請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99781完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林守德 | zh_TW |
| dc.contributor.advisor | Shou-De Lin | en |
| dc.contributor.author | 陳映璇 | zh_TW |
| dc.contributor.author | Ying-Hsuan Chen | en |
| dc.date.accessioned | 2025-09-17T16:39:54Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Arancibia et al. This investor sentiment gauge offers market timing signals, 2025. Available at investors.com.
A. Briola et al. Deep reinforcement learning for active high frequency trading. arXiv preprint arXiv:2101.07107, 2021. Z. Chen et al. Chatgpt informed graph neural network for stock movement prediction. arXiv preprint arXiv:2309.12345, 2023. N. Deep et al. Technical indicators improve stock prediction. arXiv preprint arXiv:2412.15448, 2024. Y. Huang et al. Feature importance in ohlc-based stock prediction. J Financ Innov, 2024. Y. Liu et al. itransformer: Inverted transformers are effective for time series forecasting. International Conference on Learning Representations (ICLR), 2024. P. Magner et al. Financial synchronization among global equity indices. PLOS ONE, 2021. R. M. Prashant Pilla. Forecasting s&p 500 using lstm models. arXiv preprint arXiv:2501.17366, 2025. H. Qian et al. Mdgnn: Multi-relational dynamic graph neural network for comprehensive and dynamic stock investment prediction. arXiv preprint arXiv:2401.12345, 2024. R. Rak et al. Price-volume relationships in the stock market. arXiv preprint arXiv:1310.7018, 2013. E. Staff. Stock market volatility and the vix. ECB Working Paper Series, 2014. M.-C. Tsai et al. The role of institutional and foreign investors in price discovery. JMultinational Financial Management, 2019. Y. Xiao et al. Tradingagents: Multi-agents llm financial trading framework. arXiv preprint arXiv:2412.20138, 2024. M. Xu et al. Deep reinforcement learning for quantitative trading. arXiv preprint arXiv:2312.15730, 2023. Y. Zhang et al. When ai meets finance (stockagent): Large language model-based stock trading in simulated real-world environments. arXiv preprint arXiv:2407.18957, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99781 | - |
| dc.description.abstract | 傳統的股價預測模型僅聚焦於價格變化,難以直接轉化為實際可執行的交易決策。此外,現有 AI 交易系統多數缺乏彈性,難以依照投資人偏好進行調整。因此,我們設計並實作了一套具高度彈性與模組化的 AI Trading Agent 架構,支援多種交易目標與策略規則的調整與擴展。本研究以「起漲點偵測」為實例,提出一套端到端的交易流程,結合股價數據、全球性指標與券商分點資料。透過序列分解與多模態編碼器設計,模型可整合市場趨勢與特定券商的異常買盤行為。我們進一步設計了與交易任務對齊的標記方式與損失函數(Concordance Correlation Coefficient),提升模型對潛力標的排序與預測的準確度。實驗涵蓋十個資料集與兩種策略設計(Threshold-Based 及 TopK-Based),並以 ROI、Sharpe ratio、Precision 等指標進行回測。結果顯示,所提出系統在多數資料集上均優於 baseline 策略,驗證了本系統於真實交易任務中的有效性與彈性。 | zh_TW |
| dc.description.abstract | Although many existing approaches emphasize price prediction, such forecasts alone are insufficient to make effective trading decisions. Furthermore, most AI trading systems lack flexibility and cannot adapt to different investor goals or preferences. To address these limitations, we propose a modular and flexible AI Trading Agent framework that supports end-to-end customization across trading goals, predictive models, and strategy modules. As a case study, we aim to detect surge points by integrating price sequences, global indicators, and broker-level trading data, which reflect institutional activity and short-term market sentiment. We introduce a model architecture with series decomposition, dual encoders for market and broker data, and an attention-based prediction module. The system employs a task-aligned labeling strategy and a concordance correlation coefficient (CCC) loss function to optimize both the ranking quality and the precision of the value in the predictions. We evaluated our agent in ten datasets and two decision strategies (threshold-based and Top-K selection). The backtests from 2021 to 2024 show consistent outperformance over passive baselines in terms of return on investment (ROI), Sharpe ratio, and surge precision, demonstrating the agent’s effectiveness and adaptability to real-world trading scenarios. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:39:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:39:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents v List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Related Works 5 2.1 Time Series Forecasting 5 2.2 Stock Movement Prediction 5 2.3 AI Trading Agents 6 2.3.1 LLM-based Trading Agents 6 2.3.2 RL-based Trading Agents 6 2.4 Limitations of Existing Methods 7 Chapter 3 Methodology 8 3.1 Work Flow 8 3.1.1 Example Work Flow 8 3.1.2 Flexibility 10 3.1.2.1 Flexibility on Trading Goal 10 3.1.2.2 Flexibility on Strategy 10 3.2 Pipeline Module 11 3.3 Case Study: Surge Point Detection 16 Chapter 4 Experiments 21 4.1 Experimental Setup 21 4.1.1 Dataset 21 4.1.2 Evaluation Metrics: ROI and Sharpe Ratio 22 4.1.3 Baselines 23 4.2 Results 23 4.2.1 Threshold-Based Strategy 23 4.2.2 Top-K Strategy 24 4.3 From Regression to Classification 25 Chapter 5 Ablation Study 28 5.1 Input Normalization 28 5.2 Model Architecture 29 5.3 Loss Function 29 5.4 Broker Impact 30 5.5 Training on More Stocks 31 Chapter 6 Conclusion 32 6.1 Future Work 33 Chapter 7 Appendix 35 References 41 | - |
| dc.language.iso | en | - |
| dc.subject | 時序模型 | zh_TW |
| dc.subject | 券商分點資料 | zh_TW |
| dc.subject | 起漲點預測 | zh_TW |
| dc.subject | 股價預測 | zh_TW |
| dc.subject | AI交易代理系統 | zh_TW |
| dc.subject | Stock Movement Prediction | en |
| dc.subject | Time Series Modeling | en |
| dc.subject | Broker Flow Data | en |
| dc.subject | Surge Point Detection | en |
| dc.subject | AI Trading Agent | en |
| dc.title | AI 交易代理:透過券商分點資料進行起漲點偵測的案例研究 | zh_TW |
| dc.title | Multi-task AI Trading Agent: Case Study on Surge Point Detection Via Broker Data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉彌妍;陳銘憲;李昌鴻 | zh_TW |
| dc.contributor.oralexamcommittee | Mi-Yen Yeh;Ming-Syan Chen;Chang-Hong Li | en |
| dc.subject.keyword | AI交易代理系統,起漲點預測,券商分點資料,時序模型,股價預測, | zh_TW |
| dc.subject.keyword | AI Trading Agent,Surge Point Detection,Broker Flow Data,Time Series Modeling,Stock Movement Prediction, | en |
| dc.relation.page | 42 | - |
| dc.identifier.doi | 10.6342/NTU202502334 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
