請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99751完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王翰聰 | zh_TW |
| dc.contributor.advisor | Han-Tsung Wang | en |
| dc.contributor.author | 李怡葶 | zh_TW |
| dc.contributor.author | Yi-Ting Lee | en |
| dc.date.accessioned | 2025-09-17T16:34:34Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 陳美杏、李瑋崧、吳寬澤、簡宣裕與呂昀陞。2013。杏鮑菇廢棄基質在菇類栽培之應用。台灣農業研究 62:126-136。doi: 10.6156/jtar.2013.06202.03
陳柔妘。2024。瘤胃甲烷生成之體內外評估與整合應用。國立臺灣大學動物科學技術學系碩士論文。doi: 10.6342/NTU202402231 Alemu, A. W., D. Vyas, G. Manafiazar, J. A. Basarab, and K. A. Beauchemin. 2017. Enteric methane emissions from low– and high–residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques. J. Anim. Sci. 95:3727-3737. doi: 10.2527/jas.2017.1501 Anotaenwere, C. C., O. S. Isikhuemhen, P. A. Dele, M. Wuaku, J. O. Alabi, O. O. Adelusi, D. O. Okedoyin, K. A. Ike, D. Gray, A. E. Kholif, and U. Y. Anele. 2025. Ensiled Pleurotus ostreatus based spent mushroom substrate from corn: In vitro gas production, greenhouse gas emissions, nutrient degradation, and ruminal fermentation characteristics. AIMS Microbiology 11:1-21. doi: 10.3934/microbiol.2025001 AOAC. 2000. Official Methods of Analysis. 17th ed. Assoc. Off. Anal. Chem., Gaithersburg, MD, USA. Arthur, P. F., I. M. Barchia, C. Weber, T. Bird-Gardiner, K. A. Donoghue, R. M. Herd, and R. S. Hegarty. 2017. Optimizing test procedures for estimating daily methane and carbon dioxide emissions in cattle using short-term breath measures. J. Anim. Sci. 95:645-656. doi: 10.2527/jas.2016.0700 Baek, Y. C., M. S. Kim, K. E. Reddy, Y. K. Oh, Y. H. Jung, J. M. Yeo, and H. Choi. 2017. Rumen fermentation and digestibility of spent mushroom (Pleurotus ostreatus) substrate inoculated with Lactobacillus brevis for Hanwoo steers. Rev. Colomb. de Cienc. 30:267-277. doi: 10.17533/udea.rccp.v30n4a02. Beauchemin, K. A., M. Kreuzer, F. O'Mara, and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48:21-27. doi: doi.org/10.1071/EA07199 Becker, P. M., P. G. van Wikselaar, M. C. R. Franssen, R. C. H. de Vos, R. D. Hall, and J. Beekwilder. 2014. Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics 10:179-189. doi: 10.1007/s11306-013-0554-5 Bekele, W., A. Guinguina, A. Zegeye, A. Simachew, and M. Ramin. 2022. Contemporary Methods of Measuring and Estimating Methane Emission from Ruminants. Methane 1:82-95. doi: 10.3390/methane1020008 Belibasakis, N. G., and D. Tsirgogianni. 1996. Effects of wet brewers grains on milk yield, milk composition and blood components of dairy cows in hot weather. Anim. Feed Sci. Technol. 57:175-181. doi: 10.1016/0377-8401(95)00860-8 Bell, M. J., J. Craigon, N. Saunders, J. R. Goodman, and P. C. Garnsworthy. 2018. Does the diurnal pattern of enteric methane emissions from dairy cows change over time? Animal 12:2065-2070. doi: 10.1017/S1751731118000228 Benchaar, C., F. Hassanat, R. Gervais, P. Y. Chouinard, C. Julien, H. V. Petit, and D. I. Massé. 2013. Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 96:2413-2427. doi: 10.3168/jds.2012-6037 Benedeti, P. D. B., S. d. C. Valadares Filho, D. Zanetti, F. Fonseca e Silva, B. d. C. Silva, H. M. Alhadas, J. M. Vieira Pereira, M. V. C. Pacheco, P. Pucetti, A. C. Baião Menezes, F. A. de Sales Silva, L. A. Godoi, and S. A. Santos. 