Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁zh_TW
dc.contributor.advisorLi-Jen Chenen
dc.contributor.author成逸咸zh_TW
dc.contributor.authorYi-Hsien Chengen
dc.date.accessioned2025-09-18T16:06:42Z-
dc.date.available2025-09-19-
dc.date.copyright2025-09-18-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation1. C.A. Koh, E.D. Sloan, A.K. Sum, and D.T. Wu, Fundamentals and applications of gas hydrates. Annu Rev Chem Biomol Eng, 2011. 2: p. 237-257.
2. G. Bhattacharjee and P. Linga, Amino acids as kinetic promoters for gas hydrate applications: a mini review. Energy & Fuels, 2021. 35(9): p. 7553-7571.
3. E.D. Sloan, Jr., Fundamental principles and applications of natural gas hydrates. Nature, 2003. 426(6964): p. 353-363.
4. O. Gaidukova, S. Misyura, V. Morozov, and P. Strizhak, Gas hydrates: applications and advantages. Energies, 2023. 16(6): p. 2866.
5. Y.F. Makogon, S.A. Holditch, and T.Y. Makogon, Natural gas-hydrates — a potential energy source for the 21st century. Journal of Petroleum Science and Engineering, 2007. 56(1-3): p. 14-31.
6. J. Pei, J. Chen, J. Wang, Z. Li, N. Li, and J. Kan, CO2 capture technology based on gas hydrate method: a review. Frontiers in Chemistry, 2024. 12: p. 1448881.
7. X. Zhang, S. Zhang, S. Yin, G. He, J. Li, and Q. Wu, Research progress of the kinetics on natural gas hydrate replacement by CO2-containing mixed gas: a review. Journal of Natural Gas Science and Engineering, 2022. 108: p. 104837.
8. A. Bharathi, O. Nashed, B. Lal, and K.S. Foo, Experimental and modeling studies on enhancing the thermodynamic hydrate inhibition performance of monoethylene glycol via synergistic green material. Sci Rep, 2021. 11(1): p. 2396.
9. A.a.A. Majid, J. Worley, and C.A. Koh, Thermodynamic and kinetic promoters for gas hydrate technological applications. Energy & Fuels, 2021. 35(23): p. 19288-19301.
10. C.B. Bavoh, O. Nashed, A.N. Rehman, N.a.a.B. Othaman, B. Lal, and K.M. Sabil, Ionic liquids as gas hydrate thermodynamic inhibitors. Industrial & Engineering Chemistry Research, 2021. 60(44): p. 15835-15873.
11. D. Costa Do Nascimento, A.K. Sum, A.M. Barbosa Neto, and M.C. Da Costa, Protic ionic liquids as thermodynamic methane hydrates inhibitors. Journal of Molecular Liquids, 2025. 424: p. 127082.
12. P.S.R. Prasad and B.S. Kiran, Are the amino acids thermodynamic inhibitors or kinetic promoters for carbon dioxide hydrates? Journal of Natural Gas Science and Engineering, 2018. 52: p. 461-466.
13. A. Rasoolzadeh, J. Javanmardi, and A.H. Mohammadi, Thermodynamics and kinetics of methane hydrate formation in the presence of galactose as an eco-friendly inhibitor. Fuel, 2025. 390: p. 134690.
14. Q. Zhang, M.A. Kelland, and H. Lu, Non-amide kinetic hydrate inhibitors: a review. Fuel, 2022. 315: p. 123179.
15. Y. Yan, Y. Yamada, and Y. Liang, Enhancing the efficacy of kinetic hydrate inhibitors through synergistic effects: a review. Gas Science and Engineering, 2025. 138: p. 205611.
16. E. Chaturvedi, S. Laik, and A. Mandal, A comprehensive review of the effect of different kinetic promoters on methane hydrate formation. Chinese Journal of Chemical Engineering, 2021. 32: p. 1-16.
17. A. Dubey and A. Arora, Effect of promoters in hydrates based carbon dioxide capture: a review. Gas Science and Engineering, 2024. 131: p. 205459.
