請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99793完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉力瑜 | zh_TW |
| dc.contributor.advisor | Li-yu Daisy Liu | en |
| dc.contributor.author | Nan San Nyunt | zh_TW |
| dc.contributor.author | Nan San Nyunt | en |
| dc.date.accessioned | 2025-09-17T16:42:02Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-08 | - |
| dc.identifier.citation | (MIID), M. I. f. I. D. (2017). Addressing the Challenges of Upland Farming in Southern Shan State for Climate Resilience: Agroecology case study. MIID. https://www.mmiid.org/
(UNDP), U. N. D. P. (2023). Three innovative ways UNDP is helping farmers in Myanmar’s Shan State. https://www.undp.org/myanmar/news/three-innovative-ways-undp-helping-farmers-myanmars-shan-state Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., Rehman, M. H. u., Khan, M. A., Hasanuzzaman, M., Fahad, S., Boote, K. J., & Hoogenboom, G. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247. https://doi.org/10.1016/j.agrformet.2017.07.012 Abbas, G., Ahmed, M., Fatima, Z., Hussain, S., Kheir, A. M. S., Ercişli, S., & Ahmad, S. (2023). Modeling the potential impact of climate change on maize-maize cropping system in semi-arid environment and designing of adaptation options. Agricultural and Forest Meteorology, 341. https://doi.org/10.1016/j.agrformet.2023.109674 Adavi, Z., Moradi, R., Saeidnejad, A. H., Tadayon, M. R., & Mansouri, H. (2018). Assessment of potato response to climate change and adaptation strategies. Scientia Horticulturae, 228, 91-102. https://doi.org/10.1016/j.scienta.2017.10.017 Adekanmbi, T., Wang, X., Basheer, S., Nawaz, R. A., Pang, T., Hu, Y., & Liu, S. (2023). Assessing Future Climate Change Impacts on Potato Yields - A Case Study for Prince Edward Island, Canada. Foods, 12(6). https://doi.org/10.3390/foods12061176 Ansari, A., Lin, Y.-P., & Lur, H.-S. (2021). Evaluating and Adapting Climate Change Impacts on Rice Production in Indonesia: A Case Study of the Keduang Subwatershed, Central Java. Environments, 8(11). https://doi.org/10.3390/environments8110117 Anser, M. K., Hina, T., Hameed, S., Nasir, M. H., Ahmad, I., Naseer, M. A. u. R., Anser, M. K., Hina, T., Hameed, S., Nasir, M. H., Ahmad, I., & Naseer, M. A. u. R. (2020). Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 2522, 17(7). https://doi.org/10.3390/ijerph17072522 Arora, V. K., Nath, J. C., & Singh, C. B. (2013). Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model. Agricultural Water Management, 124, 69-76. https://doi.org/10.1016/j.agwat.2013.03.021 Aung, M. (2017). Food Resilience Through Root and Tuber Crops in Upland and Coastal Communities of the Asia-Pacific: Scoping Study Myanmar. Consultative Group on International Agricultural Research (CGIAR, including the International Potato Center (CIP), International Center for Tropical Agriculture (CIAT), and the Research Program on Roots, Tubers and Bananas) and the United Nations Fund for Agricultural Development (IFAD), and the European Commission. https://cgspace.cgiar.org/server/api/core/bitstreams/0448fdef-a77e-45ef-b4d0-8f75e7bbb8ab/content AVSI, F. M. a. (2019). Handbook on climate smart agriculture in Myanmar [Book (stand-alone)]. http://www.fao.org/documents/card/en/c/ca3662en BarbonWJ, M., Su MN, GonsalvesJ. (2020). Nurturing resilience in smallholder farming systems. Bashir, I., Nicolao, R., Haerter, J. A., de Brito, G. G., Castro, C. M., Heiden, G., Bashir, I., Nicolao, R., Haerter, J. A., de Brito, G. G., Castro, C. M., & Heiden, G. (2025). Phenotyping Wild Potatoes for Photosynthesis Associated Traits Under Heat Stress. American Journal of Potato Research 2025 102:1, 102(1). https://doi.org/10.1007/s12230-025-09976-8 Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., Toth, I. K., Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., & Toth, I. K. (2012). Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Security 2012 4:4, 4(4). https://doi.org/10.1007/s12571-012-0220-1 Chen, C.-T., Setter, T. L., Chen, C.-T., & Setter, T. L. (2021). Role of Tuber Developmental Processes in Response of Potato to High Temperature and Elevated CO2. Plants 2021, Vol. 10, Page 871, 10(5). https://doi.org/10.3390/plants10050871 Dewedar, O., Plauborg, F., El-Shafie, A., & Marwa, A. (2021). Response of potato biomass and tuber yield under future climate change scenarios in Egypt. Journal of Water and Land Development, 49. https://doi.org/10.24425/jwld.2021.137106 Directorate of Investment and Company Administration (DICA), M. o. P. a. F. (2017). Shan State Investment Opportunity Survey Rreport. Dongyu, Q. (2022). Role and Potential of Potato in Global Food Security. In Book of Abstracts, 11th ed.; World Potato Congress: Dublin, Ireland. Eckstein, D., Künzel, V., & Schäfer, L. (2021). The Global Climate Risk Index 2021. https://bvearmb.do/handle/123456789/1306 Escuredo, O., Seijo-Rodríguez, A., Rodríguez-Flores, M. S., Meno, L., Seijo, M. C., Escuredo, O., Seijo-Rodríguez, A., Rodríguez-Flores, M. S., Meno, L., & Seijo, M. C. (2020). Changes in the Morphological Characteristics of Potato Plants Attributed to Seasonal Variability. Agriculture 2020, Vol. 10, Page 95, 10(4). https://doi.org/10.3390/agriculture10040095 FAO. (2023). Potatoes production volume in Myanmar from 2011 to 2022 (in 1,000 tons) [Graph]. In Statista. Retrieved April 16, 2025, from https://www.statista.com/statistics/1060819/myanmar-potatoes-production-volume/ Fleisher, D. H., Haynes, K. G., & Timlin, D. J. (2020). Cultivar coefficient stability and effects on yield projections in the SPUDSIM model. Agronomy Journal, 112(2). https://doi.org/10.1002/agj2.20070 Gautam, S., Pandey, J., Scheuring, D. C., Koym, J. W., Vales, M. I., Gautam, S., Pandey, J., Scheuring, D. C., Koym, J. W., & Vales, M. I. (2024). Genetic Basis of Potato Tuber Defects and Identification of Heat-Tolerant Clones. Plants 2024, Vol. 13, Page 616, 13(5). https://doi.org/10.3390/plants13050616 Griffin, T. S., Bradley, S. J., & Ritchie, J. T. (1993). A simulation model for potato growth and development: SUBSTOR-potato version 2.0. Hastilestari, B. R., Lorenz, J., Reid, S., Hofmann, J., Pscheidt, D., Sonnewald, U., & Sonnewald, S. (2018). Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant, Cell & Environment, 41(11). https://doi.org/10.1111/pce.13366 Hijmans, R. J., & Hijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research 2003 80:4, 80(4). https://doi.org/10.1007/BF02855363 Hoogenboom, G., C.H. Porter, K.J. Boote, V. Shelia, P.W. Wilkens, U. Singh, J.W. White, S. Asseng, J.I. Lizaso, L.P. Moreno, W. Pavan, R. Ogoshi, L.A. Hunt, G.Y. Tsuji, and J.W. Jones. (2019). The DSSAT crop modeling ecosystem. Advances in Crop Modeling for a Sustainable Agriculture., In: p.173-216 [K.J. Boote, editor]. https://dssat.net/ Htoo, T. (2021). Macro Analysis of Climate Change and Agricultural Production in Myanmar | IntechOpen. The Nature, Causes, Effects and Mitigation of Climate Change on the Environment. https://doi.org/10.5772/intechopen.98970 Jégo, G., Crépeau, M., Jing, Q., Grant, B., Smith, W., Mesbah, M., & Qian, B. (2025). Potato yield projections under climate change in Canada. Agronomy Journal, 117(1). https://doi.org/10.1002/agj2.70017 Jennings, S. A., Koehler, A.-K., Nicklin, K. J., Deva, C., Sait, S. M., & Challinor, A. J. (2020). Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.519324 Jerry L. Hatfield n, J. H. P. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4–10. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3-4). https://doi.org/10.1016/S1161-0301(02)00107-7 Katarzyna Rymuza, E. R., Tomasz Lenartowicz (2015). Effect of weather conditions on early potato yields in east-central Poland. Communications in Biometry and Crop Science, 10, 65-72. Kim, Y.-U., & Lee, B.-W. (2019). Frontiers | Differential Mechanisms of Potato Yield Loss Induced by High Day and Night Temperatures During Tuber Initiation and Bulking: Photosynthesis and Tuber Growth. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00300 Kim, Y.-U., Seo, B.-S., Choi, D.-H., Ban, H.-Y., & Lee, B.-W. (2017). Impact of high temperatures on the marketable tuber yield and related traits of potato. European Journal of Agronomy, 89, 46-52. https://doi.org/10.1016/j.eja.2017.06.005 Kim, Y.-U., Webber, H., Kim, Y.-U., & Webber, H. (2024). Contrasting Responses of Spring and Summer Potato to Climate Change in South Korea. Potato Research 2024 67:4, 67(4). https://doi.org/10.1007/s11540-024-09691-7 Kleinwechter, U., Gastelo, M., Ritchie, J., Nelson, G., & Asseng, S. (2016). Simulating cultivar variations in potato yields for contrasting environments. Agricultural Systems, 145. https://doi.org/10.1016/j.agsy.2016.02.011 Lakatos, L., Misik, T., Csabai, E. K., Cs, P., Lakatos, L., Misik, T., Csabai, E. K., & Cs, P. (2023). Climate Change and Potato Cultivation: A Geographical Shift and Its Implications. IOP Conference Series: Earth and Environmental Science, 1242(1). https://doi.org/10.1088/1755-1315/1242/1/012003 Levy, D., Veilleux, R. E., Levy, D., & Veilleux, R. E. (2007). Adaptation of potato to high temperatures and salinity-a review. American Journal of Potato Research 2007 84:6, 84(6). https://doi.org/10.1007/BF02987885 Lizana, X. C., Sandaña, P., Behn, A., Ávila-Valdés, A., Ramírez, D. A., Soratto, R. P., & Campos, H. (2021). Potato. Crop Physiology Case Histories for Major Crops. https://doi.org/10.1016/B978-0-12-819194-1.00018-9 Maqsood, J., Farooque, A. A., Wang, X., Abbas, F., Acharya, B., Afzaal, H., Maqsood, J., Farooque, A. A., Wang, X., Abbas, F., Acharya, B., & Afzaal, H. (2020). Contribution of Climate Extremes to Variation in Potato Tuber Yield in Prince Edward Island. Sustainability 2020, Vol. 12, Page 4937, 12(12). https://doi.org/10.3390/su12124937 MIMU. (2022). Climate, Environmental Degradation and Disaster Risk in Myanmar: a MIMU Analytical Brief. Mokrani, K., Kühn, C., Tarchoun, N., Mokrani, K., Kühn, C., & Tarchoun, N. (2022). Temperature Effects on Tuber Production and Carbohydrates Partitioning in Different Cultivars during Consecutive Stages of Potato (Solanum tuberosum L.) Growth. Potato Research 2022 66:1, 66(1). https://doi.org/10.1007/s11540-022-09543-2 Molua, E. L. a. M., Ernest L. (2007). The Economic Impact of Climate Change on Agriculture in Cameroon. World Bank Policy Research Working Paper No. 4364. https://ssrn.com/abstract=1016260 MONREC. (2019). Myanmar Climate Change Strategy (2018– 2030); Ministry of Natural Resources and Environmental Conservation (MONREC). https://myanmar.un.org/sites/default/files/2019-11/MyanmarClimateChangeStrategy_2019.pdf Montoya, F., Camargo, D., Córcoles, J. I., Domínguez, A., & Ortega, J. F. (2019). Analysis of deficit irrigation strategies by using SUBSTOR-Potato model in a semi-arid area | The Journal of Agricultural Science | Cambridge Core. The Journal of Agricultural Science, 157(7-8). https://doi.org/10.1017/S002185961900090X