2019. Prediction of in vivo organic matter digestibility of beef cattle diets from degradation parameters estimated from in situ and in vitro incubations. J. Agric. Sci. 157:711-720. doi: 10.1017/S0021859620000180 Bhatta, R., O. Enishi, and M. Kurihara. 2007. Measurement of methane production from ruminants. Asian-Australas J. Anim. Sci. 20:1305-1318. doi: 10.5713/ajas.2007.1305. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522. doi: 10.3168/jds.2008-1441 Blümmel, M., D. I. Givens, and A. R. Moss. 2005. Comparison of methane produced by straw fed sheep in open-circuit respiration with methane predicted by fermentation characteristics measured by an in vitro gas procedure. Anim. Feed Sci. Technol. 123-124:379-390. doi: 10.1016/j.anifeedsci.2005.06.001 Blümmel, M., K.-P. Aiple, H. Steingaβ, and K. Becker. 1999. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 81:157-167. doi: 10.1046/j.1439-0396.1999.813205.x Bradford, B. J., and C. R. Mullins. 2012. Invited review: Strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources. J. Dairy Sci. 95:4735-4746. doi: 10.3168/jds.2012-5393 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. doi.org/10.1016/0003-269790527-3 Broderick, G., and J. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75 doi: 10.3168/jds.S0022-030282888-8 Browne, P. D., and H. Cadillo-Quiroz. 2013. Contribution of transcriptomics to systems-level understanding of methanogenic archaea. Archaea. 2013:1-11. doi:10.1155/2013/586369 Calsamiglia, S., P. W. Cardozo, A. Ferret, and A. Bach. 2008. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci. 86:702-711. doi: 10.2527/jas.2007-0146 Canul Solis, J. R., A. T. Piñeiro Vázquez, J. I. Arceo Castillo, J. A. Alayón Gamboa, A. J. Ayala Burgos, C. F. Aguilar Pérez, F. J. Solorio Sánchez, O. A. Castelán Ortega, M. Lachica López, and P. Quintana Owen. 2017. Design and construction of low-cost respiration chambers for ruminal methane measurements in ruminants. Revista mexicana de ciencias pecuarias 8:185-192. doi: 10.22319/rmcp.v8i2.4442 Carulla, J. E., M. Kreuzer, A. Machmüller, and H. D. Hess. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56:961-970. doi: 10.1071/AR05022 Castelán Ortega, O. A., P. E. Pedraza Beltrán, G. S. Hernández Pineda, M. Benaouda, M. González Ronquillo, L. T Molina, J. C. Ku Vera, H. D. Montelongo Pérez, and M. F. Vázquez Carrillo. 2020. Construction and operation of a respiration chamber of the head-box type for methane measurement from cattle. Animals 10:227. doi: 10.3390/ani10020227 Cateni, F., M. L. Gargano, G. Procida, G. Venturella, F. Cirlincione, and V. Ferraro. 2022. Mycochemicals in wild and cultivated mushrooms: nutrition and health. Phytochem. Rev. 21:339-383. doi: 10.1007/s11101-021-09748-2 Charmley, E., S. R. O. Williams, P. J. Moate, R. S. Hegarty, R. M. Herd, V. H. Oddy, P. Reyenga, K. M. Staunton, A. Anderson, and M. C. Hannah. 2016. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 56:169-180. doi: 10.1071/AN15365 Chen, L., G. Guo, X. Yuan, J. Zhang, A. Wen, X. Sun, and T. Shao. 2017. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality, aerobic stability and in vitro digestibility on the Tibetan plateau. J. Anim. Physiol. Anim. Nutr. 101: 144-153. doi: 10.1111/jpn.12577 Cheng, K.-J., J. Fay, R. Howarth, and J. Costerton. 1980. Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl. Environ. Microbiol. 40:613-625. Chetrariu, A., and A. Dabija. 2020. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci. 10:5619. doi: 10.3390/app10165619 Chiou, P. W. S., C.