請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘建源 | zh_TW |
| dc.contributor.advisor | Chien-Yuan Pan | en |
| dc.contributor.author | 林意真 | zh_TW |
| dc.contributor.author | Yi-Jhen Lin | en |
| dc.date.accessioned | 2025-09-17T16:40:05Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-22 | - |
| dc.identifier.citation | Al-Qahtani, A. A., Alhamlan, F. S., & Al-Qahtani, A. A. (2024). Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis, 9(1). https://doi.org/10.3390/tropicalmed9010013
ASSIRI, K. R. A. M. A. M. U. S. H. A. A. M. U. I. M. O. A. (2023). Interleukin-1 receptor antagonist: From synthesis to therapeutic applications. Biocell, 47(4), 809-823. https://doi.org/https://doi.org/10.32604/biocell.2023.025850 B Viviani, S. B., F Gardoni, A Vezzani, M M Behrens, T Bartfai, M Binaglia, E Corsini, M Di Luca, C L Galli, M Marinovich. (2003). Interleukin-1beta Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases. Journal of Neuroscience, 23(25), 8692-8700. https://doi.org/10.1523/JNEUROSCI.23-25-08692.2003 Baracchi, F., & Opp, M. R. (2008). Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1. Brain, Behavior, and Immunity, 22(6), 982-993. https://doi.org/10.1016/j.bbi.2008.02.001 Bean, B. P. (2007). The action potential in mammalian central neurons. Nature reviews. Neuroscience, 8(6), 451–465. https://doi.org/https://doi.org/10.1038/nrn2148 Castro-Gomez, S., & Heneka, M. T. (2024). Innate immune activation in neurodegenerative diseases. Immunity, 57(4), 790-814. https://doi.org/10.1016/j.immuni.2024.03.010 Catterall, W. A. (2011). Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology, 3(8), a003947. https://doi.org/10.1101/cshperspect.a003947 Chen Zhou, H.-H. Y., Shi-Qiang Wang, Zhen Chai. (2006). Interleukin-1beta regulation of N-type Ca2+ channels in cortical neurons Neuroscience Letters, 403(1-2), 181-185. Di Chen, J. L., Yichen Huang, Pengju Wei, Wanying Miao, Yaomei Yang and Yanqin Gao. (2022). Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. Journal of Neuroinflammation. https://doi.org/https://doi.org/10.1186/s12974-022-02471-5 F Martín-Sánchez1, C Diamond2,3,6, M Zeitler4, AI Gomez1, A Baroja-Mazo1, J Bagnall2, D Spiller2, M White2, MJD Daniels2, A Mortellaro3, M Peñalver5, P Paszek2, JP Steringer4, W Nickel4, D Brough*,2,7 and P Pelegrín*,1,2,7. (2016). Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death and Differentiation, 23(7), 1219–1231. https://doi.org/https://doi.org/10.1038/cdd.2015.176 Fan, Z., Pan, Y. T., Zhang, Z. Y., Yang, H., Yu, S. Y., Zheng, Y., Ma, J. H., & Wang, X. M. (2020). Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson's disease. Journal of Neuroinflammation, 17(1), 11. https://doi.org/10.1186/s12974-019-1670-6 Fogal, B., & Hewett, S. J. (2008). Interleukin‐1β: a bridge between inflammation and excitotoxicity? Journal of Neurochemistry, 106(1), 1-23. Gan, Q., Salussolia, C. L., & Wollmuth, L. P. (2015). Assembly of AMPA receptors: mechanisms and regulation. Journal of Physiology, 593(1), 39-48. https://doi.org/10.1113/jphysiol.2014.273755 Giulio Cavalli, S. C., Giacomo Emmi, Massimo Imazio,, & Giuseppe Lopalco, M. C. M., Jurgen Sota, Charles A. Dinarello. (2021). Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmunity Reviews, 20(3), 102763. https://doi.org/https://doi.org/10.1016/j.autrev.2021.102763 Guzman-Martinez, L., Maccioni, R. B., Andrade, V., Navarrete, L. P., Pastor, M. G., & Ramos-Escobar, N. (2019). Neuroinflammation as a common feature of neurodegenerative disorders. Frontiers in Pharmacology, 10, 1008. Hong Ye, J. R. A., Betty Lamothe, Maurizio Cirilli, Takashi Kobayashi, Nirupama K. Shevde, Deena Segal, Oki K. Dzivenu, Masha Vologodskaia, Mijung Yim, Khoi Du, Sujay Singh, J. Wesley Pike, Bryant G. Darnay, Yongwon Choi & Hao Wu (2002). Distinct molecular mechanism for initiating TRAF6 signalling. Nature, 418(6896), 443-447. https://doi.org/10.1038/nature00888 Ingiosi, A. M., Raymond, R. M., Jr., Pavlova, M. N., & Opp, M. R. (2015). Selective contributions of neuronal and astroglial interleukin-1 receptor 1 to the regulation of sleep. Brain, Behavior, and Immunity, 48, 244-257. https://doi.org/10.1016/j.bbi.2015.03.014 Jin, K., Lu, J., Yu, Z., Shen, Z., Li, H., Mou, T., Xu, Y., & Huang, M. (2020). Linking peripheral IL-6, IL-1β and hypocretin-1 with cognitive impairment from major depression. Journal of Affective Disorders, 277, 204-211. https://doi.org/10.1016/j.jad.2020.08.024 John M. Schmitt, E. S. G., Takeo Saneyoshi, and Thomas R. Soderling. (2005). Calmodulin-Dependent Kinase Kinase/Calmodulin Kinase I Activity Gates Extracellular-Regulated Kinase-Dependent Long-Term Potentiation. The Journal of Neuroscience, 25(5), 1281-1290. Jun-Ming Zhang, M., MD1 and Jianxiong An, MSc, MD2. (2007). Cytokines, Inflammation and Pain. International Anesthesiology Clinics, 25(2), 27-37 https://doi.org/https://doi.org/10.1097/AIA.0b013e318034194e Karakas, E., Regan, M. C., & Furukawa, H. (2015). Emerging structural insights into the function of ionotropic glutamate receptors. Trends Biochem Sci, 40(6), 328-337. https://doi.org/10.1016/j.tibs.2015.04.002 Kaur, N., Chugh, H., Sakharkar, M. K., Dhawan, U., Chidambaram, S. B., & Chandra, R. (2020). Neuroinflammation mechanisms and phytotherapeutic intervention: A systematic review. ACS Chemical Neuroscience, 11(22), 3707-3731. Koprich, J. B., Reske-Nielsen, C., Mithal, P., & Isacson, O. (2008). Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. Journal of Neuroinflammation, 5(1), 1-12. Kristensen, A. S., Jenkins, M. A., Banke, T. G., Schousboe, A., Makino, Y., Johnson, R. C., Huganir, R., & Traynelis, S. F. (2011). Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nature Neuroscience, 14(6), 727-735. https://doi.org/10.1038/nn.2804 Krumm, B., Xiang, Y., & Deng, J. (2014). Structural biology of the IL-1 superfamily: key cytokines in the regulation of immune and inflammatory responses. Protein Science, 23(5), 526-538. https://doi.org/10.1002/pro.2441 Lecca, D., Jung, Y. J., Scerba, M. T., Hwang, I., Kim, Y. K., Kim, S., Modrow, S., Tweedie, D., Hsueh, S. C., Liu, D., Luo, W., Glotfelty, E., Li, Y., Wang, J. Y., Luo, Y., Hoffer, B. J., Kim, D. S., McDevitt, R. A., & Greig, N. H. (2022). Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement, 18(11), 2327-2340. https://doi.org/10.1002/alz.12610 Lieju Liu, T. M. Y., Wolfgang Liedtke, and S. A. Simon. (2006). Chronic IL-1 Signaling Potentiates Voltage-Dependent Sodium Currents in Trigeminal Nociceptive Neurons. Journal of Neurophysiology, 95(3), 1478–1490. Lopez-Castejon, G., & Brough, D. (2011). Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev, 22(4), 189-195. https://doi.org/10.1016/j.cytogfr.2011.10.001 Müller, L., Di Benedetto, S., & Müller, V. (2025). From Homeostasis to Neuroinflammation: Insights into Cellular and Molecular Interactions and Network Dynamics. Cells, 14(1). https://doi.org/10.3390/cells14010054 M J Kostura, M. J. T., G Limjuco, J Chin, P Cameron, A G Hillman, N A Chartrain, and J A Schmidt. (1989). Identification of a monocyte specific pre-interleukin 1beta convertase activity. Proceedings of the National Academy of Sciences, 86 (14), 5227-5231. https://doi.org/https://doi.org/10.1073/pnas.86.14.5227 Mendiola, A. S., & Cardona, A. E. (2018). The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna), 125(5), 781-795. https://doi.org/10.1007/s00702-017-1732-9 Michael J. Berridge, M. D. B. a. H. L. R. (2003). Calcium signalling dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology, 4, 517-529. https://doi.org/10.1038/nrm1155 Mishra, M. K., Rawji, K. S., Keough, M. B., Kappen, J., Dowlatabadi, R., Vogel, H. J., Chopra, S., Distéfano-Gagné, F., Dufour, A., Gosselin, D., & Yong, V. W. (2021). Harnessing the Benefits of Neuroinflammation: Generation of Macrophages/Microglia with Prominent Remyelinating Properties. Journal of Neuroscience, 41(15), 3366-3385. https://doi.org/10.1523/jneurosci.1948-20.2021 Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M., & Nagatsu, T. (1996). Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neuroscience Letters, 211(1), 13-16. https://doi.org/10.1016/0304-3940(96)12706-3 Myung-chul Noh, P. L. S., Peter A. Smith. (2019). Long-term actions of interleukin-1β on K+, Na+ and Ca2+ channel currents in small, IB4-positive dorsal root ganglion neurons; possible relevance to the etiology of neuropathic pain. Journal of Neuroimmunology, 332. Naoe Kaneko, M. K., Toshihiro Yamamoto, Shinnosuke Morikawa and Junya Masumoto. (2019). The role of interleukin-1 in general pathology. Inflammation and Regeneration, 39, 12. https://doi.org/https://doi.org/10.1186/s41232-019-0101-5 Neeb, L., Hellen, P., Boehnke, C., Hoffmann, J., Schuh-Hofer, S., Dirnagl, U., & Reuter, U. (2011). IL-1β stimulates COX-2 dependent PGE₂ synthesis and CGRP release in rat trigeminal ganglia cells. PloS One, 6(3), e17360. https://doi.org/10.1371/journal.pone.0017360 Neher, E., & Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron, 59(6), 861-872. https://doi.org/10.1016/j.neuron.2008.08.019 Nemeth, D. P., Liu, X., Monet, M. C., Niu, H., Maxey, G., Schrier, M. S., Smirnova, M. I., McGovern, S. J., Herd, A., DiSabato, D. J., Floyd, T., Atluri, R. R., Nusstein, A. C., Oliver, B., Witcher, K. G., Juste Ellis, J. S., Yip, J., Crider, A. D., McKim, D. B., Gajewski-Kurdziel, P. A., Godbout, J. P., Zhang, Q., Blakely, R. D., Sheridan, J. F., & Quan, N. (2024). Localization of brain neuronal IL-1R1 reveals specific neural circuitries responsive to immune signaling. Journal of Neuroinflammation, 21(1), 303. https://doi.org/10.1186/s12974-024-03287-1 Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol, 50, 295-322. https://doi.org/10.1146/annurev.pharmtox.011008.145533 Pinheiro, P. S., & Mulle, C. (2008). Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nature Reviews: Neuroscience, 9(6), 423-436. https://doi.org/10.1038/nrn2379 Ramesh, G., MacLean, A. G., & Philipp, M. T. (2013). Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators of Inflammation, 2013, 480739. https://doi.org/10.1155/2013/480739 Rincón-López, C., Tlapa-Pale, A., Medel-Matus, J. S., Martínez-Quiroz, J., Rodríguez-Landa, J. F., & López-Meraz, M. L. (2017). Interleukin-1β increases neuronal death in the hippocampal dentate gyrus associated with status epilepticus in the developing rat. Neurologia, 32(9), 587-594. https://doi.org/10.1016/j.nrl.2016.03.013 (La interleucina-1β aumenta la muerte neuronal en el giro dentado del hipocampo asociada al estado epiléptico en la rata en desarrollo.) Rossi, S., Motta, C., Studer, V., Macchiarulo, G., Volpe, E., Barbieri, F., Ruocco, G., Buttari, F., Finardi, A., Mancino, R., Weiss, S., Battistini, L., Martino, G., Furlan, R., Drulovic, J., & Centonze, D. (2014). Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Molecular Neurodegeneration, 9, 56. https://doi.org/10.1186/1750-1326-9-56 Rossi, S., Studer, V., Motta, C., Germani, G., Macchiarulo, G., Buttari, F., Mancino, R., Castelli, M., De Chiara, V., Weiss, S., Martino, G., Furlan, R., & Centonze, D. (2014). Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. Journal of Neuroinflammation, 11, 32. https://doi.org/10.1186/1742-2094-11-32 Salucci, S., Bartoletti Stella, A., Battistelli, M., Burattini, S., Bavelloni, A., Cocco, L. I., Gobbi, P., & Faenza, I. (2021). How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules, 11(8). https://doi.org/10.3390/biom11081109 Sheng Yang, Z.-W. L., Lei Wen, Hai-Fa Qiao, Wen-Xia Zhou, Yong-Xiang Zhang. (2005). Interleukin-1beta enhances NMDA receptor-mediated current but inhibits excitatory synaptic transmission Brain Research, 1034, 172-179. https://doi.org/https://doi.org/10.1016/j.brainres.2004.11.018 Shi, F. D., & Yong, V. W. (2025). Neuroinflammation across neurological diseases. Science, 388(6753), eadx0043. https://doi.org/10.1126/science.adx0043 Sophie Janssens, R. B. (2003). Functional Diversity and Regulation of Different Interleukin-1 Receptor-Associated Kinase (IRAK) Family Members. Molecule Cell, 11(2), 293-302. https://doi.org/https://doi.org/10.1016/s1097-2765(03)00053-4 Sur, C. D. H. a. M. (1999). Stable Properties of Spontaneous EPSCs and Miniature Retinal EPSCs during the Development of ON/OFF Sublamination in the Ferret Lateral Geniculate Nucleus. Journal of Neuroscience, 19, 236-247. https://doi.org/https://doi.org/10.1523/JNEUROSCI.19-01-00236.1999 Takemiya, T., Fumizawa, K., Yamagata, K., Iwakura, Y., & Kawakami, M. (2017). Brain Interleukin-1 Facilitates Learning of a Water Maze Spatial Memory Task in Young Mice. Frontiers in Behavioral Neuroscience, 11, 202. https://doi.org/10.3389/fnbeh.2017.00202 Tong, L., Balazs, R., Soiampornkul, R., Thangnipon, W., & Cotman, C. W. (2008). Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiology of Aging, 29(9), 1380-1393. https://doi.org/10.1016/j.neurobiolaging.2007.02.027 Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., & Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews, 62(3), 405-496. Uboha, N. V., Flajolet, M., Nairn, A. C., & Picciotto, M. R. (2007). A calcium- and calmodulin-dependent kinase Ialpha/microtubule affinity regulating kinase 2 signaling cascade mediates calcium-dependent neurite outgrowth. Journal of Neuroscience, 27(16), 4413-4423. https://doi.org/10.1523/jneurosci.0725-07.2007 Van Den Eeckhout, B., Tavernier, J., & Gerlo, S. (2020). Interleukin-1 as Innate Mediator of T Cell Immunity. Frontiers in Immunology, 11, 621931. https://doi.org/10.3389/fimmu.2020.621931 Veronica Campbell, M. A. L. (1999). THE ROLE OF CERAMIDE IN THE MODULATION OF INTRACELLULAR Ca2+LEVELS BY INTERLEUKIN 1β IN RAT CORTICAL SYNAPTOSOMES. Cytokine, 12(5), 487-490. https://doi.org/https://doi.org/10.1006/cyto.1999.0584 Wan-ting He, H. W., Lichen Hu, Pengda Chen, Xin Wang, Zhe Huang, Zhang-Hua Yang, Chuan-Qi Zhong, Jiahuai Han. (2015). Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Research, 25(12), 1285–1298. https://doi.org/https://doi.org/10.1038/cr.2015.139 Wang, J., Xu, F., Zheng, Y., Cheng, X., Zhang, P., & Zhao, H. (2019). Protein kinase C-ε contributes to a chronic inhibitory effect of IL-1β on voltage-gated sodium channels in mice with febrile seizure. Journal of Integrative Neuroscience, 18(2), 173-179. https://doi.org/10.31083/j.jin.2019.02.145 Weber, A., Wasiliew, P., & Kracht, M. (2010). Interleukin-1 (IL-1) pathway. Science signaling, 3(105), cm1-cm1. Wuchert, F., Ott, D., Rafalzik, S., Roth, J., & Gerstberger, R. (2009). Tumor necrosis factor-alpha, interleukin-1beta