請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方啓泰 | zh_TW |
| dc.contributor.advisor | Chi-Tai Fang | en |
| dc.contributor.author | 蔡寧芳 | zh_TW |
| dc.contributor.author | Ning-Fang Tsai | en |
| dc.date.accessioned | 2025-09-18T16:10:16Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | 1. World Health Organization. Key considerations for repatriation and quarantine of travellers in relation to the outbreak of novel coronavirus 2019-nCoV. 2020 [cited 2022 November 15]; Available from: https://www.who.int/news-room/articles-detail/key-considerations-for-repatriation-and-quarantine-of-travellers-in-relation-to-the-outbreak-of-novel-coronavirus-2019-ncov.
2. World Health Organization. WHO coronavirus (COVID-19) dashboard. [cited 2024 May 19]; Available from: https://covid19.who.int/. 3. 衛生福利部疾病管制署(2021年7月1日)‧因應Delta變異株流行加強國際港埠入境人員健康監測‧https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=0F1pdQsOY4ttnb_dXBT1sA 4. 衛生福利部疾病管制署 (2024)‧COVID-19後疫情時代防疫政策白皮書。 5. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 2020. 5(4): p. 536-544. 6. World Health Organization. Coronavirus disease (COVID-19). 2022 [cited 2022 23 November]; Available from: https://www.who.int/health-topics/coronavirus#tab=tab_3. 7. Li, Q., et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med, 2020. 382(13): p. 1199-1207. 8. He, X., et al., Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med, 2020. 26 (5): p. 672-675. 9. Dickens, B.L., et al., Determining quarantine length and testing frequency for international border opening during the COVID-19 pandemic. J Travel Med, 2021. 28(7): taab088. 10. Song, S.W., et al., Symptoms and characteristics which require attention during COVID-19 screening at a port of entry. J Korean Med Sci, 2021. 36(2): p. e14. 11. Peng, B., et al., Reducing COVID-19 quarantine with SARS-CoV-2 testing: a simulation study. BMJ Open, 2021. 11(7): p. e050473. 12. 巫宗翰、游凱迪、林侑璇、葉晏婷、林詠青、李婉萍、郭俊賢、何麗莉 (2022)。2020年7月-2022年6月臺灣 COVID-19 邊境檢疫策略與發展。疫情報導,38(19),265-277。 13. Bates, A.E., et al., COVID-19 pandemic and associated lockdown as a "global human confinement experiment" to investigate biodiversity conservation. Biol Conserv, 2020. 248: p. 108665. 14. Dunford, D., et al., Coronavirus: the world in lockdown in maps and charts. BBC News. 2020 [cited 2022 December 30]; Available from: https://www.bbc.com/news/world-52103747. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99842 | - |
| dc.description.abstract | 背景及目的
COVID-19大流行期間,各國相繼實施邊境管制措施以防止病毒跨境傳播,我國於2021年7月實施入境普篩政策以強化邊境檢疫效能,惟此政策對陽性個案檢出效果之量化評估仍待深入探討。本研究旨在分析自桃園國際機場入境且於21天內確診COVID-19之個案資料,評估普篩政策對早期發現入境確診個案之成效,比較政策實施前後於確診時程及人口學特徵之差異,並辨識影響早期檢出之關鍵風險因子,為邊境檢疫政策制定提供實證依據。 方法 本回溯性研究納入2020年3月至2021年12月期間自桃園國際機場入境旅客為研究對象,以2021年7月實施入境普篩政策為界,分為入境普篩前及入境普篩後兩組,探討實施入境普篩政策對COVID-19 確診時間與陽性率之影響及人口學特徵之差異。分別對所有入境旅客進行卡方檢定比較陽性率差異,對確診者進行Kaplan-Meier存活分析評估確診日數差異,並以Cox比例模型進行風險因子之分析。 結果 本研究區間共920,258人次自桃園國際機場入境,其中1,851例個案於入境後21日內確診 COVID-19。對所有入境旅客進行卡方檢定,普篩前陽性個案發現率為0.0253%,入境普篩後為0.1965%,差異具統計顯著性 (χ² = 737.32, p < 0.001)。進一步對陽性者進行 Kaplan-Meier 存活分析,顯示入境普篩後個案確診時間明顯縮短,中位確診日由入境第8天提前至入境第2天。多變項 Cox 比例風險分析顯示,在調整症狀狀態、國籍等變項後,入境普篩後個案相較於入境普篩前,其被檢出之速率提升126% (aHR = 2.26, 95% CI: 2.03–2.52, p < 0.001),顯示普篩政策有助於快速辨識潛在感染者,加速診斷與隔離。其他顯著影響因子包含入境時自主申報有症狀 (aHR = 2.26, 95% CI: 1.95–2.63, p < 0.001) 及非本國籍 (aHR = 0.49, 95% CI: 0.44–0.55, p < 0.001)。 結論 本研究證實實施入境普篩政策能有效縮短確診時間並提升陽性個案檢出率,為邊境檢疫政策制定提供實證依據。研究結果顯示,普篩政策不僅加速確診個案之檢出,更顯著增加自覺無症狀感染者的檢出比例,有效提升邊境檢疫的監測效率。基於不同啟程地區之風險評估結果,建議未來可針對高風險來源地實施加強檢疫措施。本分析結果可為調整邊境管制策略提供重要參考,並為未來新興疫情之邊境措施規劃奠定實證基礎。 | zh_TW |
| dc.description.abstract | Background and Objectives
During the COVID-19 pandemic, countries worldwide implemented border control measures to prevent cross-border viral transmission. Taiwan implemented universal entry testing in July 2021 to enhance border quarantine effectiveness. However, quantitative evaluation of this policy's impact on positive case detection remains to be thoroughly investigated. This study aims to analyze data from cases entering through Taoyuan International Airport and confirmed with COVID-19 within 21 days, evaluate the effectiveness of universal entry testing policy on early detection of confirmed entry cases, compare differences in diagnosis timeline and demographic characteristics before and after policy implementation, and identify key risk factors affecting early detection to provide evidence-based support for border quarantine policy formulation. Methods This retrospective study included travelers entering through Taoyuan International Airport from March 2020 to December 2021. Using the implementation of universal entry testing policy in July 2021 as the cutoff, participants