-R. Chen, K.-J. Chen, and B. Yu. 1998. Wet brewers' grains or bean curd pomance as partial replacement of soybean meal for lactating cows. Anim. Feed Sci. Technol. 74:123-134. doi: 10.1016/S0377-840100170-9 Crompton, L. A., J. A. N. Mills, C. K. Reynolds, and J. France. 2011. Fluctuations in methane emission in response to feeding pattern in lactating dairy cows. In: D. Sauvant, J. Van Milgen, P. Faverdin and N. Friggens, editors, Modelling nutrient digestion and utilisation in farm animals. Wageningen Academic Publishers, Wageningen. p. 176-180. Crooker, B., C. Sniffen, W. Hoover, and L. Johnson. 1978. Solvents for soluble nitrogen measurements in feedstuffs. J. Dairy Sci. 61:437-447. doi:10.3168/jds.S0022030283618-2 de Assis, R. G., I. J. dos Santos, J. M. Gasparina, N. A. Bandoria, B. Alves, P. C. G. Dias, A. C. S. Vicente, L. C. B. Soares, D. M. Polizel, J. S. Biava, A. V. Pires, and E. M. Ferreira. 2023. Wet brewers’ grains as a source of protein for feedlot lambs: Impacts on intake, apparent nutrient digestibility, ruminal fermentation, and nitrogen balance. Small Rumin. Res. 223:106978. doi: 10.1016/j.smallrumres.2023.106978 Deighton, M. H., S. R. O. Williams, M. C. Hannah, R. J. Eckard, T. M. Boland, W. J. Wales, and P. J. Moate. 2014. A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 197:47-63. doi: 10.1016/j.anifeedsci.2014.08.003 Denninger, T. M., A. Schwarm, A. Birkinshaw, M. Terranova, F. Dohme-Meier, A. Münger, L. Eggerschwiler, B. Bapst, S. Wegmann, M. Clauss, and M. Kreuzer. 2020. Immediate effect of Acacia mearnsii tannins on methane emissions and milk fatty acid profiles of dairy cows. Anim. Feed Sci. Technol. 261:114388. doi: 10.1016/j.anifeedsci.2019.114388 Díaz Carrasco, J. M., C. Cabral, L. M. Redondo, N. D. Pin Viso, D. Colombatto, M. D. Farber, and M. E. Fernández Miyakawa. 2017. Impact of chestnut and quebracho tannins on rumen microbiota of bovines. Biomed Res. Int. 2017:9610810. doi: 10.1155/2017/9610810 Dinakarkumar, Y., J. R. Rajabathar, S. Arokiyaraj, I. Jeyaraj, S. R. Anjaneyulu, S. Sandeep, C. S. Karthik, J. N. Appaturi, and L. D. Wilson. 2021. Anti-methanogenic effect of phytochemicals on methyl-coenzyme M reductase—potential: In silico and molecular docking studies for environmental protection. Micromachines 12:1425. doi: 10.3390/mi12111425 DRMS (Dairy Record Management Systems). 2014. DHI Glossary. Džermeikaitė, K., J. Krištolaitytė, and R. Antanaitis. 2024. Relationship between dairy cow health and intensity of greenhouse gas emissions. Animals 14:829. doi: 10.3390/ani14060829 Egounlety, M., and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J. Food Eng. 56:249-254. doi: 10.1016/S0260-8774(02)00262-5 Elias, D. A., L. R. Krumholz, R. S. Tanner, and J. M. Suflita. 1999. Estimation of methanogen biomass by quantitation of coenzyme M. Appl. Environ. Microbiol. 65:5541-5545. doi:10.1128/AEM.65.12.5541-5545.1999 Fan, G. J., M. H. Chen, C. F. Lee, B. Yu, and T. T. Lee. 2022. Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats. Anim. Biosci. 35:999-1009. doi: 10.5713/ab.21.0340 Firkins, J. L. 1997. Effects of feeding nonforage fiber sources on site of fiber digestion. J. Dairy Sci. 80:1426-1437. doi: 10.3168/jds.S0022-030276072-7 Frigeri, K. D. M., M. Deniz, F. A. Damasceno, M. Barbari, P. Herbut, and F. M. C. Vieira. 