18. R. Anderson, M. Llamedo, B. Tohidi, and R.W. Burgass, Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica. The Journal of Physical Chemistry B, 2003. 107(15): p. 3507-3514.
19. Y. Seo, H. Lee, and T. Uchida, Methane and carbon dioxide hydrate phase behavior in small porous silica gels:  three-phase equilibrium determination and thermodynamic modeling. Langmuir, 2002. 18(24): p. 9164-9170.
20. D. Kim, Y.-H. Ahn, and H. Lee, Phase equilibria of CO2 and CH4 hydrates in intergranular meso/macro pores of MIL-53 metal organic framework. Journal of Chemical & Engineering Data, 2015. 60(7): p. 2178-2185.
21. Y. Zhao, A. Qu, M. Yang, H. Dong, Y. Ge, Q. Li, Y. Liu, L. Zhang, Y. Liu, L. Yang, Y. Song, and J. Zhao, Modified balsa wood with natural, flexible porous structure for gas storage. Applied Energy, 2024. 353: p. 122026.
22. Y. Zhang, M. Thanusing, M.S. Rahaman, F. Wang, K. Alexander, L.A. Connal, F. Zhang, and X. Wang, Zwitterionic polymeric hydrogels promote CO2 hydrate formation kinetics: an experimental study. Fuel, 2025. 396: p. 135329.
23. G. Bhattacharjee, A. Kumar, T. Sakpal, and R. Kumar, Carbon dioxide sequestration: influence of porous media on hydrate formation kinetics. ACS Sustainable Chemistry & Engineering, 2015. 3(6): p. 1205-1214.
24. P. Mekala, M. Busch, D. Mech, R.S. Patel, and J.S. Sangwai, Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration. Journal of Petroleum Science and Engineering, 2014. 122: p. 1-9.
25. P. Mekala, P. Babu, J.S. Sangwai, and P. Linga, Formation and dissociation kinetics of methane hydrates in seawater and silica sand. Energy & Fuels, 2014. 28(4): p. 2708-2716.
26. A. Siangsai, P. Rangsunvigit, B. Kitiyanan, S. Kulprathipanja, and P. Linga, Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation. Chemical Engineering Science, 2015. 126: p. 383-389.
27. M. Landa, M. Kotera, J.-S. Remy, and N. Badi, Preparation of poly(ethylene imine) derivatives with precisely controlled molecular weight. European Polymer Journal, 2016. 84: p. 338-344.
28. A. Chandra, A.A. Singh, S. Prasad, M.R. Andersson, and D. Gedefaw, Crosslinking approaches for polyethylene imine (PEI) and its uses in adsorption of heavy metals, dyes, and carbon dioxide. Applied Sciences, 2025. 15(9).
29. H.J. Min, M. Kang, C.S. Lee, and J.H. Kim, Dual-functional interconnected pebble-like structures in highly crystalline poly(ethylene oxide) membranes for CO2 separation. Separation and Purification Technology, 2021. 263: p. 118363.
30. J. Zhou, H. Ji, J. Liu, T. Qian, and C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Materials, 2019. 22: p. 256-264.
31. A. Xu, W. Wang, T. Duo, Y. Wang, Z. Xiao, and R. Liu, High-performance polyethyleneimine/sodium silicate material: one-step strategy at ambient temperature and application in removing heavy metal ion. Journal of Materials Science, 2022. 57(6): p. 4221-4238.
32. P.J. Willcox, D.W. Howie, K. Schmidt-Rohr, D.A. Hoagland, S.P. Gido, S. Pudjijanto, L.W. Kleiner, and S. Venkatraman, Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(24): p. 3438-3454.
33. R. Ricciardi, F. Auriemma, C. Gaillet, C. De Rosa, and F. Lauprêtre, Investigation of the crystallinity of freeze/Thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules, 2004. 37(25): p. 9510-9516.
34. H. Adelnia, R. Ensandoost, S. Shebbrin Moonshi, J.N. Gavgani, E.I. Vasafi, and H.T. Ta, Freeze/thawed polyvinyl alcohol hydrogels: present, past and future. European Polymer Journal, 2022. 164: p. 110974.
35. A. Goswami, S.C. Pillai, and G. Mcgranaghan, Surface modifications to enhance dropwise condensation. Surfaces and Interfaces, 2021. 25: p. 101143.
36. R. Si, H. Luo, T. Zhang, and J. Pu, High hydrophobic ZIF-8@cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation. Int J Biol Macromol, 2023. 238: p. 124008.
37. Z. Chen, B. Zhan, S. Li, D. Wei, W. Zhou, and Y. Liu, Facile fabrication of corn stover-based aerogel for oil/water separation. Separation and Purification Technology, 2022. 298: p. 121642.
38. H. Guan, Z. Cheng, and X. Wang, Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano, 2018. 12(10): p. 10365-10373.
39. T. Makowski, C. Zhang, A. Olah, E. Piorkowska, E. Baer, and D. Kregiel, Modification of dual-component fibrous materials with carbon nanotubes and methyltrichlorosilane. Materials & Design, 2019. 162: p. 219-228.
40. Y. Jian, W. Tang, T. Xu, D.W. Hess, X. Chai, L. Zhang, K. Xu, Z. Guo, H. Wan, and L. Xie, Imparting durable superhydrophobic/oleophobic properties to wood surfaces by means of PFDMS@MTCS vapor deposition. Progress in Organic Coatings, 2023. 185: p. 107926.
41. M.-K. Hsieh, Y.-T. Yeh, Y.-P. Chen, P.-C. Chen, S.-T. Lin, and L.-J. Chen, Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes. Industrial & Engineering Chemistry Research, 2012. 51(5): p. 2456-2469.
42. M.-K. Hsieh, W.-Y. Ting, Y.-P. Chen, P.-C. Chen, S.-T. Lin, and L.-J. Chen, Explicit pressure dependence of the Langmuir adsorption constant in the van der Waals–Platteeuw model for the equilibrium conditions of clathrate hydrates. Fluid Phase Equilibria, 2012. 325: p. 80-89.
43. H.-Y. Chin, B.-S. Lee, Y.-P. Chen, P.-C. Chen, S.-T. Lin, and L.-J. Chen, Prediction of phase equilibrium of methane hydrates in the presence of ionic liquids. Industrial & Engineering Chemistry Research, 2013. 52(47): p. 16985-16992.
44. H.-Y. Chin, M.-K. Hsieh, Y.-P. Chen, P.-C. Chen, S.-T. Lin, and L.-J. Chen, Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model. The Journal of Chemical Thermodynamics, 2013. 66: p. 34-43.
45. T. Nakamura, T. Makino, T. Sugahara, and K. Ohgaki, Stability boundaries of gas hydrates helped by methane—structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chemical Engineering Science, 2003. 58(2): p. 269-273.
46. J. Nixdorf and L.R. Oellrich, Experimental determination of hydrate equilibrium conditions for pure gases, binary and ternary mixtures and natural gases. Fluid Phase Equilibria, 1997. 139(1-2): p. 325-333.
47. Z. Kassim, M. Saad Khan, and B. Lal, Thermodynamic modelling on methane hydrate equilibrium condition in the presence of electrolyte inhibitor. Materials Today: Proceedings, 2019. 19: p. 1395-1402.
48. A. Saberi, A. Alamdari, A. Shariati, and A.H. Mohammadi, Experimental measurement and thermodynamic modeling of equilibrium condition for natural gas hydrate in MEG aqueous solution. Fluid Phase Equilibria, 2018. 459: p. 110-118.
49. L. Keshavarz, J. Javanmardi, A. Eslamimanesh, and A.H. Mohammadi, Experimental measurement and thermodynamic modeling of methane hydrate dissociation conditions in the presence of aqueous solution of ionic liquid. Fluid Phase Equilibria, 2013. 354: p. 312-318.
50. L. Keshavarz, M.R. Ghaani, and N.J. English, Thermodynamic evaluation of inhibitors for methane-hydrate formation. Fuel, 2022. 324: p. 124672.
51. A. Qasim, M.S. Khan, B. Lal, M.C. Ismail, and K. Rostani, Quaternary ammonium salts as thermodynamic hydrate inhibitors in the presence and absence of monoethylene glycol for methane hydrates. Fuel, 2020. 259: p. 116219.
52. S. Adisasmito, R.J. Frank, Iii, and E.D. Sloan, Jr., Hydrates of carbon dioxide and methane mixtures. Journal of Chemical & Engineering Data, 1991. 36(1): p. 68-71.
53. S.-S. Fan and T.-M. Guo, Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions. Journal of Chemical & Engineering Data, 1999. 44(4): p. 829-832.
54. S.S. Fan, G.J. Chen, Q.L. Ma, and T.M. Guo, Experimental and modeling studies on the hydrate formation of CO2 and CO2-rich gas mixtures. Chemical Engineering Journal, 2000. 78(2): p. 173-178.
55. P.F. Ferrari, A.Z. Guembaroski, M.A. Marcelino Neto, R.E.M. Morales, and A.K. Sum, Experimental measurements and modelling of carbon dioxide hydrate phase equilibrium with and without ethanol. Fluid Phase Equilibria, 2016. 413: p. 176-183.
56. T. Maekawa, Equilibrium conditions for clathrate hydrates formed from carbon dioxide or ethane in the presence of aqueous solutions of 1,4-dioxane and 1,3-dioxolane. Fluid Phase Equilibria, 2014. 384: p. 95-99.
57. A. Kamari, H. Hashemi, S. Babaee, A.H. Mohammadi, and D. Ramjugernath, Phase stability conditions of carbon dioxide and methane clathrate hydrates in the presence of KBr, CaBr 2 , MgCl 2 , HCOONa, and HCOOK aqueous solutions: Experimental measurements and thermodynamic modelling. The Journal of Chemical Thermodynamics, 2017. 115: p. 307-317.
58. T. Uchida, T. Ebinuma, and T. Ishizaki, Dissociation condition measurements of methane hydrate in confined small pores of porous glass. The Journal of Physical Chemistry B, 1999. 103(18): p. 3659-3662.
59. P. Zhang, Q. Wu, and C. Mu, Influence of temperature on methane hydrate formation. Sci Rep, 2017. 7(1): p. 7904.
60. Y. Liu, B. Chen, Y. Chen, S. Zhang, W. Guo, Y. Cai, B. Tan, and W. Wang, Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technology, 2015. 3(8): p. 815-819.
61. P.S.R. Prasad and B. Sai Kiran, Clathrate hydrates of greenhouse gases in the presence of natural amino acids: storage, transportation and separation applications. Sci Rep, 2018. 8(1): p. 8560.
62. Y. Cai, Y. Chen, Q. Li, L. Li, H. Huang, S. Wang, and W. Wang, CO2 hydrate formation promoted by a natural amino acid l‐methionine for possible application to CO2 capture and storage. Energy Technology, 2017. 5(8): p. 1195-1199.