and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema. Journal of Neuroimmunology, 206(1-2), 44-51. https://doi.org/10.1016/j.jneuroim.2008.10.010 Xiao, Z., Peng, J., Wu, L., Arafat, A., & Yin, F. (2017). The effect of IL-1β on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy. Neurological Research, 39(7), 640-648. Yan, X., Liu, J., Ye, Z., Huang, J., He, F., Xiao, W., Hu, X., & Luo, Z. (2016). CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PloS One, 11(9), e0162784. https://doi.org/10.1371/journal.pone.0162784 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99782 | - |
| dc.description.abstract | 介白素-1β (IL-1β) 是一種促發炎的細胞激素,普遍認為在神經發炎相關的神經退化性疾病中,扮演重要的調控角色;目前也有研究發現,IL-1β 參與在神經損傷所引起的癲癇和興奮性毒性導致的神經細胞死亡的機制當中,因此 IL-1β 也可能具有調節神經傳導的作用。絕大多數的研究著重在神經細胞與神經膠細胞分泌的 IL-1β,在長時間的作用下對神經細胞存活率的影響,然而對神經電生理活性的影響則不清楚。因此在本研究中,利用膜片鉗技術,探討 IL-1β 對初代培養大鼠胚胎皮質神經細胞電生理活性的影響。加入 IL-1β (1 & 10 ng/ml) 後,自發興奮性突觸後電流的頻率增加,但電流峰值下降。而改變膜電位探討流入胞內的鈉離子流結果發現,IL-1β (1 ng/ml) 增加了電流峰值,在 -20 mV,由 -46.5 pA/pF ± 34.9 顯著性增加至 -54.1 pA/pF ± 30.4。在鈉離子通道活化曲線中,IL-1β會導致V1/2向左偏移,從 -40.5 mV ± 15.1 到 -44.6 mV ± 15.2 (n = 5, p < 0.05, IL-1β 1 ng/ml);在穩態鈉離子通道去活化曲線中,IL-1β同樣使V1/2向左偏移,從 -34.9 mV ± 5.7 到-40.2 mV (n = 6, p < 0.05, IL-1β 1 ng/ml)。總結來說,IL-1β會藉由提升鈉離子通道對膜電位的敏感度,增強神經細胞的電生理活性,顯示IL-1β不只參與神經發炎的調控,也透過對神經傳遞的調節,影響神經電生理。 | zh_TW |
| dc.description.abstract | Interleukin-1β (IL-1β) is a pro-inflammatory factor, which belongs to IL-1 family and acts as a key role in the neuroinflammatory responses. The release of IL-1β has been reported in neuronal injuries with the accompaniment of epileptogenesis and excitotoxic neuronal death suggesting the possible role IL-1β plays in regulating the neurotransmission. Most studies emphasize the long-term effects of IL-1β released from glia and neurons on the viability of neurons, however, the immediate effects of IL-1β on the electrical properties of neurons remain unclear. In this study, we characterized the effects of IL-1β in the electric activities of primary cultured rat embryonic cortical neurons by patch-clamp technique under whole-cell mode. The application of IL-1β (1 and 10 ng/ml) slightly increased the frequency of the excitatory post-synaptic currents in 3 min. By step-depolarizing the membrane potential from a holding potential of -100 mV, IL-1β marginally enhanced the peak inward current contributed by Na+ at -10 mV. The activation curve of this inward Na+ current showed a significant leftward shift in V1/2 from -40.5 ± 15.1 to -44.6 ± 15.2 mV (n = 5, p < 0.05, IL-1β 1 ng/ml). Similarly, IL-1β shifted the steady-state Na+ channel inactivation curves from -34.9 ± 5.7 to -40.2 ± 7.1 in the V1/2 (n = 6, p < 0.05, IL-1β 1 ng/ml). IL-1β showed no effect on the recovery time constant of the Na+ channel from inactivation to closed state. In summary, IL-1β can enhance the electrical responses of cultured neurons by increasing the sensitivities of Na+ channels to the membrane potential. Therefore, while IL-1β regulates the downstream neuroinflammatory responses, it also augments the neuronal electrical activity and neurotransmission. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:40:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:40:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract………………………………………………………………………………..i
中文摘要……………………………………………………………………………...iii Contents……………………………………………………………………………...iv 1. Introduction…………………………………………………………………………1 1.1 Cytokines……………………………………………………………………..1 1.2 Interleukin-1β (IL-1β)…..................................................................................2 1.3 The signaling pathway, synthesis, and release of Il-1β………………………3 1.4 IL-1β in the central nervous system………………………………………….5 1.5 The IL-1β concentration within the central nervous system…………………6 1.6 Glutamate receptors………………………………………………………….8 1.7 Glutamatergic neurons and excitatory postsynaptic potential………………10 1.8 Membrane potential and action potential.......................................................11 1.9 Roles of Endoplasmic reticulum on Ca2+ homoeostasis……………………13 1.10 Neuronal Ca2+ signaling…………………………………………………...14 1.11 IL-1β regulates VGCCs and [Ca2+]i in the neurons………………………..15 1.12 IL-1β regulates NMDA-induced [Ca2+]i elevation in the neurons……...…16 1.13 Aim………………………………………………………………………...18 2. Materials and Methods……………………………………………….19 2.1 Chemicals…………………………………………………………………...19 2.2 Primary culture of rat embryonic cortical neurons…………………………19 2.3 Electrophysiology…………………………………………………………..21 2.4 Pipette solution and extracellular solution………………………………….23 2.5 Immunofluorescence………………………………………………………..24 2.6 Data analysis………………………………………………………………..25 3. Results……………………………………………………………………………..26 3.1 Immunofluorescent identification of neurons and IL-1R1 expression in primary rat cortical cultures…………………………………………………….26 3.2 IL-1β enhances sEPSC frequency…………………………………………..27 3.3 IL-1β negatively shifts V1/2 of Na+ channel activation curve……………….28 3.4 IL-1β negatively shifts V1/2 of Na+ channel steady-state inactivation curve..30 3.5 IL-1β had no effects on K+ current I-V relationship………………………...31 3.6 IL-1β Slows the Recovery of Voltage-Gated Sodium Channels from Inactivation……………………………………………………………………...31 4. Discussion…………………………………………………………………………33 4.1 The effects of IL-1β on sEPSC……………………………………………..34 4.2 IL-1β alters the Na+ channels dynamics……………………………………35 5. Conclusion…………………………………………………………………………38 6. Tables………………………………………………………………………………39 Table 1. sEPSC after IL-1β treatment………………………………………………..39 Table 2. Peak current and V1/2 of Na+ channel activation after IL-1β treatment…….40 Table 3. V1/2 of Na+ channel inactivation after IL-1β treatment……………………..41 Table 4. τ of Na+ channel after IL-1β treatment……………………………………...42 7. Figures…………………………………………………………………………….43 Figure 1. IL-1R1 expresses in primary cultured cortical neurons……………………43 Figure 2. sEPSC recording of neurons……………………………………………….45 Figure 3. The representative current traces of Na+ channel after IL-1β treatment…...48 Figure 4. I-V relationship of Na+ channel within control group……………………..50 Figure 5. I-V relationship of Na+ channel after IL-1β treatment…………………......51 Figure 6. IL-1β negatively shifts V1/2 of Na+ channel steady-state inactivation……..54 Figure 7. IL-1β had no effects on K+ channel I-V relationship………………………57 Figure 8. IL-1β lengthens the recovery rate from inactivation of Na+ channels……..60 8. References…………………………………………………………………………63 | - |
| dc.language.iso | en | - |
| dc.subject | 介白素-1β | zh_TW |
| dc.subject | 神經發炎 | zh_TW |
| dc.subject | 神經電生理 | zh_TW |
| dc.subject | Neuroinflammation | en |
| dc.subject | IL-1β | en |
| dc.subject | Neuronal electrophysiology | en |
| dc.title | 研究 IL-1β 對初代培養大鼠胚胎皮質神經細胞之電生理的影響 | zh_TW |
| dc.title | Study the effects of IL-1β on the electrical properties of primary cultured rat embryonic cortical neurons | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 呂昕煒;林甫容 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Wei Lu;Fu-Jung Lin | en |
| dc.subject.keyword | 介白素-1β,神經發炎,神經電生理, | zh_TW |
| dc.subject.keyword | IL-1β,Neuroinflammation,Neuronal electrophysiology, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202503135 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-22 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
