請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99823完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | zh_TW |
| dc.contributor.advisor | Chii-Wann Lin | en |
| dc.contributor.author | 江嶸 | zh_TW |
| dc.contributor.author | Jung Chiang | en |
| dc.date.accessioned | 2025-09-18T16:06:53Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Susanne Bäck. Cdnf in an experimental model of parkinson’s disease: studies on gene therapy and protein infusion. 2014.
[2] Destany K Kwon, Mohit Kwatra, Jing Wang, and Han Seok Ko. Levodopa-induced dyskinesia in parkinson's disease: pathogenesis and emerging treatment strategies. Cells, 11(23):3736, 2022. [3] Eric C Leuthardt, Daniel W Moran, and Tim R Mullen. Defining surgical terminology and risk for brain computer interface technologies. Frontiers in Neuroscience,15:599549, 2021. [4] Zixiao Yin, Guanyu Zhu, Baotian Zhao, Yutong Bai, Yin Jiang, Wolf-Julian Neumann, Andrea A Kühn, and Jianguo Zhang. Local field potentials in parkinson’s disease: a frequency-based review. Neurobiology of Disease, 155:105372, 2021. [5] Patrick Hickey and Mark Stacy. Deep brain stimulation: a paradigm shifting approach to treat parkinson’s disease. Frontiers in neuroscience, 10:173, 2016. [6] Medical Research Council Brain Network Dynamics Unit. Stn-lfp on/off and dbs dataset. https://data.mrc.ox.ac.uk/stn-lfp-on-off-and-dbs, 2021. [7] Zixiao Yin, Guanyu Zhu, Baotian Zhao, Yutong Bai, Yin Jiang, Wolf-Julian Neumann, Andrea A Kühn, and Jianguo Zhang. Local field potentials in parkinson’s disease: a frequency-based review. Neurobiology of Disease, 155:105372, 2021. [8] Joseph Jankovic. Parkinson's disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry, 79(4):368–376, 2008. [9] Karin Wirdefeldt, Hans-Olov Adami, Philip Cole, Dimitrios Trichopoulos, and Jack Mandel. Epidemiologyandetiologyofparkinson's disease: areviewoftheevidence. European journal of epidemiology, 26(Suppl 1):1, 2011. [10] 台 大 醫 院 帕 金森氏症中心. 帕金森氏症介紹與衛教資訊. http://www.pdcenterntuh.org.tw/, 2024. 瀏覽日期:2025 年 7 月 26 日. [11] Thibaud Lebouvier, Tanguy Chaumette, Sébastien Paillusson, Charles Duyckaerts, Stanislas Bruley des Varannes, MichelNeunlist, andPascalDerkinderen. Thesecond brain and parkinson's disease. European Journal of Neuroscience, 30(5):735–741, 2009. [12] Constance Hammond, Hagai Bergman, and Peter Brown. Pathological synchro nization in parkinson’s disease: networks, models and treatments. Trends in neurosciences, 30(7):357–364, 2007. [13] Andrea A Kühn, Andreas Kupsch, Gerd-Helge Schneider, and Peter Brown. Reduction in subthalamic 8–35 hz oscillatory activity correlates with clinical improvement in parkinson’s disease. European Journal of Neuroscience, 23(7):1956–1960, 2006. [14] MarwanHariz andPatric Blomstedt. Deep brain stimulation for parkinson’s disease. Journal of internal medicine, 292(5):764–778, 2022. [15] Joseph Jankovic and L Giselle Aguilar. Current approaches to the treatment of parkinson's disease. Neuropsychiatric disease and treatment, 4(4):743–757, 2008. [16] Joseph Jankovic. Motor fluctuations and dyskinesias in parkinson’s disease: clinical manifestations. Movement disorders: official journal of the Movement Disorder Society, 20(S11):S11–S16, 2005. [17] Jonathan E Rubin, Cameron C McIntyre, Robert S Turner, and Thomas Wichmann. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects. European Journal of Neuroscience, 36(2):2213–2228, 2012. [18] Oscar S Kofman. Are levodopa “drug holidays"justified? Canadian Journal of Neurological Sciences, 11(S1):206–209, 1984. [19] Weidong Xu, Gary S Russo, Takao Hashimoto, Jianyu Zhang, and Jerrold L Vitek. Subthalamic nucleus stimulation modulates thalamic neuronal activity. Journal of Neuroscience, 28(46):11916–11924, 2008. [20] Ahmed A Moustafa, Izhar Bar-Gad, Alon Korngreen, and Hagai Bergman. Basal ganglia: physiological, behavioral, and computational studies, 2014. [21] Damien J Ellens and Daniel K Leventhal. electrophysiology of basal ganglia and cortex in models of parkinson disease. Journal of Parkinson's disease, 3(3):241 254, 2013. [22] Mahlon R DeLong. Primate models of movement disorders of basal ganglia origin. Trends in neurosciences, 13(7):281–285, 1990. [23] Nicolas Mallet, Alek Pogosyan, Andrew Sharott, Jozsef Csicsvari, J Paul Bolam, Pe ter Brown, and Peter J Magill. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. Journal of Neuroscience, 28(18):4795–4806, 2008. [24] Peter Brown. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current opinion in neurobiology, 17(6):656–664, 2007. [25] Ned Jenkinson and Peter Brown. New insights into the relationship between dopamine, beta oscillations and motor function. 34(12):611–618, 2011. Trends in neurosciences, [26] Jon López-Azcárate, Mikel Tainta, María C Rodríguez-Oroz, Miguel Valencia, Rafael González, Jorge Guridi, Jorge Iriarte, José A Obeso, Julio Artieda, and Manuel Alegre. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in parkinson’s disease. Journal of Neuroscience, 30(19):6667–6677, 2010. [27] Christos Tsiokos, Mahsa Malekmohammadi, Nicholas AuYong, and Nader Pouratian. Pallidal low β-low γ phase-amplitude coupling inversely correlates with parkinson disease symptoms. Clinical Neurophysiology, 128(11):2165–2178, 2017. [28] Tolga Esat Özkurt, Markus Butz, Melanie Homburger, Saskia Elben, Jan Vesper, Lars Wojtecki, and Alfons Schnitzler. High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in parkinson’s disease. Experimental neurology, 229(2):324–331, 2011. [29] Junjie Wu, Jing Yang, Mo Chen, Shuhua Li, Zhaoqi Zhang, Chunyan Kang, Guosheng Ding, and Taomei Guo. Brain network reconfiguration for language and domain-general cognitive control in bilinguals. NeuroImage, 199:454–465, 2019. [30] Akio Ikeda. Electrocorticography in motor control and movement disorders. In Handbook of Clinical neurophysiology, volume 1, pages 31–44. Elsevier, 2003. [31] Judy Syrkin-Nikolau, Mandy Miller Koop, Thomas Prieto, Chioma Anidi, Muhammad Furqan Afzal, Anca Velisar, Zack Blumenfeld, Talora Martin, Megan Trager, and HelenBronte-Stewart. Subthalamic neural entropy is a feature of freezing of gait in freely movingpeople withparkinson’s disease. Neurobiology of disease, 108:288 297, 2017. [32] Kim TE Olde Dubbelink, Arjan Hillebrand, Diederick Stoffers, Jan Berend Deijen, Jos WR Twisk, Cornelis J Stam, and Henk W Berendse. Disrupted brain network topology in parkinson's disease: a longitudinal magnetoencephalography study. Brain, 137(1):197–207, 2014. [33] Günther Deuschl, Carmen Schade-Brittinger, Paul Krack, Jens Volkmann, Helmut Schäfer, Kai Bötzel, Christine Daniels, AngelaDeutschländer, UlrichDillmann, Wilhelm Eisner, et al. A randomized trial of deep-brain stimulation for parkinson’s disease. New England Journal of Medicine, 355(9):896–908, 2006. [34] Vibhash D Sharma, Margi Patel, and Svjetlana Miocinovic. Surgical treatment of parkinson’s disease: devices and lesion approaches. Neurotherapeutics, 17(4):1525-1538, 2020. [35] Caixia Lin, Margreet C Ridder, and Pankaj Sah. The ppn and motor control: Preclinical studies to deep brain stimulation for parkinson's disease. Frontiers in Neural Circuits, 17:1095441, 2023. [36] Cameron C McIntyre, Warren M Grill, David L Sherman, and Nitish V Thakor. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of neurophysiology, 2004. [37] Viviana Gradinaru, Murtaza Mogri, Kimberly R Thompson, Jaimie M Henderson, and Karl Deisseroth. Optical deconstruction of parkinsonian neural circuitry. science, 324(5925):354–359, 2009. [38] DianeWhitmer,CamilleDeSolages,BruceHill, HongYu,JaimieMHenderson,and HelenBronte-Stewart. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in parkinson’s disease. Frontiers in human neuroscience, 6:155, 2012. [39] Mahlon R DeLong and Thomas Wichmann. Basal ganglia circuits as targets for neuromodulation in parkinson disease. JAMA neurology, 72(11):1354–1360, 2015. [40] Simon Little, Alex Pogosyan, Spencer Neal, Baltazar Zavala, Ludvic Zrinzo, MarwanHariz, ThomasFoltynie, Patricia Limousin, KeyoumarsAshkan, JamesFitzGerald, et al. Adaptive deep brain stimulation in advanced parkinson disease. Annals of neurology, 74(3):449–457, 2013. [41] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014. [42] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. In Proceedings of the 34th International Conference on Machine Learning, pages 214–223, 2017. [43] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least squares generative adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2794–2802, 2017. [44] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition, 2018. [45] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. [46] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018. [47] Stephanie Martin, Iñaki Iturrate, Ricardo Chavarriaga, Robert Leeb, Aleksander Sobolewski, Andrew M Li, Julien Zaldivar, Iulia Peciu-Florianu, Etienne Pralong, Mayte Castro-Jiménez, et al. Differential contributions of subthalamic beta rhythms and 1/f broadband activity to motor symptoms in parkinson's disease. NPJ Parkin son’s disease, 4(1):32, 2018. [48] Bernadette CM van Wijk, Rob MA de Bie, and Martijn Beudel. A systematic review of local field potential physiomarkers in parkinson's disease: from clinical correlations to adaptive deep brain stimulation algorithms. Journal of neurology, 270(2):1162–1177, 2023. [49] RoxanneLofredi, Huiling Tan, Wolf-Julian Neumann, Chien-Hung Yeh, Gerd-Helge Schneider, Andrea A Kühn, and Peter Brown. Beta bursts during continuous movements accompany the velocity decrement in parkinson’s disease patients. Neurobiology of disease, 127:462–471, 2019. [50] Peter Welch. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2):70–73, 2003. [51] Dennis Gabor. Theory of communication. part 1: The analysis of information. Journal of the Institution of Electrical Engineers-part III: radio and communication engineering, 93(26):429–441, 1946. [52] Ryan T Canolty, Erik Edwards, Sarang S Dalal, Maryam Soltani, Srikantan S Nagarajan, Heidi E Kirsch, Mitchel S Berger, Nicholas M Barbaro, and Robert TKnight. High gamma power is phase-locked to theta oscillations in human neocortex. science, 