請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99779完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭斯彥 | zh_TW |
| dc.contributor.advisor | Sy-Yen Kuo | en |
| dc.contributor.author | 蘇冠霖 | zh_TW |
| dc.contributor.author | Kuan-Lin Su | en |
| dc.date.accessioned | 2025-09-17T16:39:32Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | [1] H. Chen, R. Tao, H. Zhang, Y. Wang, X. Li, W. Ye, J. Wang, G. Hu, and M. Savvides. Conv-adapter: Exploring parameter efficient transfer learning for convnets. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1551–1561, 2024.
[2] G. Cheng, J. Han, and X. Lu. Remote sensing image scene classification: Benchmark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017. [3] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns. IEEE transactions on geoscience and remote sensing, 56(5):2811–2821, 2018. [4] Y. Cong, S. Khanna, C. Meng, P. Liu, E. Rozi, Y. He, M. Burke, D. Lobell, and S. Ermon. Satmae: Pre-training transformers for temporal and multi-spectral satellite imagery. Advances in Neural Information Processing Systems, 35:197–211, 2022. [5] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le. Randaugment: Practical automated data augmentation with a reduced search space. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 18613–18624. Curran Associates, Inc., 2020. [6] P. Ebel, A. Meraner, M. Schmitt, and X. X. Zhu. Multisensor Data Fusion for Cloud Removal in Global and All-Season Sentinel-2 Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2020. [7] A. Fuller, K. Millard, and J. Green. Croma: Remote sensing representations with contrastive radar-optical masked autoencoders. Advances in Neural Information Processing Systems, 36:5506–5538, 2023. [8] Z. Gong, Z. Wei, D. Wang, X. Ma, H. Chen, Y. Jia, Y. Deng, Z. Ji, X. Zhu, N. Yokoya, J. Zhang, B. Du, and L. Zhang. Crossearth: Geospatial vision foundation model for domain generalizable remote sensing semantic segmentation. arXiv preprint arXiv:2410.22629, 2024. [9] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019. [10] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan. AugMix: A simple data processing method to improve robustness and uncertainty. Proceedings of the International Conference on Learning Representations (ICLR), 2020. [11] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In International conference on machine learning, pages 2790–2799. PMLR, 2019. [12] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022. [13] L. Huang, Y. Zhou, F. Zhu, L. Liu, and L. Shao. Iterative normalization: Beyond standardization towards efficient whitening. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4869–4878, 2019. [14] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim. Visual prompt tuning. In European conference on computer vision, pages 709–727. Springer, 2022. [15] A. Kumar, A. Raghunathan, R. Jones, T. Ma, and P. Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054, 2022. [16] A. Lacoste, E. D. Sherwin, H. Kerner, H. Alemohammad, B. Lütjens, J. Irvin, D. Dao, A. Chang, M. Gunturkun, A. Drouin, et al. Toward foundation models for earth monitoring: Proposal for a climate change benchmark. arXiv preprint arXiv:2112.00570, 2021. [17] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper, broader and artier domain generalization. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 5543–5551, 2017. [18] S. Liu, X. Jin, X. Yang, J. Ye, and X. Wang. Stydesty: Min-max stylization and destylization for single domain generalization. arXiv preprint arXiv:2406.00275, 2024. [19] X. Lu, H. Sun, and X. Zheng. A feature aggregation convolutional neural network for remote sensing scene classification. IEEE Transactions on Geoscience and Remote Sensing, 57(10):7894–7906, 2019. [20] F. Lv, J. Liang, S. Li, B. Zang, C. H. Liu, Z. Wang, and D. Liu. Causality inspired representation learning for domain generalization. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8036–8046, 2022. [21] P. Lv, W. Wu, Y. Zhong, F. Du, and L. Zhang. Scvit: A spatial-channel feature preserving vision transformer for remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 60:1–12, 2022. [22] U. Mall, B. Hariharan, and K. Bala. Change-aware sampling and contrastive learning for satellite images. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5261–5270, 2023. [23] O. Mañas, A. Lacoste, X. Giró-i Nieto, D. Vazquez, and P. Rodríguez. Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 9394–9403, 2021. [24] H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo. Reducing domain gap by reducing style bias. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8686–8695, 2021. [25] M. Noman, M. Naseer, H. Cholakkal, R. M. Anwar, S. Khan, and F. S. Khan. Rethinking transformers pre-training for multi-spectral satellite imagery. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 27811–27819, 2024. [26] E. Othman, Y. Bazi, F. Melgani, H. Alhichri, N. Alajlan, and M. Zuair. Domain adaptation network for cross-scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(8):4441–4456, 2017. [27] X. Pan, P. Luo, J. Shi, and X. Tang. Two at once: Enhancing learning and generalization capacities via ibn-net. In Proceedings of the european conference on computer vision (ECCV), pages 464–479, 2018. [28] X. Pan, X. Zhan, J. Shi, X. Tang, and P. Luo. Switchable whitening for deep representation learning. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1863–1871, 2019. [29] M. Schmitt, L. H. Hughes, C. Qiu, and X. X. Zhu. Sen12ms–a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion. arXiv preprint arXiv:1906.07789, 2019. [30] M. Schmitt and Y.-L. Wu. Remote sensing image classification with the sen12ms dataset. arXiv preprint arXiv:2104.00704, 2021. [31] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding. In IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium, pages 5901–5904. IEEE, 2019. [32] H. Sun, S. Li, X. Zheng, and X. Lu. Remote sensing scene classification by gated bidirectional network. IEEE Transactions on Geoscience and Remote Sensing, 58(1):82–96, 2019. [33] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017. [34] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR 2011, pages 1521–1528, 2011. [35] D. Tuia, C. Persello, and L. Bruzzone. Domain adaptation for the classification of remote sensing data: An overview of recent advances. IEEE geoscience and remote sensing magazine, 4(2):41–57, 2016. [36] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for unsupervised domain adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5385–5394, 2017. [37] J. Wang, W. Li, M. Zhang, R. Tao, and J. Chanussot. Remote-sensing scene classification via multistage self-guided separation network. IEEE Transactions on Geoscience and Remote Sensing, 61:1–12, 2023. [38] X. Wang, S. Wang, C. Ning, and H. Zhou. Enhanced feature pyramid network with deep semantic embedding for remote sensing scene classification. IEEE Transactions on Geoscience and Remote Sensing, 59(9):7918–7932, 2021. [39] Y. Wang, C. M. Albrecht, N. A. A. A. Braham, C. Liu, Z. Xiong, and X. X. Zhu. Decur: decoupling common & unique representations for multimodal self-supervision. 2023. [40] Z. Wei, L. Chen, Y. Jin, X. Ma, T. Liu, P. Ling, B. Wang, H. Chen, and J. Zheng. Stronger, fewer, superior: Harnessing vision foundation models for domain generalized semantic segmentation. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 28619–28630, 2024. [41] G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and X. Lu. Aid: A benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7):3965–3981, 2017. [42] Q. Xu, Y. Shi, X. Yuan, and X. X. Zhu. Universal domain adaptation for remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 61:1–15, 2023. [43] Q. Xu, X. Yuan, and C. Ouyang. Class-aware domain adaptation for semantic segmentation of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60:1–17, 2022. [44] Y. Zhao, Y. Chen, S. Xiong, X. Lu, X. X. Zhu, and L. Mou. Co-enhanced global-part integration for remote-sensing scene classification. IEEE Transactions on Geoscience and Remote Sensing, 62:1–14, 2024. [45] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang. Domain generalization with mixstyle. In ICLR, 2021. [46] S. Zhu, B. Du, L. Zhang, and X. Li. Attention-based multiscale residual adaptation network for cross-scene classification. IEEE Transactions on Geoscience and Remote Sensing, 60:1–15, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99779 | - |