Naintoh, M. B., Wantim, M. N., & Ndonwi, A. S. (2018). Assessing the Impact of Climate and Change and Variability on Irish Potato (Solanum Tuberosum L. ) Production from 1995 to 2015 in Tubah Sub Division, North West Region, Cameroon. Journal of the Cameroon Academy of Sciences, 14(2). https://doi.org/10.4314/jcas.v14i2.2 Naz, S., Ahmad, S., Abbas, G., Fatima, Z., Hussain, S., Ahmed, M., Khan, M. A., Khan, A., Fahad, S., Nasim, W., Ercisli, S., Wilkerson, C. J., & Hoogenboom, G. (2022). Modeling the impact of climate warming on potato phenology. European Journal of Agronomy, 132. https://doi.org/10.1016/j.eja.2021.126404 Naz, S., Ahmed, M., Abbas, G., Fatima, Z., Hussain, S., Iqbal, P., Ghani, A., Ali, M., Awan, T. H., Samad, N., Aasim, M., Ercisli, S., Ahmad, S., Naz, S., Ahmed, M., Abbas, G., Fatima, Z., Hussain, S., Iqbal, P., . . . Ahmad, S. (2024). Assessment of Climate Change Impact on Potato-Potato Cropping System Under Semi-arid Environment and Designing of Adaptation Strategies. Potato Research 2024. https://doi.org/10.1007/s11540-024-09771-8 Panda, R. K. S. A. T. D. K. S. R. K. (2018). Quantitative Approaches in Adaptation Strategies to Cope with Increased Temperatures Following Climate Change in Potato Crop. European Association for Potato Research. Pronk, A. A. (2015). Report of the potato mission of the Netherlands industry and knowledge institutions to Myanmar. Plant Research International, part of Wageningen UR Business Unit Agrosystems Research. Pronk, A. A., Ter Beke, F., Minderhoud, K., Goosen, M., Phoo, M. T., & Nang, N. (2016). Baseline potato cultivation in Myanmar. Quiroz, R., Ramírez, A. D., Kroschel, J., Andrade-Piedra, J., Barreda, C., Condori, B., Mares, V., Monneveux, P., & Perez, W. (2018). Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agriculture, 3(1), 273-283. https://doi.org/10.1515/opag-2018-0029 Radley Horton, M. D. M., Danielle Peters, Corey Lesk,, Ryan Bartlett, H. H., Daniel Bader, Pasquale Capizzi,, & Rosenzweig, S. M. a. C. (2017). Assessing Climate Risk in Myanmar: Technical Report. Rana, A., DUA, V. K., CHAUHAN, N., CHAUKHANDE, P., & KUMARI, M. (2023). Climate change impact on potato (Solanum tuberosum) productivity and relative adaptation strategies. Journal of Agrometeorology, 25(3). https://doi.org/10.54386/jam.v25i3.2181 Rana, A., Dua, V. K., Chauhan, S., Sharma, J., Rana, A., Dua, V. K., Chauhan, S., & Sharma, J. (2020). Climate Change and Potato Productivity in Punjab—Impacts and Adaptation. Potato Research 2020 63:4, 63(4). https://doi.org/10.1007/s11540-020-09460-2 Raymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J. E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., & Porter, C. (2017). Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research, 202, 57-76. https://doi.org/10.1016/j.fcr.2016.04.012 Rykaczewska, K. (2017). Impact of heat and drought stresses on size and quality of the potato yield. Plant, Soil and Environment, 63(1). https://doi.org/10.17221/691/2016-PSE Rykaczewska, K., & Rykaczewska, K. (2015). The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. American Journal of Potato Research 2015 92:3, 92(3). https://doi.org/10.1007/s12230-015-9436-x Semenov, M. A. (2021). LARS-WG stochastic weather generator. https://doi.org/10.5281/zenodo.4572752 Shrestha, S. K. (2022). Climate Change and Adaptative Strategies of the Communities of Panchkhaal Municipality. The Third Pole: Journal of Geography Education. https://doi.org/10.3126/ttp.v22i01.52576 Siano, A. B., Roskruge, N., Kerckhoffs, H., Sofkova-Bobcheva, S., Siano, A. B., Roskruge, N., Kerckhoffs, H., & Sofkova-Bobcheva, S. (2024). Effects of Abiotic Stress Associated with Climate Change on Potato Yield and Tuber Quality Under a Multi-environment Trial in New Zealand. Potato Research 2024 67:4, 67(4). https://doi.org/10.1007/s11540-024-09695-3 Southern, M. D., Kumar, M. G. N., Blauer, J. M., Southern, M. D., Kumar, M. G. N., & Blauer, J. M. (2025). Cultivars and Their Developmental Phases Interact with Temperature Fluctuations to Modulate Growth, Productivity and Seed Tuber Physiology of Potatoes (Solanum tuberosum L.). Plants 2025, Vol. 14, Page 750, 14(5). https://doi.org/10.3390/plants14050750 Šťastná, M., Toman, F., & Dufková, J. (2010). Usage of SUBSTOR model in potato yield prediction. Agricultural Water Management, 97(2), 286-290. https://doi.org/10.1016/j.agwat.2009.09.015 Thant, P. S., Espino, A., Soria, G., Myae, C., Rodriguez, E., Barbon, W. J., & Gonsalves, J. (2022). Myanmar local food systems in a changing climate: Insights from multiple stakeholders. Environmental and Sustainability Indicators, 14. https://doi.org/10.1016/j.indic.2022.100170 Theisen, K. (2024). World Potato Atlas: Myanmar (Burma). https://static1.squarespace.com/static/5e459c86d426b45f5ca0d083/t/666fe42fe0d97b069a895234/1718608953348/Myanmar_Potato_240222.pdf Tun Oo, A., Boughton, D., & Aung, N. (2023). Climate Change Adaptation and the Agriculture–Food System in Myanmar. Climate, 11(6), 124. https://doi.org/10.3390/cli11060124 Waaswa, A., Nkurumwa, A. O., Kibe, A. M., & Kipkemoi, N. e. J. (2021). Communicating climate change adaptation strategies: climate-smart agriculture information dissemination pathways among smallholder potato farmers in Gilgil Sub-County, Kenya. Heliyon, 7(8). https://doi.org/10.1016/j.heliyon.2021.e07873 Wang, H., Cheng, M., Liao, Z., Guo, J., Zhang, F., Fan, J., Feng, H., Yang, Q., Wu, L., & Wang, X. (2023). Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes. Agricultural Water Management, 276. https://doi.org/10.1016/j.agwat.2022.108076 Zar Ni Hlaing, T. M., Nilar Aung, Nyein Nyein Kyaw, Mya Kay Khaing,, & Aung, N. N. (2022). How to Improve Smallholder Potato Production in Myanmar: Determinants of Potato Production Function. FFTC Agricultural Policy Platform. Zar Ni Hlaing, T. M., Nilar Aung, Nyein Nyein Kyaw, Mya Kay Khing. (2023). Potato Crop Sector and Value Chain of Ware Potato in Southern Shan State and Magway Region, Myanmar. FFTC, Agricultural Policy Platform. Zhao, C., Stockle, C. O., Karimi, T., Nelson, R. L., van Evert, F. K., Pronk, A. A., Riddle, A. A., Marshall, E., Raymundo, R., Li, Y., Guan, K., Gustafson, D., Hoogenboom, G., Wang, X., Cong, J., & Asseng, S. (2022). Potential benefits of climate change for potatoes in the United States. Environmental Research Letters, 17(10). https://doi.org/10.1088/1748-9326/ac9242 Zulfiqar Ali1, Hamed3, M. M., Muhammad1, M. K. I., & Shamsuddin Shahid1. (2024). A novel approach for evaluation of CMIP6 GCMs in simulating temperature and precipitation extremes of Pakistan. International Journal of Climatology, 44(2). https://doi.org/10.1002/joc.8346 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99793 | - |
| dc.description.abstract | Climate change has negative impacts on crop production, hence it is essential to understand the potential impacts of it and the efficacy of adaptation strategies on future potato yields. This study was conducted to simulate the impacts of climate change on future potato yields, design adaptation strategies, and evaluate their effects on tuber yields. Utilizing daily weather data generated by LARS.WG in combination with the SUBSTOR-Potato crop model from the Decision Support System for Agrotechnology Transfer (DSSAT) software, we simulated