313(5793):1626–1628, 2006. [53] Vandana Kushwaha, GC Nandi, et al. Study of prevention of mode collapse in generative adversarial network (gan). In 2020 IEEE 4th Conference on Information & Communication Technology (CICT), pages 1–6. IEEE, 2020. [54] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019. [55] Chia-Hung Cho. Closed-loop deep brain stimulation algorithm for parkinson's disease based on reinforcement learning and basal ganglia-thalamus network dynamics. Master’s thesis, National Taiwan University, Taipei, Taiwan, 2022. Advisor: Dr. Chii-wann Lin. [56] Chia-Hung Cho, Pin-Jui Huang, Meng-Chao Chen, and Chii-Wann Lin. Closed loop deepbrain stimulation with reinforcement learning and neural simulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024. [57] David Terman, Jonathan E Rubin, AC Yew, and CJ Wilson. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuro science, 22(7):2963–2976, 2002. [58] Jonathan E Rubin and David Terman. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of computational neuroscience, 16(3):211–235, 2004. [59] Rosa Q So, Alexander R Kent, and Warren M Grill. Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of computational neuroscience, 32(3):499–519, 2012. [60] Bo Hjorth. Eeg analysis based on time domain properties. Electroencephalography and clinical neurophysiology, 29(3):306–310, 1970. [61] Joshua S Richman and J Randall Moorman. Physiological time-series analysis using approximate entropy and sample entropy. American journal of physiology-heart and circulatory physiology, 278(6):H2039–H2049, 2000. [62] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901. [63] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613–620, 1975. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99823 | - |
| dc.description.abstract | 本研究建構於先前已開發之基底核-丘腦(Basal Ganglia-Thalamus, BGT)模擬模型與用於閉環深腦電刺激(Deep Brain Stimulation, DBS)參數控制的強化學習(Reinforcement Learning, RL)框架。該RL控制器基於動作電位(Action Potential, AP)特徵進行學習與決策,然而臨床中所能取得的訊號為局部場電位(Local Field Potential, LFP),兩者間存在明顯的模態不匹配問題。為彌補模擬系統與臨床應用之間的模態落差,本研究提出一套特徵轉譯流程,作為臨床可行性的橋樑。
本研究首先自丘腦下核(Subthalamic Nucleus, STN)LFP訊號中擷取三項具生理意義的特徵:Beta 頻段功率比(Beta Band Power Ratio)、Beta突波持續時間(Beta Burst Duration)與相位-振幅耦合(Phase-Amplitude Coupling),其在區分DBS on與off狀態中表現良好,對應的ROC-AUC分別為 0.764、0.944 與 0.891。 為實現跨模態的特徵對齊,我們提出一套基於Wasserstein生成式對抗網路(Wasserstein GAN, WGAN)之架構,採用單一生成器配合三個判別器(1G3C)設計。三個判別器分別對應健康(Healthy)、帕金森病(PD)、以及 DBS刺激下的生理狀態,用以學習AP特徵的分佈;而泛化的共享生成器則學習將不同狀態下LFP 特徵轉譯至六維的類AP特徵空間,以供RL控制器使用。結果顯示,生成的特徵能夠與對應狀態之模擬AP特徵的分佈對齊,在健康、PD與DBS狀態下,其餘弦相似度(Cosine Similarity)分別達到 0.86、0.86 與 0.65,特別在基準狀態中展現出良好的模態一致性與生理特異性。 綜合上述結果,本研究建立了一套能將臨床可得的LFP特徵有效轉譯為模擬環境中所需的AP特徵的流程,成功銜接臨床訊號與BGT模擬模型間的模態落差。此轉譯機制可作為既有RL控制器的前端模組,提供其可直接操作的輸入特徵,進而提升自適應閉環DBS策略從模擬實驗走向實際臨床驗證的可行性。 | zh_TW |
| dc.description.abstract | This study builds upon a previously developed Basal Ganglia-Thalamus (BGT) simulation model and a reinforcement learning (RL) framework designed for closed-loop deep brain stimulation (DBS) parameter control. While the RL controller is trained on action potential (AP)–level features, real-world clinical recordings typically provide only local field potentials (LFPs), resulting in a significant modality mismatch. To bridge this gap between simulation-based systems and clinical applications, we propose a feature translation pipeline that serves as a translational interface for clinical deployment.
We begin by extracting three physiologically meaningful features from subthalamic nucleus (STN) LFP signals—Beta Band Power Ratio, Beta Burst Duration, and Phase-Amplitude Coupling—which effectively distinguish between DBS ON and OFF states, achieving ROC-AUC scores of 0.764, 0.944, and 0.891, respectively. To achieve cross-modal feature alignment, we propose a Wasserstein Generative Adversarial Network (WGAN) architecture, incorporating a single generator and three critics (1G3C). Each critic is trained to model AP feature distributions under a specific physiological state—Healthy, Parkinsonian, or DBS-modulated. The shared generator learns to translate LFP-derived features from various conditions into a six-dimensional AP-like feature space compatible with the RL controller. Experimental results show that the generated features closely match the simulated AP feature distributions, achieving cosine similarity scores of 0.86 (Healthy), 0.86 (PD), and 0.65 (DBS), demonstrating strong modality alignment and physiological specificity, particularly under baseline conditions. In summary, this study establishes a feature translation mechanism capable of converting clinically accessible LFP features into AP-like representations required by the simulation environment. This mechanism effectively bridges the modality gap between clinical recordings and the BGT simulation model. By serving as a front-end module to the existing RL controller, the proposed system facilitates the potential transition of adaptive closed-loop DBS strategies from simulation to clinical validation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:06:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:06:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝i
摘要ii 目次vi 圖次ix 表次xiii 1 Introduction 1 1.1 Parkinson'sdisease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 PDTreatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 PDFeaturesinNeurophysiology . . . . . . . . . . . . . . . . . . 4 1.2 DeepBrainStimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 GenerativeAdversarialNetwork . . . . . . . . . . . . . . . . . . . . . . 11 1.4 ReinforcementLearning . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 SummaryofApproachandContributions . . . . . . . . . . . . . . . . . 14 2 Methodology 16 2.1 LFPFeatureExtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 DatasetDescription. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 STNLFPFeatures . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 BetaBandPowerRatio . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4 BetaBurstDuration . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.5 Phase-AmplitudeCoupling. . . . . . . . . . . . . . . . . . . . . 21 2.1.6 FeatureEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.7 DataPartitionBasedonFeatureAggregation . . . . . . . . . . . 23 2.2 GenerativeAdversarialNetwork . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 WassersteinGenerativeAdversarialNetwork . . . . . . . . . . . 24 2.2.2 GeneratorArchitecture . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.3 CriticArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.4 ParallelCriticsTraining . . . . . . . . . . . . . . . . . . . . . . 27 2.2.5 LossFunctionandOptimization . . . . . . . . . . . . . . . . . . 28 2.2.6 TrainingStrategyandFinalModelUsage . . . . . . . . . . . . . 30 2.3 BGTNetworkSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 NeuronalModels . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 RelayFidelityIndices . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 PDvs.HealthyStateFormulation . . . . . . . . . . . . . . . . . 34 2.3.4 GPitoTHSynapticVariable(Sgi) . . . . . . . . . . . . . . . . . 34 2.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 ReinforcementLearningEnvironmentandController . . . . . . . . . . . 38 2.4.1 EnvironmentInterfaceandEpisodeStructure . . . . . . . . . . . 38 2.4.2 StateandActionSpaces . . . . . . . . . . . . . . . . . . . . . . 39 2.4.3 StateFeatureCharacterization . . . . . . . . . . . . . . . . . . . 40 2.4.4 RewardFunction . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.5 TD3ControllerandTrainingStrategy . . . . . . . . . . . . . . . 44 2.4.6 FeedbackControllerPerformance . . . . . . . . . . . . . . . . . 45 2.5 OverallPipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Results 47 3.1 LFPfeaturevalidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Featuredistribution . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.2 FeatureCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.3 ReceiverOperatingCharacteristiccurve . . . . . . . . . . . . . . 49 3.1.4 Datasetpartition . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 GANResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 FeedbackControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 ConclusionandDiscussion 58 References 60 | - |
| dc.language.iso | en | - |
| dc.subject | 自適應深腦電刺激 | zh_TW |
| dc.subject | 帕金森氏症 | zh_TW |
| dc.subject | 強化學習 | zh_TW |
| dc.subject | 生成式對抗網路 | zh_TW |
| dc.subject | 特徵擷取 | zh_TW |
| dc.subject | feature extraction | en |
| dc.subject | generative adversarial network | en |
| dc.subject | reinforcement learning | en |
| dc.subject | adaptive deep brain stimulation | en |
| dc.subject | Parkinson’s disease | en |
| dc.title | 應用於自適應深腦電刺激回饋控制策略之帕金森氏症局部場電位特徵擷取與生成對抗網路神經訊號轉譯之研究 | zh_TW |
| dc.title | Parkinsonian LFP Feature Extraction and Generative Adversarial Network based Neural Signal Translation for Adaptive Deep Brain Stimulation Feedback Control Strategy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳中明;吳玉威 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Ming Chen;Yu-Wei Wu | en |
| dc.subject.keyword | 帕金森氏症,自適應深腦電刺激,特徵擷取,生成式對抗網路,強化學習, | zh_TW |
| dc.subject.keyword | Parkinson’s disease,adaptive deep brain stimulation,feature extraction,generative adversarial network,reinforcement learning, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202503219 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