| dc.description.abstract | 深度學習常假設訓練與測試資料獨立同分佈,但遙測影像因地理與季節變化,往往違反此假設。領域泛化,尤其是單域泛化,儘管在其他領域已有所研究,卻在遙測應用中鮮少被探討。為填補這一空白,我們基於 SEN12MS 與 SEN12MS‐CR 資料集,構建了首個單域泛化基準,將影像劃分為春、夏、秋、冬等四個領域,由於各個季節對應一組不重疊的地區集,因此此基準同時反映了地理與季節的差異。此外,我們也提出了一種基於因果關係且參數高效、適用於各種遙測基礎模型的微調方式,稱為因果微調。該方法透過逐樣本因子分解,從因果關係的角度出發,強化影像特徵的跨域不變性,並透過因果因子選擇機制,聚焦最具預測力的因子。我們在 CROMA 與 DeCUR 兩個遙測基礎模型上測試因果微調,結果顯示無論在晴空或多雲條件下,其性能均優於全參數微調、線性探針,以及六種先進的單域泛化方法,與全參數微調相比,因果微調提升了約 3-4% 的 F1 分數,為穩健的遙測跨域分類提供了實際可行的解決途徑。 | zh_TW |
| dc.description.abstract | Deep learning models often assume that training and test data are independent and identically distributed (IID), yet in remote sensing, this assumption often breaks due to geographic and seasonal variations. While domain generalization (DG) and particularly single‐domain generalization (SDG) serve as promising solutions, they are underexplored in the field of remote sensing. To fill this gap, we introduce a novel SDG benchmark constructed from SEN12MS and SEN12MS-CR, where images are partitioned into four domains based on season and geography. Each domain represents a unique season and contains a distinct, non-overlapping set of regions. This design captures both geographic and seasonal variations, reflecting real-world spatiotemporal shifts in remote sensing data. Building on this benchmark, we propose Causal Tuning, a causality-inspired parameter‐efficient, model‐agnostic tuning approach for remote sensing foundation models (RSFMs). Causal Tuning combines instancewise factorization, which enhances domain invariance from a causality perspective, with causal factor selection, a class‐guided cross‐attention module that aggregates only the most predictive factors. Integrated with two recent RSFMs, CROMA and DeCUR, Causal Tuning outperforms full fine‐tuning, linear probing, and six leading SDG baselines, achieving 3-4% F1 gains under both clear and cloudy conditions compared to full fine-tuning, paving a practical path to robust out‐of‐distribution (OOD) remote sensing scene classification. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:39:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:39:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Single-Domain Generalization 4 2.2 Remote Sensing Foundation Models 6 2.3 Parameter-Efficient Fine-Tuning 7 2.4 Causality in Deep Learning 8 Chapter 3 Benchmark 9 3.1 Domain Generalization Benchmark for Remote Sensing 9 3.2 Proposed Benchmark 10 Chapter 4 Method 13 4.1 Causal Tuning 13 4.2 Instancewise Factorization Module 16 4.3 Causal Factor Selection Module 17 Chapter 5 Experiment 18 5.1 Experimental Setup 18 5.2 Implementation Detail 19 5.3 Experimental Results 20 Chapter 6 Conclusion 25 References 27 | - |
| dc.language.iso | en | - |
| dc.subject | 單域泛化 | zh_TW |
| dc.subject | 輕量化微調 | zh_TW |
| dc.subject | 因果關係 | zh_TW |
| dc.subject | 遙測影像場景分類 | zh_TW |
| dc.subject | 基礎模型 | zh_TW |
| dc.subject | Remote Sensing Scene Classification | en |
| dc.subject | Foundation Model | en |
| dc.subject | Single Domain Generalization | en |
| dc.subject | Causality | en |
| dc.subject | Parameter-Efficient Fine-Tuning | en |
| dc.title | 啟發自因果關係的單域泛化方法於遙測場景分類 | zh_TW |
| dc.title | Causality-Inspired Single Domain Generalization for Remote Sensing Scene Classification | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 袁世一;雷欽隆;顏嗣鈞;劉智弘 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Yi Yuan;Chin-Laung Lei;Hsu-chun Yen;Chih-Hung Liu | en |
| dc.subject.keyword | 遙測影像場景分類,單域泛化,基礎模型,輕量化微調,因果關係, | zh_TW |
| dc.subject.keyword | Remote Sensing Scene Classification,Single Domain Generalization,Foundation Model,Parameter-Efficient Fine-Tuning,Causality, | en |
| dc.relation.page | 33 | - |
| dc.identifier.doi | 10.6342/NTU202502612 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