projected potato yields for the rainfed monsoon cropping season under three distinct climate change scenarios (ssps 126, 245, and 585) for the years 2025 to 2087 in Naungtayar Township, Southern Shan State, Myanmar. Climate analysis indicated that the high-emission scenario is associated with more extreme climate conditions, characterized by elevated temperatures and increased variability in precipitation. The results showed that the SUBSTOR-Potato model exhibited robust performance throughout the calibration and validation phases. The simulated results indicated that among the various emission scenarios, the lowest potato yield was anticipated under the ssp585 scenario, followed by ssp245 and ssp126, with yield discrepancies between ssp126 and ssp585 approximating 8 to 9 t/ha, which indicates a reduction of about 25%. Further analysis of adaptation strategies revealed that delayed planting dates could enhance potato yield, whereas yields declined when planting occurred earlier than optimal. Notably, extending the crop life cycle by adjusting the harvest timing allowed early-planted potatoes to achieve yields comparable to the normal planting date. Moreover, our findings indicated that increasing fertilizer application may not serve as an effective strategy for yield improvement under climate change in this region. The selection of appropriate cultivars is vital, given that heat-resistant cultivars did not yield favorable results under the lower emission scenarios. It is essential to note that these findings were derived from a single growing season during the calibration period; thus, they should be interpreted with caution. | zh_TW |
| dc.description.abstract | Climate change has negative impacts on crop production, hence it is essential to understand the potential impacts of it and the efficacy of adaptation strategies on future potato yields. This study was conducted to simulate the impacts of climate change on future potato yields, design adaptation strategies, and evaluate their effects on tuber yields. Utilizing daily weather data generated by LARS.WG in combination with the SUBSTOR-Potato crop model from the Decision Support System for Agrotechnology Transfer (DSSAT) software, we simulated projected potato yields for the rainfed monsoon cropping season under three distinct climate change scenarios (ssps 126, 245, and 585) for the years 2025 to 2087 in Naungtayar Township, Southern Shan State, Myanmar. Climate analysis indicated that the high-emission scenario is associated with more extreme climate conditions, characterized by elevated temperatures and increased variability in precipitation. The results showed that the SUBSTOR-Potato model exhibited robust performance throughout the calibration and validation phases. The simulated results indicated that among the various emission scenarios, the lowest potato yield was anticipated under the ssp585 scenario, followed by ssp245 and ssp126, with yield discrepancies between ssp126 and ssp585 approximating 8 to 9 t/ha, which indicates a reduction of about 25%. Further analysis of adaptation strategies revealed that delayed planting dates could enhance potato yield, whereas yields declined when planting occurred earlier than optimal. Notably, extending the crop life cycle by adjusting the harvest timing allowed early-planted potatoes to achieve yields comparable to the normal planting date. Moreover, our findings indicated that increasing fertilizer application may not serve as an effective strategy for yield improvement under climate change in this region. The selection of appropriate cultivars is vital, given that heat-resistant cultivars did not yield favorable results under the lower emission scenarios. It is essential to note that these findings were derived from a single growing season during the calibration period; thus, they should be interpreted with caution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:42:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:42:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT I