63. Z.A. Siefker, J.N. Hodul, X. Zhao, N. Bajaj, K.M. Brayton, C. Flores-Hansen, W. Zhao, G.T.C. Chiu, J.E. Braun, J.F. Rhoads, and B.W. Boudouris, Manipulating polymer composition to create low-cost, high-fidelity sensors for indoor CO2 monitoring. Scientific Reports, 2021. 11(1): p. 13237.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99822-
dc.description.abstract本次研究主要是探討固體孔洞材料對於甲烷或二氧化碳水合物在熱力學及動力學上的影響,第一部分是利用聚乙烯亞胺(Polyethylenimine , PEI)、聚乙二醇二縮水甘油醚(Poly(ethylene glycol) diglycidyl ether, PEGDE)及聚乙烯醇(Poly(vinyl alcohol), PVA)三種高分子聚合物製作兩種不同成分比例的球形孔洞材料。第二部分則是對此球形孔洞材料進行疏水性改質,我們利用化學氣相沉積法,將我們的球形孔洞材料與甲基三氯矽烷(Methytrichlorosilane, MTCS)進行反應,使其具有疏水性,後續再進行靜態接觸角的量測測試其疏水性質。
接著是熱力學實驗方面,我們針對四種系統進行實驗,分別是親水性PEI/PEGDE孔洞材料以及疏水性PEI/PEGDE孔洞材料的甲烷與二氧化碳水合物熱力學實驗,在這部分實驗我們個選擇了三個不同的壓力作為實驗點(甲烷:9 MPa, 10 MPa, 11 MPa;二氧化碳:3 MPa, 3.4 MPa, 3.8 MPa)並利用等容法(Isochoric method)進行熱力學性質測定,最後結果顯示不論親水或疏水的PEI/PEGDE孔洞材料對於甲烷與二氧化碳水合物都有熱力學促進效果。
再來是動力學實驗方面,動力學則有六種系統,分別是(1)親水性PEI/PEGDE孔洞材料、(2)疏水性PEI/PEGDE孔洞材料以及(3)親水性PEI/PEGDE/PVA孔洞材料對於甲烷水合物的動力學實驗,以及(4)親水性PEI/PEGDE孔洞材料、(5)疏水性PEI/PEGDE孔洞材料以及(6)更為疏水的PEI/PEGDE孔洞材料的二氧化碳動力學實驗,這部份我們將每個系統的溫度都定為274.15 K(甲烷水合物系統的過冷溫度約為12.3 K;二氧化碳水合物系統的過冷溫度約為7.6 K),起始壓力分別訂為10 MPa(甲烷)與3.4 MPa(二氧化碳),最後結果顯示二氧化碳水合物在此種材料上有較快的生成速率,並且疏水性材料比親水性材料來得較佳。
zh_TW
dc.description.abstractThis study investigates the thermodynamic and kinetic effects of solid porous materials on methane and carbon dioxide hydrates. In the first part, two types of spherical porous materials with different compositions were synthesized using three polymers: polyethyleneimine (PEI), poly(ethylene glycol) diglycidyl ether (PEGDE), and polyvinyl alcohol (PVA). In the second part, the surface of these porous materials was modified to enhance hydrophobicity. Chemical vapor deposition (CVD) was employed to react the porous materials with methyltrichlorosilane (MTCS), imparting hydrophobic characteristics. The contact angle measurements were then conducted to evaluate the hydrophobicity.
For the thermodynamic experiments, four systems were studied: hydrophilic and hydrophobic PEI/PEGDE porous materials with methane and carbon dioxide hydrates. Three pressure conditions were selected for each gas system (methane: 9 MPa, 10 MPa, 11 MPa; carbon dioxide: 3 MPa, 3.4 MPa, 3.8 MPa). The isochoric method was used to determine the thermodynamic properties. Results demonstrated that both hydrophilic and hydrophobic PEI/PEGDE porous materials enhanced hydrate formation thermodynamically.
For the kinetic experiment, six systems were studied. These included: (1) hydrophilic PEI/PEGDE porous material, (2) hydrophobic PEI/PEGDE porous material, and (3) hydrophilic PEI/PEGDE/PVA porous material for methane hydrate formation; as well as (4) hydrophilic PEI/PEGDE, (5) hydrophobic PEI/PEGDE, and (6) more strongly hydrophobic PEI/PEGDE porous materials for carbon dioxide hydrate formation. In all experiments, the temperature was fixed at 274.15 K (the subcooling temperature in the methane hydrate system was approximately 12.3 K, whereas that in the carbon dioxide hydrate system was approximately 7.6 K). The initial pressure was set at 10 MPa for the methane systems and 3.4 MPa for the carbon dioxide systems. The results demonstrated that carbon dioxide hydrate formation proceeded at a faster rate under these experimental conditions, particularly when using hydrophobic porous materials. Furthermore, hydrophobic materials consistently outperformed hydrophilic ones in terms of promoting hydrate formation kinetics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:06:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-18T16:06:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
目次 iv
圖次 vi
表次 x
第一章 緒論 1
1.1 氣體水合物基本性質 1
1.2 氣體水合物的應用 2
1.3 研究動機 3
第二章 文獻回顧 4
2.1 氣體水合物熱力學相邊界量測 4
2.2 氣體水合物動力學性質 5
2.3 孔洞材料對於氣體水合物之影響 5
2.4 聚乙烯亞胺孔洞材料製作 8
2.5 孔洞材料疏水改質 10
第三章 實驗方法 12
3.1 實驗藥品 12
3.2 實驗儀器架設 13
3.2.1 表面親疏水性測試 13
3.2.2 氣體水合物成核實驗 14
3.3 實驗步驟 15
3.3.1 PEI/PEGDE孔洞材料製備 15
3.3.2 PEI/PEGDE/PVA孔洞材料製備 15
3.3.3 疏水性孔洞材料製備 16
3.3.4 表面親疏水性測試 17
3.3.5 氣體水合物熱力學實驗 17
3.3.6 氣體水合物動力學實驗 18
第四章 孔洞材料性質測定 20
4.1 基本性質測定 20
4.2 場發射槍掃描式電子顯微鏡 22
4.3 表面疏水性質測試 23
第五章 複合孔洞材料對甲烷與二氧化碳水合物在熱力學上的影響 25
5.1 純水甲烷與二氧化碳水合物之擬合曲線 25
5.2 熱力學數據處理 25
5.3 PEI/PEGDE孔洞材料對於甲烷與二氧化碳水合物之熱力學影響 26
第六章 複合孔洞材料對甲烷與二氧化碳水合物在動力學上的影響 31
6.1 動力學數據處理 31
6.1.1 體積計算 31
6.1.2 氣體消耗量計算 32
6.2 孔洞材料對於甲烷水合物之動力學影響 34
6.3 孔洞材料對於二氧化碳水合物之動力學影響 52
6.4 甲烷與二氧化碳水合物生成情形 70
第七章 結論 71
參考文獻 73
-
dc.language.isozh_TW-
dc.subjectPEI/PEGDE孔洞材料zh_TW
dc.subject二氧化碳水合物zh_TW
dc.subject親水zh_TW
dc.subject甲烷水合物zh_TW
dc.subjectPEI/PEGDE/PVA孔洞材料zh_TW
dc.subject熱力學促進zh_TW
dc.subject疏水zh_TW
dc.subjectThermodynamic promotionen
dc.subjectHydrophobicen
dc.subjectHydrophilicen
dc.subjectPEI/PEGDE/PVA porous materialen
dc.subjectCarbon dioxide hydrateen
dc.subjectPEI/PEGDE porous materialen
dc.subjectMethane hydrateen
dc.title聚乙烯亞胺/聚乙二醇二縮水甘油醚複合孔洞材料親疏水性對於甲烷與二氧化碳水合物的動力學與熱力學之影響zh_TW
dc.titleEffects of the hydrophobicity of polyethylenimine/poly(ethylene glycol) diglycidyl ether composite porous material on the thermodynamics and kinetics of methane and carbon dioxide hydrate formationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳延平;蔡榮進;蘇至善zh_TW
dc.contributor.oralexamcommitteeYan-Ping Chen;Jung-Chin Tsai;Chie-Shaan Suen
dc.subject.keyword甲烷水合物,二氧化碳水合物,PEI/PEGDE孔洞材料,PEI/PEGDE/PVA孔洞材料,親水,疏水,熱力學促進,zh_TW
dc.subject.keywordMethane hydrate,PEI/PEGDE porous material,Carbon dioxide hydrate,PEI/PEGDE/PVA porous material,Hydrophilic,Hydrophobic,Thermodynamic promotion,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202503697-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-08-03-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-03
4.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved