed a model identifying daily inbound traveler numbers as a core border policy variable, integrating it with quarantine duration to quantify critical thresholds. Validated by Taiwan's 2020 data, the model reflects epidemic dynamics. Observations from the 2022 Omicron outbreak highlight that exceeding 1,500 daily inbound travelers without simultaneous capacity adjustments causes rapid escalation. We emphasize that for highly infectious variants, quarantine duration and inbound numbers must be controlled concurrently. Our findings offer evidence-based recommendations for future pandemic preparedness and border control.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:06:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:06:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
摘要 II
ABSTRACT V
TABLE OF CONTENTS VIII
圖次 X
表次 XI
第一章 緒論 1
1.1 背景與研究動機 1
1.2 研究目標 3
第二章 方法 5
1.1 研究設計 5
1.2 COVID-19 動態數理模型 6
1.2.1模型架構說明 6
1.2.2 模型基本假設 6
1.3 模型參數設定 7
1.3.1 傳播相關參數 7
1.3.2邊境政策相關參數 8
1.3.3社區防疫措施相關參數 10
1.4 臺灣真實疫情擬合 12
1.5 情境假設 12
1.6 敏感度分析 13
1.7 政策可行性評估標準 14
第三章 結果 17
3.1 邊境檢疫政策對國內疫情的影響 17
3.1.1 每日新增本土確診個案數 17
3.1.2 加護病房患者數 17
3.1.3 住院人數 18
3.1.4 公共衛生隔離量能 19
3.2敏感度分析 20
3.3 臺灣2020年3月疫情擬合 20
3.4 OMICRON期間台灣每日入境人數及確診病例 21
第四章 討論 22
4.1 主要發現 22
4.2 入境人數對邊境政策的影響 23
4.3 入境人數在2020年至2021年臺灣成功防疫扮演的角色 24
4.4 OMICRON對邊境政策的影響 25
4.5 臺灣2022年OMICRON疫情分析 25
4.6 與過去研究之比較 26
4.7 研究優勢與限制 27
4.7.1 研究優勢 27
4.7.2 研究限制 28
4.8 結論與建議 28
參考文獻 30
附錄 67
各模擬情境立體互動式3D圖,可從下列網址下載 67
-
dc.language.isozh_TW-
dc.subject動態數理模式zh_TW
dc.subjectCOVID-19zh_TW
dc.subjectSARS-CoV-2zh_TW
dc.subject公共衛生政策zh_TW
dc.subject邊境管制zh_TW
dc.subjectBorder controlen
dc.subjectCOVID-19en
dc.subjectSARS-CoV-2en
dc.subjectPublic health policyen
dc.subjectDynamic modelingen
dc.title重新檢視 COVID-19 邊境管制政策:動態數理模式研究zh_TW
dc.titleRevisiting COVID-19 Border Control Policy: A Dynamic Modeling Studyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee溫在弘;蘇家彬;劉定萍zh_TW
dc.contributor.oralexamcommitteeTzai-Hung Wen;Chia-ping Su;Ding-Ping Liuen
dc.subject.keyword動態數理模式,COVID-19,SARS-CoV-2,公共衛生政策,邊境管制,zh_TW
dc.subject.keywordDynamic modeling,COVID-19,SARS-CoV-2,Public health policy,Border control,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202501759-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-16-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
dc.date.embargo-lift2025-09-20-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved