請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99786完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳士元 | zh_TW |
| dc.contributor.advisor | Shih-Yuan Chen | en |
| dc.contributor.author | 楊昇曄 | zh_TW |
| dc.contributor.author | Sheng-Yeh Yang | en |
| dc.date.accessioned | 2025-09-17T16:40:47Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | S. A. Busari, S. Mumtaz, S. Al-Rubaye, and J. Rodriguez, “5G Millimeter-Wave Mobile Broadband: Performance and Challenges,” IEEE Communications Magazine, vol. 56, no. 6, pp. 137-143, June 2018.
T. S. Rappaport et al., “Millimeter Wave Mobile Communications for 5G Elementular: It Will Work!,” IEEE Access, vol. 1, pp. 335-349, 2013. S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-Wave Massive MIMO Communication for Future Wireless Systems: A Survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 836-869, 2018. W. Kim, J. Bang, and J. Choi, “A Cost-Effective Antenna-in-Package Design With a 4×4 Dual-polarization High Isolation Patch Array for 5G mmWave Applications,” IEEE Access, vol. 9, pp. 163882-163892, 2021. Z. Siddiqui, M. Sonkki, M. E. Leinonen, J. Chen, M. Berg, and A. Pärssinen, “A Differential Dual-broadband Dual-polarization Antenna for 5G mmWave Communication System,” The 2nd 6G Wireless Summit, Levi, Finland, 2020. G. Kim, D. Kim, K. Lim, C. Yang, C. You, and S. Kim, “Dual-broadband and Dual-polarization Rhombic Patch Antenna Array for 5G mmWave RF Front End Antenna-in-Package Module,” IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 7, pp. 2120-2124, July 2024. J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband Symmetrical E-Shaped Patch Antenna With Multimode Resonance for 5G Millimeter-Wave Applications,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 7, pp. 4474-4483, July 2019. C. M. Saleh, E. Almajali, S. S. Alja'afreh, and J. Yousaf, “Dual U-Slot Patch Antenna for 5G Applications,” IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Singapore, Singapore, 2021, pp. 349-350. Y. He, M. Rao, Y. Liu, G. Jing, M. Xi, and L. Zhao, “28/39-GHz Dual-broadband Dual-polarization Millimeter Wave Stacked Patch Antenna Array for 5G Applications,” International Workshop on Antenna Technology, Bucharest, Romania, 2020. C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed., Wiley, 2016. L. Liu et al., “A compact dual-broadband stacked patch antenna fed by a single coaxial probe,” IEEE Access, vol. 7, pp. 17012–17019, 2019. J. Mo et al., “Beam Codebook Design for 5G mmWave Terminals,” IEEE Access, vol. 7, pp. 98387-98404, 2019. P. Chen, Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface and Beam Codebook Design for Millimeter-Wave Multi-Antenna Modules, Master’s Thesis, National Taiwan University, 2024. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94189 J. Seo et al., “Miniaturized Dual-broadband Broadside/Endfire Antenna-in-Package for 5G Smartphone,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8100-8114, Dec. 2021 Y. He, S. Lv, L. Zhao, G. -L. Huang, X. Chen, and W. Lin, “A Compact Dual-broadband and Dual-polarization Millimeter-Wave Beam Scanning Antenna Array for 5G Mobile Terminals,” IEEE Access, vol. 9, pp. 109042-109052, 2021. G. Kim, D. Kim, K. Lim, C. Yang, C. You, and S. Kim, “Dual-broadband and Dual-polarization Rhombic Patch Antenna Array for 5G mmWave RF Front End Antenna-in-Package Module,” IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 7, pp. 2120-2124, July 2024. Z. Siddiqui et al., “Dual-broadband Dual-polarization Planar Antenna for 5G Millimeter-Wave Antenna-in-Package Applications,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 4, pp. 2908-2921, April 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99786 | - |