Abstract II Table of Contents IV List of Figures VII List of Tables X List of Abbreviations XI Chapter 1: Introduction 1 1.1 Overview of Potato Production in Myanmar 1 1.2 Overview of Climate Change and Its Impact on Myanmar's Agricultural Sector 2 1.3 Research Problem and Significance 4 1.4 Research Objectives and Questions 6 1.5 Thesis Structure 7 Chapter 2: Literature Review 8 2.1 Potato Production and Its Role in Global Food Security 8 2.1.1 Potato Production in Myanmar 8 2.2 Climate Change and Agriculture 14 2.2.1 Climate variables affect potato growth and development 15 2.3 Modeling Approaches for Climate Change Impact Assessment 16 2.4 Adaptation Strategies for Climate Resilience 17 Chapter 3: Materials and Methods 19 3.1 Study Area 19 3.1.1 Geographic and Climatic Characteristics 19 3.2 Data Collection 20 3.2.1 Climate Data Sources and Processing 21 3.2.3 Crop Management Data 23 3.3 Climate Scenarios 23 3.4 DSSAT Model Setup 24 3.4.1 Model Calibration and Validation 24 3.4.2 SUBSTOR-Potato Module Parameters 26 3.5 Simulation of Potato Yield for Climate Change 27 3.6 Data Analysis 28 Chapter 4: Results 29 4.1 Model Calibration and Validation Results 29 4.2 Climate Projections for Southern Shan State 30 4.2.1 Solar Radiation, Temperature, and Precipitation Changes 31 4.3 Comparison with baseline climate 33 4.4. Potato Yield Projections under Future Scenarios 35 4.4.1 Growth and Development of Potatoes under Future Climate Scenarios 39 4.5 Adaptation strategies 48 4.5.1 Shifting planting dates 48 4.5.2 Enhancing Fertilizer Application 50 4.5.3 Cost-Benefit Analysis of Adaptation Strategies 51 4.5.4 Development of heat-resistant cultivar 53 Chapter 5: Discussion 55 5.1 Model Calibration and Validation 55 5.2 Climate Projection for Southern Shan State 55 5.3 Analysis of Climate Impacts on Potato Yield 57 5.4 Impact of Adaptation Strategies on Future Potato Yield 58 5.5 Practical and Policy Implications for Potato Production in Southern Shan State 61 5.6 Limitations and Sources of Uncertainty 62 Chapter 6: Conclusions 64 References 66 | - |
| dc.language.iso | en | - |
| dc.subject | 馬鈴薯 | zh_TW |
| dc.subject | DSSAT | zh_TW |
| dc.subject | SUBSTOR-馬鈴薯 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 調適策略 | zh_TW |
| dc.subject | Adaptation Strategies | en |
| dc.subject | DSSAT | en |
| dc.subject | SUBSTOR-Potato | en |
| dc.subject | Climate Change | en |
| dc.subject | Potato | en |
| dc.title | 氣候變遷對馬鈴薯生產之風險評估與策略分析:以DSSAT模擬在緬甸之應用為例 | zh_TW |
| dc.title | Climate Change Risk Assessment and Strategies Analysis on Potato Production: A Case Study in Myanmar Using DSSAT | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊雯如;陳世芳;林桓億 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Ju Yang;Shih-Fang Chen;Hen-I Lin | en |
| dc.subject.keyword | 馬鈴薯,DSSAT,SUBSTOR-馬鈴薯,氣候變遷,調適策略, | zh_TW |
| dc.subject.keyword | Potato,DSSAT,SUBSTOR-Potato,Climate Change,Adaptation Strategies, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202501414 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-10 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
| dc.date.embargo-lift | 2029-12-30 | - |
| 顯示於系所單位: | 全球農業科技與基因體科學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
