請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99827完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳柏華 | zh_TW |
| dc.contributor.advisor | Albert Y. Chen | en |
| dc.contributor.author | 陳宜萱 | zh_TW |
| dc.contributor.author | Yi-Hsuan Chen | en |
| dc.date.accessioned | 2025-09-18T16:07:36Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | Abu-Allaban, M., Gillies, J. A., Gertler, A. W., Clayton, R., & Proffitt, D. (2003). Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmospheric Environment, 37(37), 5283–5293. https://doi.org/10.1016/j.atmosenv.2003.05.005
Antwarg, L., Miller, R. M., Shapira, B., & Rokach, L. (2021). Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Systems with Applications, 186, 115736. https://doi.org/10.1016/j.eswa.2021.115736 Baron, R., & Saffell, J. (2017). Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review. ACS Sensors, 2(11), 1553–1566. https://doi.org/10.1021/acssensors.7b00620 Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., & Hueglin, C. (2018). Performance of NO, NO<sub>2</sub> low cost sensors and three calibration approaches within a real world application. Atmospheric Measurement Techniques, 11(6), 3717–3735. https://doi.org/10.5194/amt-11-3717-2018 Brook, J. R., Graham, L., Charland, J. P., Cheng, Y., Fan, X., Lu, G., Li, S. M., Lillyman, C., MacDonald, P., & Caravaggio, G. (2007). Investigation of the motor vehicle exhaust contribution to primary fine particle organic carbon in urban air. Atmospheric Environment, 41(1), 119–135. https://doi.org/10.1016/j.atmosenv.2006.07.050 Browne, M. W. (2000). Cross-Validation Methods. Journal of Mathematical Psychology, 44(1), 108–132. https://doi.org/10.1006/jmps.1999.1279 CARSLAW, D. (2005). Evidence of an increasing NO/NO emissions ratio from road traffic emissions. Atmospheric Environment, 39(26), 4793–4802. https://doi.org/10.1016/j.atmosenv.2005.06.023 Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293–302. https://doi.org/10.1016/j.envint.2016.12.007 Chen, H., Kwong, J. C., Copes, R., Tu, K., Villeneuve, P. J., van Donkelaar, A., Hystad, P., Martin, R. V, Murray, B. J., Jessiman, B., Wilton, A. S., Kopp, A., & Burnett, R. T. (2017). Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. The Lancet, 389(10070), 718–726. https://doi.org/https://doi.org/10.1016/S0140-6736(16)32399-6 Chung, J., Kim, S.-N., & Kim, H. (2019). The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea. International Journal of Environmental Research and Public Health, 16(23), 4833. https://doi.org/10.3390/ijerph16234833 Chung, J., & Sohn, K. (2018). Image-Based Learning to Measure Traffic Density Using a Deep Convolutional Neural Network. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1670–1675. https://doi.org/10.1109/TITS.2017.2732029 Colin Cameron, A., & Windmeijer, F. A. G. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342. https://doi.org/10.1016/S0304-4076(96)01818-0 Dahl, A., Gharibi, A., Swietlicki, E., Gudmundsson, A., Bohgard, M., Ljungman, A., Blomqvist, G., & Gustafsson, M. (2006). Traffic-generated emissions of ultrafine particles from pavement–tire interface. Atmospheric Environment, 40(7), 1314–1323. https://doi.org/10.1016/j.atmosenv.2005.10.029 de Bont, J., Jaganathan, S., Dahlquist, M., Persson, Å., Stafoggia, M., & Ljungman, P. (2022). Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. Journal of Internal Medicine, 291(6), 779–800. https://doi.org/https://doi.org/10.1111/joim.13467 Forsberg, B., Hansson, H.-C., Johansson, C., Areskoug, H., Persson, K., & Järvholm, B. (2005). Comparative Health Impact Assessment of Local and Regional Particulate Air Pollutants in Scandinavia. AMBIO: A Journal of the Human Environment, 34(1), 11–19. https://doi.org/10.1579/0044-7447-34.1.11 François, J., Wang, S., State, R., & Engel, T. (2011). BotTrack: Tracking Botnets Using NetFlow and PageRank (pp. 1–14). https://doi.org/10.1007/978-3-642-20757-0_1 Gandino, F., Chiavassa, P., & Ferrero, R. (2023). Measuring Particulate Matter: An Investigation on Sensor Technology, Particle Size, Monitoring Site. IEEE Access, 11, 108761–108774. https://doi.org/10.1109/ACCESS.2023.3319092 Gao, Y., Li, J., Xu, Z., Liu, Z., Zhao, X., & Chen, J. (2021). A novel image-based convolutional neural network approach for traffic congestion estimation. Expert Systems with Applications, 180, 115037. https://doi.org/10.1016/j.eswa.2021.115037 Harlow, C., & Peng, S. (2001). Automatic vehicle classification system with range sensors. Transportation Research Part C: Emerging Technologies, 9(4), 231–247. https://doi.org/10.1016/S0968-090X(00)00034-6 Hu, H., Gao, Z., Sheng, Y., Zhang, C., & Zheng, R. (2019). Traffic Density Recognition Based on Image Global Texture Feature. International Journal of Intelligent Transportation Systems Research, 17(3), 171–180. https://doi.org/10.1007/s13177-019-00187-0 Ismail, I. N., Jalaludin, J., Bakar, S. A., Hisamuddin, N. H., & Suhaimi, N. F. (2019). Association of Traffic-Related Air Pollution (TRAP) with DNA Damage and Respiratory Health Symptoms among Primary School Children in Selangor. Asian Journal of Atmospheric Environment, 13(2), 106–116. https://doi.org/10.5572/ajae.2019.13.2.106 Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., & Buckley, K. (2016). Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmospheric Measurement Techniques, 9(11), 5281–5292. https://doi.org/10.5194/amt-9-5281-2016 Kam, W., Liacos, J. W., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2012). Size-segregated composition of particulate matter (PM) in major roadways and surface streets. Atmospheric Environment, 55, 90–97. https://doi.org/10.1016/j.atmosenv.2012.03.028 Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., & Butterfield, A. (2017). Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491–500. https://doi.org/10.1016/j.envpol.2016.12.039 Keuken, M. P., Henzing, J. S., Zandveld, P., van den Elshout, S., & Karl, M. (2012). Dispersion of particle numbers and elemental carbon from road traffic, a harbour and an airstrip in the Netherlands. Atmospheric Environment, 54, 320–327. https://doi.org/10.1016/j.atmosenv.2012.01.012 Khreis, H., Kelly, C., Tate, J., Parslow, R., Lucas, K., & Nieuwenhuijsen, M. (2017). Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environment International, 100, 1–31. https://doi.org/https://doi.org/10.1016/j.envint.2016.11.012 Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. Environment International, 75, 199–205. https://doi.org/10.1016/j.envint.2014.11.019 Kumar, P., Pirjola, L., Ketzel, M., & Harrison, R. M. (2013). Nanoparticle emissions from 11 non-vehicle exhaust sources – A review. Atmospheric Environment, 67, 252–277. https://doi.org/10.1016/j.atmosenv.2012.11.011 Kwan, S. C., binti Zakaria, S., Ibrahim, M. F., Wan Mahiyuddin, W. R., Md Sofwan, N., A Wahab, M. I., Ahmad, R. D. R., Abbas, A. R., Woon, W. K., & Sahani, M. (2023). Health impacts from TRAPs and carbon emissions in the projected electric vehicle growth and energy generation mix scenarios in Malaysia. Environmental Research, 216, 114524. https://doi.org/https://doi.org/10.1016/j.envres.2022.114524 Leclercq, B., Platel, A., Antherieu, S., Alleman, L. Y., Hardy, E. M., Perdrix, E., Grova, N., Riffault, V., Appenzeller, B. M., Happillon, M., Nesslany, F., Coddeville, P., Lo-Guidice, J.-M., & Garçon, G. (2017). Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5. Environmental Pollution, 230, 163–177. https://doi.org/https://doi.org/10.1016/j.envpol.2017.06.028 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. https://doi.org/10.1038/nature15371 Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Li, S., Yu, H., Zhang, J., Yang, K., & Bin, R. (2014). Video‐based traffic data collection system for multiple vehicle types. IET Intelligent Transport Systems, 8(2), 164–174. https://doi.org/10.1049/iet-its.2012.0099 Liu, H. X., & Sun, J. (2014). Length-based vehicle classification using event-based loop detector data. Transportation Research Part C: Emerging Technologies, 38, 156–166. https://doi.org/10.1016/j.trc.2013.11.010 Magi, B. I., Cupini, C., Francis, J., Green, M., & Hauser, C. (2020). Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor. Aerosol Science and Technology, 54(2), 147–159. https://doi.org/10.1080/02786826.2019.1619915 Oluwadairo, T., Whitehead, L., Symanski, E., Bauer, C., Carson, A., & Han, I. (2022). Effects of Road Traffic on the Accuracy and Bias of Low-Cost Particulate Matter Sensor Measurements in Houston, Texas. International Journal of Environmental Research and Public Health, 19(3), 1086. https://doi.org/10.3390/ijerph19031086 Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78–97. https://doi.org/10.1016/j.atmosenv.2013.04.028 Peppa, M. V., Komar, T., Xiao, W., James, P., Robson, C., Xing, J., & Barr, S. (2021). Towards an End-to-End Framework of CCTV-Based Urban Traffic Volume Detection and Prediction. Sensors, 21(2), 629. https://doi.org/10.3390/s21020629 Piscitello, A., Bianco, C., Casasso, A., & Sethi, R. (2021). Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Science of The Total Environment, 766, 144440. https://doi.org/10.1016/j.scitotenv.2020.144440 Pollution, H. E. Institute. P. on the H. E. of T.-R. A. (2010). Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects. Pulles, T., Denier van der Gon, H., Appelman, W., & Verheul, M. (2012). Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmospheric Environment, 61, 641–651. https://doi.org/10.1016/j.atmosenv.2012.07.022 Qi, B., Zhao, W., Zhang, H., Jin, Z., Wang, X., & Runge, T. (2019). Automated Traffic Volume Analytics at Road Intersections Using Computer Vision Techniques. 2019 5th International Conference on Transportation Information and Safety (ICTIS), 161–169. https://doi.org/10.1109/ICTIS.2019.8883683 Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., Hoffmann, B., Fischer, P., Nieuwenhuijsen, M. J., Brunekreef, B., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Sommar, J., Forsberg, B., Modig, L., Oudin, A., Oftedal, B., Schwarze, P. E., … Hoek, G. (2013). Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology, 14(9), 813–822. https://doi.org/https://doi.org/10.1016/S1470-2045(13)70279-1 Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., Yasar, A., & Rickerby, D. (2017). End-user perspective of low-cost sensors for outdoor air pollution monitoring. Science of The Total Environment, 607–608, 691–705. https://doi.org/10.1016/j.scitotenv.2017.06.266 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. http://arxiv.org/abs/1506.02640 Rexeis, M., & Hausberger, S. (2009). Trend of vehicle emission levels until 2020 – Prognosis based on current vehicle measurements and future emission legislation. Atmospheric Environment, 43(31), 4689–4698. https://doi.org/10.1016/j.atmosenv.2008.09.034 Schmitz, S., Villena, G., Caseiro, A., Meier, F., Kerschbaumer, A., & von Schneidemesser, E. (2023). Calibrating low-cost sensors to measure vertical and horizontal gradients of NO2 and O3 pollution in three street canyons in Berlin. Atmospheric Environment, 307, 119830. https://doi.org/10.1016/j.atmosenv.2023.119830 Shaughnessy, W. J., Venigalla, M. M., & Trump, D. (2015). Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmospheric Environment, 123, 102–111. https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.10.039 Si, M., Xiong, Y., Du, S., & Du, K. (2020). Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods. Atmospheric Measurement Techniques, 13(4), 1693–1707. https://doi.org/10.5194/amt-13-1693-2020 Simoncini, M., Taccari, L., Sambo, F., Bravi, L., Salti, S., & Lori, A. (2018). Vehicle classification from low-frequency GPS data with recurrent neural networks. Transportation Research Part C: Emerging Technologies, 91, 176–191. https://doi.org/10.1016/j.trc.2018.03.024 Stieb, D. M., Chen, L., Hystad, P., Beckerman, B. S., Jerrett, M., Tjepkema, M., Crouse, D. L., Omariba, D. W., Peters, P. A., van Donkelaar, A., Martin, R. V, Burnett, R. T., Liu, S., Smith-Doiron, M., & Dugandzic, R. M. (2016). A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999–2008. Environmental Research, 148, 513–526. https://doi.org/https://doi.org/10.1016/j.envres.2016.04.025 Sun, Z., & Ban, X. (Jeff). (2013). Vehicle classification using GPS data. Transportation Research Part C: Emerging Technologies, 37, 102–117. https://doi.org/10.1016/j.trc.2013.09.015 Tervahattu, H., Kupiainen, K. J., Räisänen, M., Mäkelä, T., & Hillamo, R. (2006). Generation of urban road dust from anti-skid and asphalt concrete aggregates. Journal of Hazardous Materials, 132(1), 39–46. https://doi.org/10.1016/j.jhazmat.2005.11.084 Thorpe, A. J., Harrison, R. M., Boulter, P. G., & McCrae, I. S. (2007). Estimation of particle resuspension source strength on a major London Road. Atmospheric Environment, 41(37), 8007–8020. https://doi.org/10.1016/j.atmosenv.2007.07.006 van den Bossche, M., Rose, N. T., & De Wekker, S. F. J. (2017). Potential of a low-cost gas sensor for atmospheric methane monitoring. Sensors and Actuators B: Chemical, 238, 501–509. https://doi.org/10.1016/j.snb.2016.07.092 Wang, J. M., Jeong, C.-H., Hilker, N., Healy, R. M., Sofowote, U., Debosz, J., Su, Y., Munoz, A., & Evans, G. J. (2021). Quantifying metal emissions from vehicular traffic using real world emission factors. Environmental Pollution, 268, 115805. https://doi.org/10.1016/j.envpol.2020.115805 Yannis, G., & Antoniou, C. (n.d.). Integration of weigh-in-motion technologies in road infrastructure management. Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., & Wang, X. (2022). ByteTrack: Multi-object Tracking by Associating Every Detection Box (pp. 1–21). https://doi.org/10.1007/978-3-031-20047-2_1 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99827 | - |
| dc.description.abstract | 與交通相關的空氣污染 (TRAP) 由氣體和顆粒物的混合物組成,包括 PM2.5、PM1.0、超細懸浮微粒 (UFP)、黑碳 (BC)、一氧化碳 (CO) 和二氧化氮 (NO2) 等,主要由車輛排放。本研究旨在分析影響住宅區道路附近空氣污染程度的因素,並提供住戶監測污染物的低成本方法。利用低成本攝影機和基於影像的車流辨識模型,我們實現了汽車、機車、公車超過 90%,和卡車約66%的交通量辨識準確度。此外,我們還利用監測站的 PM2.5 數據校準了微型感測器,確定將兩個微型感測器與氣象資料結合可產生最佳結果。即使感測器數據有限,模型仍保持高精度(MAPE 17-18%),證實了經濟高效的空氣品質監測的可行性。本研究表明,風速、風向、溫度和濕度顯著影響 TRAP 水平,污染物濃度在強風下降低,並隨氣象條件變化。我們也發現,汽車、機車、公車和卡車的交通量,對不少 TRAP汙染量起著至關重要的作用。而車輛在紅燈處等待也會加劇污染。這些發現強調了微型感測器在廣泛、經濟實惠的空氣品質監測方面的潛力,並為交通繁忙道路附近的居民提供了可行的建議,以減少接觸有害污染物。 | zh_TW |
| dc.description.abstract | Traffic-related air pollution (TRAP) consists of a mixture of gases and particulate matter, including PM2.5, PM1.0, ultrafine particles (UFP), black carbon (BC), carbon monoxide (CO), and nitrogen dioxide (NO2), primarily emitted from vehicles. This study aims to analyze the factors affecting air pollution levels near residential roads and provide low-cost methods for residents to monitor pollutants. By utilizing low-cost cameras and an image-based traffic recognition model, we achieved traffic volume recognition accuracies of over 90% for cars, motorcycles, and buses, and about 66% for trucks. Additionally, we calibrated low-cost PM sensors (LCPMS) using PM2.5 data from monitoring stations, determining that combining two LCPMS with meteorological data yields the best results. Even with limited sensor data, the models maintained good accuracy (MAPE 17-18%), confirming the feasibility of cost-effective air quality monitoring. Our findings indicate that wind speed, wind direction, temperature, and humidity significantly influence TRAP levels, with pollutant concentrations decreasing under strong winds and varying with meteorological conditions. We also found that traffic volumes of cars, motorcycles, buses, and trucks play crucial roles in TRAP levels, with vehicles waiting at red lights exacerbating pollution. These findings underscore the potential of LCPMS for widespread, affordable air quality monitoring and provide actionable insights for residents near high-traffic roads to reduce exposure to harmful pollutants. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:07:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:07:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective 2 Chapter 2 Current Literature 4 2.1 Traffic Data Collection 4 2.2 Low-Cost Sensor 5 2.3 Traffic Related Air Pollution (TRAP) 6 2.4 Health impacts of TRAP 7 2.5 Summary 8 Chapter 3 Methodology 10 3.1 Traffic Counting Model 10 3.1.1 YOLO 10 3.1.2 Counting Model 12 3.2 Sensor Calibration 14 3.2.1 PM sensor 15 3.2.2 LCPMS Calibration 17 3.3 Factors Contribution Analysis 18 3.3.1 Multiple linear regression (MLR) 19 3.3.2 Machine Learning Model and SHAP 20 Chapter 4 Results 21 4.1 Study Introduction 21 4.1.1 Location 21 4.1.2 Camera 22 4.1.3 Monitoring Station 23 4.1.4 LCPMS 25 4.2 Traffic Counting 26 4.2.1 Detect Vehicles 27 4.2.2 Accuracy 28 4.2.3 Traffic Data Collection Period 29 4.3 LCPMSs Calibration 32 4.3.1 PM2.5 32 4.3.2 Comparison 38 4.4 Data Analysis 40 4.4.1 Analysis Each Pollutant 41 4.4.2 Comparison 78 Chapter 5 Conclusions & Future Work 119 5.1 Conclusions 119 5.1.1 Image-based Vehicle Counting Model 119 5.1.2 Low-Cost Sensor Calibration 119 5.1.3 Analysis TRAP Contribution by Factors 120 5.2 Future Work 121 References 123 | - |
| dc.language.iso | en | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 交通相關空氣汙染(TRAP) | zh_TW |
| dc.subject | 臨路住宅 | zh_TW |
| dc.subject | 車流影像辨識 | zh_TW |
| dc.subject | 低成本感測器 | zh_TW |
| dc.subject | LCPMS | en |
| dc.subject | image-based traffic recognition model | en |
| dc.subject | machine learning | en |
| dc.subject | residential near road | en |
| dc.subject | TRAP | en |
| dc.title | 基於低成本懸浮微粒感測器與影像辨識車流資料之交通相關空氣汙染物分析 | zh_TW |
| dc.title | Traffic-Related Air Pollution Analysis through LCPMS and Image-Based Data Collection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱致遠;周建成 | zh_TW |
| dc.contributor.oralexamcommittee | James C. CHU;Chien-Cheng Chou | en |
| dc.subject.keyword | 交通相關空氣汙染(TRAP),機器學習,低成本感測器,車流影像辨識,臨路住宅, | zh_TW |
| dc.subject.keyword | TRAP,machine learning,LCPMS,image-based traffic recognition model,residential near road, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202503277 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2027-08-10 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