| dc.description.abstract | 本論文提出一款專為第五代行動通訊(5G)行動終端應用所設計的小型化雙寬頻雙極化毫米波天線陣列。為滿足5G新無線電(New Radio)技術中n257/n258/n261(24.25–29.5 GHz)與n259/n260(37–43.5 GHz)頻段的嚴格規格要求,本設計實現了寬阻抗頻寬(以|S₁₁| < –6 dB為準)、高極化隔離度(>15 dB)、以及分別在低頻與高頻超過9 dBi與10 dBi的峰值增益,同時保持極為精巧的體積設計,充分符合智慧型手機的空間限制,並有效因應毫米波通訊中常見的自由空間傳輸損耗與遮蔽問題。
本設計採用多層堆疊式貼片架構,使用中高介電常數的RO3006與RO4460G2高頻基板,並依循「子單元—單元—陣列」的系統化設計流程。於子單元階段,分別針對低頻(LB)與高頻(HB)堆疊貼片天線子單元進行尺寸最佳化,實現寬頻阻抗匹配與雙線性極化。於單元階段,整合LB與HB天線子單元為一體,並系統性分析十二種金屬層堆疊方式與四種饋入組合。結果顯示,採用邊緣饋入的LB子單元與角落饋入的HB子單元,配合選用適當的金屬層,能兼顧良好阻抗匹配與極化隔離度。 在陣列設計方面,以最佳化天線單元構成1×4線性陣列,尺寸僅3.5 mm × 22 mm × 0.75 mm。模擬結果證實所設計的陣列具備優異的增益與隔離度表現,且在與波束碼簿結合後,亦展現優異的波束覆蓋能力與寬頻特性。為驗證陣列設計之模擬準確性與實際製作可行性,我們進一步設計一款整合一分四功率分配器之陣列樣品進行量測。模擬與實測結果在S參數、場型與增益方面高度吻合,證明陣列設計模擬效能的準確性與製程可行性。 綜合而言,本論文所提出之毫米波天線陣列成功兼顧小型化、雙頻支援、極化多樣性與製程相容性,為5G行動裝置提供一項具備高度實用價值的毫米波天線解決方案,具備與波束成形晶片整合的潛力,極具商業應用前景。 | zh_TW |
| dc.description.abstract | In this thesis, a compact, dual-broadband, dual-polarization millimeter-wave (mmWave) antenna array is proposed for the 5th-generation mobile communication technology (5G) mobile terminal applications. To meet the stringent demands of 5G New Radio specifications—particularly within the n257/n258/n261 (24.25–29.5 GHz) and n259/n260 (37–43.5 GHz) bands—the proposed antenna design achieves wide impedance bandwidth (under an |S₁₁| < –6 dB criterion), high polarization isolation (>15 dB), and peak gains exceeding 9 dBi and 10 dBi in the respective bands, all within a highly miniaturized footprint. These features ensure compatibility with space-constrained smartphones while addressing critical mmWave propagation challenges such as path loss and signal blockage.
To achieve these goals, a multilayer stacked-patch architecture is adopted, implemented on intermediate-permittivity RO3006/RO4460G2 substrates. The design process follows a structured “sub-element-to-element-to-array” methodology. At the sub-element level, separate low-band (LB) and high-band (HB) stacked patches are dimensionally optimized for wideband impedance matching and dual-linear polarization. In the element stage, these patches are integrated into a single dual-broadband module, with systematic studies evaluating twelve metal-layer stacking schemes and four feed combinations. Results reveal that a hybrid configuration using an edge-fed LB sub-element and corner-fed HB sub-element with a properly chosen combination of metal layers offers superior impedance and isolation performance. At the array level, the optimized antenna element is configured into a 1×4 linear array measuring only 3.5 mm × 22 mm × 0.75 mm. Simulated results confirm robust gain and isolation, while beam-codebook-based evaluations further demonstrate its beamforming capability and broadband characteristics. For experimental validation, a measurement-friendly version of the array—integrated with a 1-to-4 power divider—is fabricated and characterized. Measured results closely match simulations across S-parameters, radiation patterns, and gain, thereby verifying the simulation model’s accuracy and fabrication feasibility. In conclusion, this work establishes a high-performance, integration-ready antenna solution suitable for commercial 5G handheld devices. The proposed array successfully balances size, dual-broadband support, polarization diversity, and