were divided into pre-testing and post-testing groups to explore the impact of universal entry testing policy on COVID-19 diagnosis time, positive rates, and demographic characteristics. Chi-square tests were performed on all entry travelers to compare differences in positive rates, Kaplan-Meier survival analysis was conducted on confirmed cases to evaluate differences in days to diagnosis, and Cox proportional hazards models were used for risk factor analysis. Results During the study period, 920,258 person-times entered through Taoyuan International Airport, with 1,851 cases confirmed with COVID-19 within 21 days after entry. Chi-square testing of all entry travelers showed that the positive case detection rate increased significantly from 0.0253% in the pre-screening period to 0.1965% in the post-screening period, with statistically significant differences (χ² = 737.32, p < 0.001). Further Kaplan-Meier survival analysis of positive cases showed that the time to diagnosis after entry was significantly shortened in the post-screening period, with median diagnosis day advancing from day 8 to day 2 after entry. Multivariate Cox proportional hazards analysis showed that after adjusting for symptom status, nationality, and other variables, post-screening cases had a 126% increase in detection rate compared to pre-screening cases (aHR = 2.26, 95% CI: 2.03–2.52, p < 0.001), indicating that screening policy helps rapidly identify potential infected individuals and accelerate diagnosis and isolation. Other significant influencing factors included self-reported symptoms at entry (aHR = 2.26, 95% CI: 1.95–2.63, p < 0.001) and non-Taiwanese nationality (aHR = 0.49, 95% CI: 0.44–0.55, p < 0.001). Conclusions This study confirms that implementing universal entry testing policy can effectively shorten diagnosis time and improve positive case detection rates, providing evidence-based support for border quarantine policy formulation. Results show that testing policy not only accelerates detection of confirmed cases but also significantly increases the detection proportion of self-perceived asymptomatic infected individuals, effectively improving border quarantine surveillance efficiency. Based on risk assessment results from different departure regions, enhanced quarantine measures for high-risk source areas are recommended for future implementation. These analytical results can provide important references for adjusting border control strategies and establish an evidence-based foundation for planning border measures against future emerging epidemics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:10:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:10:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 i 謝辭 ii 中文摘要 iii 英文摘要 v 目次 viii 圖次 x 表次 xi 第一章 導論 1 第一節 實習單位特色與簡介 1 第二節 文獻回顧 2 第三節 研究背景與知識缺口 4 第四節 研究假說 6 第二章 研究方法 7 第一節 研究架構 7 第二節 研究設計 7 第三節 資料來源 8 第四節 研究期間 9 第五節 個案篩檢條件 9 第六節 資料處理及統計分析 10 第三章 結果 13 第一節 研究樣本與期間 13 第二節 所有入境旅客入境普篩前後之陽性率 13 第三節 入境21日內採檢陽性個案之人口統計學特徵 14 第四節 陽性個案之 Kaplan-Meier 存活分析及 Cox 比例風險分析 15 第四章 討論 18 第一節 入境普篩政策提早發現陽性個案 18 第二節 入境普篩政策對提高陽性率之影響 18 第三節 研究限制 19 第五章 結論 20 參考文獻 21 附錄 36 圖次 圖1. 研究架構 7 圖2. 我國 COVID-19 邊境檢疫政策調整時程圖 (2020-2022年6月) 23 圖3. COVID-19 入境普篩前後陽性檢出率比較圖 24 圖4. COVID-19 陽性個案確診時程分布:普篩政策實施前後比較 25 圖5. COVID-19陽性個案轉機狀態分布圖 26 圖6. COVID-19 陽性個案啟程地分布圖 27 圖7. COVID-19 陽性個案年齡分布圖 28 圖8. COVID-19 陽性個案14天內確診之 Kaplan-Meier累積發生率 29 圖9. Martingale 殘差 Q-Q 圖 30 表次 表1. COVID-19 入境採檢陽性率與卡方檢定結果 31 表2. COVID-19 入境普篩前後陽性個案人口學特徵 32 表3. 入境普篩對早期發現之成效: Cox 多變項分析 35 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | 嚴重特殊傳染性肺炎 | zh_TW |
| dc.subject | 入境普篩 | zh_TW |
| dc.subject | 邊境檢疫 | zh_TW |
| dc.subject | 存活分析 | zh_TW |
| dc.subject | 風險因子 | zh_TW |
| dc.subject | entry testing | en |
| dc.subject | risk factors | en |
| dc.subject | COVID-19 | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | survival analysis | en |
| dc.subject | border quarantine | en |
| dc.title | 桃園國際機場實施 COVID-19 入境普篩之成效分析 | zh_TW |
| dc.title | Effectiveness of Routine Entry Testing for COVID-19 at Taoyuan International Airport | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉定萍;施惟量 | zh_TW |
| dc.contributor.oralexamcommittee | Din-Pin Liu;Wei-Liang Shih | en |
| dc.subject.keyword | COVID-19,嚴重特殊傳染性肺炎,入境普篩,邊境檢疫,存活分析,風險因子, | zh_TW |
| dc.subject.keyword | COVID-19,SARS-CoV-2,entry testing,border quarantine,survival analysis,risk factors, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202503107 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 公共衛生碩士學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 公共衛生碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