manufacturability, paving the way for practical mmWave front-end integration with beamforming ICs in next-generation mobile platforms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:40:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:40:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Reviews 4 1.3 Contributions 8 1.4 Content Overview 10 Chapter 2 Design of Broadband Dual-Polarization Stacked Patch Antenna Sub-Elements 12 2.1 Basic Principles of Stacked Patch Antennas 12 2.1.1 Resonant Frequency and Mode Behavior 12 2.1.2 Feeding Technique and Integration Considerations 13 2.2 Antenna Sub element Structure and Parameter Definition 13 2.3 Analysis of Patch Modal Behavior for Different Feeding Types 16 2.3.1 Edge-Fed Square Patch: TM₁₀ and TM₀₁ Mode 17 2.3.2 Corner-Fed Square Patch: TM₁₀ and TM₀₁ Mode 18 2.4 Parametric Study of Metal Layer Positions in Dual-Metal Stacking Configurations 19 2.5 Preliminary Validation of Candidate Stacked Patch Designs 23 Chapter 3 Dual-Broadband Dual-Polarization Antenna Design and Optimization 27 3.1 Parametric Study of Metal Layer Positions in Dual-Broadband Antenna Element 27 3.1.1 Intra-Band Performance Comparison Across Groups 30 3.1.2 Cross-Band Performance Comparison Across Groups 31 3.2 Parametric Study of Feeding Scheme Combinations in Dual-Broadband Antenna Element 37 3.2.1 In-Band Performance 38 3.2.2 Cross-Band Performance 38 3.3 Effect of Relative Feeding Port Positions in Dual-Broadband Antenna Element 43 3.4 The Proposed Dual-Broadband Antenna Element 46 Chapter 4 Compact 14 Array Design and Performance Analysis 54 4.1 Proposed Array Design 54 4.1.1 Perspective from Array Factor 54 4.2 Simulation Results 55 4.3 Coverage Performance Based on Beam Codebooks 62 4.3.1 Summary of Beam-Codebook-Based Evaluation Results 67 4.4 Summary of Proposed Array Design 68 Chapter 5 Experimental Validation and Measurement Results 70 5.1 Measurement Challenges and Solutions 70 5.2 Design of Testing-Ready Validation Antenna Arrays 71 5.3 Measurement Results 74 5.4 Summary 81 Chapter 6 Conclusion and Future Work 83 6.1 Conclusion 83 6.2 Future work 84 Bibliography 87 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 5G行動終端 | zh_TW |
| dc.subject | 小型化天線設計 | zh_TW |
| dc.subject | 雙頻天線 | zh_TW |
| dc.subject | 雙極化 | zh_TW |
| dc.subject | 毫米波天線陣列 | zh_TW |
| dc.subject | 堆疊式貼片天線 | zh_TW |
| dc.subject | 寬頻阻抗匹配 | zh_TW |
| dc.subject | millimeter-wave antenna arrays | en |
| dc.subject | wideband impedance matching | en |
| dc.subject | stacked patch antennas | en |
| dc.subject | dual polarization | en |
| dc.subject | 5G mobile terminals | en |
| dc.subject | compact antenna design | en |
| dc.subject | dual-broadband antennas | en |
| dc.title | 應用於手持裝置之小型化雙寬頻雙極化之5G毫米波天線陣列設計 | zh_TW |
| dc.title | A Compact Dual-Broadband Dual-Polarization 5G Millimeter-Wave Antenna Array for Handheld Devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 馬自莊;黃定彝;歐陽良昱 | zh_TW |
| dc.contributor.oralexamcommittee | Tzyh-Ghuang Ma;Ting-Yi Huang;Liang-Yu Ou Yang | en |
| dc.subject.keyword | 5G行動終端,小型化天線設計,雙頻天線,雙極化,毫米波天線陣列,堆疊式貼片天線,寬頻阻抗匹配, | zh_TW |
| dc.subject.keyword | 5G mobile terminals,compact antenna design,dual-broadband antennas,dual polarization,millimeter-wave antenna arrays,stacked patch antennas,wideband impedance matching, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202502955 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-30 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