2023. Effect of heat stress on the behavior of lactating cows housed in compost barns: A systematic review. Appl. Sci. 13:2044. doi: 10.3390/app13042044 Gaines, W. L., and F. A. Davidson. 1923. Relation between percentage fat content and yield of milk. Correction of milk yield for fat content. Univ. of Illinois Agr. Expt. Sta., Bull. 245. https://hdl .handle.net/2142/3304 Gallivan, G. J., W. N. McDonell, and J. B. Forrest. 1989. Comparative pulmonary mechanics in the horse and the cow. Res. Vet. Sci. 46:322-330. doi: 10.1016/S0034-528831174-3 Galyean, M. L., and K. E. Hales. 2022. Prediction of methane per unit of dry matter intake in growing and finishing cattle from the ratio of dietary concentrations of starch to neutral detergent fiber alone or in combination with dietary concentration of ether extract. J. Anim. Sci. 100. doi: 10.1093/jas/skac243 Getachew, G., P. H. Robinson, E. J. DePeters, and S. J. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 111:57-71. doi: 10.1016/S0377-840100217-7 Grant, R. J. 1997. Interactions among forages and nonforage fiber sources. J. Dairy Sci. 80:1438-1446. doi: 10.3168/jds.S0022-030276073-9 Grünberg, W., and P. D. Constable. 2009. CHAPTER 6 - Function and dysfunction of the ruminant forestomach. In: D. E. Anderson and D. M. Rings, editors, Food Animal Practice (Fifth Edition). W.B. Saunders, Saint Louis. p. 12-19. Hall, M. B., and P. J. Weimer. 2007. Sucrose concentration alters fermentation kinetics, products, and carbon fates during in vitro fermentation with mixed ruminal microbes. J. Anim. Sci. 85:1467-1478. doi: 10.2527/jas.2006-014 Hammond, K. J., L. A. Crompton, A. Bannink, J. Dijkstra, D. R. Yáñez-Ruiz, P. O’Kiely, E. Kebreab, M. A. Eugène, Z. Yu, K. J. Shingfield, A. Schwarm, A. N. Hristov, and C. K. Reynolds. 2016. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 219:13-30. doi: 10.1016/j.anifeedsci.2016.05.018 Hatew, B., J. W. Cone, W. F. Pellikaan, S. C. Podesta, A. Bannink, W. H. Hendriks, and J. Dijkstra. 2015. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. Feed Sci. Technol. 202:20-31. doi: 10.1016/j.anifeedsci.2015.01.012 Hoffman, P., K. Lundberg, L. Bauman, and R. Shaver. 2003. In vitro NDF digestibility of forages: The 30 vs. 48 hour debate. Focus on Forage 5:1-3. Homem Junior, A. C., B. F. Nocera, L. F. Faleiros, M. T. C. Almeida, J. R. Paschoaloto, H. L. Perez, A. P. D’Áurea, and J. M. B. Ezequiel. 2019. Partial replacement of corn by soybean hulls in high-grain diets for feedlot sheep. Pesquisa Agropecuária Brasileira 54. doi: 10.1590/S1678-3921.pab2019.v54.00029 Hristov, A. N., J. Oh, F. Giallongo, T. Frederick, H. Weeks, P. R. Zimmerman, M. T. Harper, R. A. Hristova, R. S. Zimmerman, and A. F. Branco. 2015. The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. J. Vis. Exp. doi: 10.3791/52904 Hristov, A. N., J. Oh, J. L. Firkins, J. Dijkstra, E. Kebreab, G. Waghorn, H. P. Makkar, A. T. Adesogan, W. Yang, C. Lee, P. J. Gerber, B. Henderson, and J. M. Tricarico. 2013. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91:5045-5069. doi: 10.2527/jas.2013-6583 Huige, N. J. 2006. Brewery by-products and effluents, Handbook of brewing. CRC Press. p. 670-729. Hünerberg, M., S. M. Little, K. A. Beauchemin, S. M. McGinn, D. O’Connor, E. K. Okine, O. M. Harstad, R. Kröbel, and T. A. McAllister. 2014. Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production. Agric. Syst. 127:19-27. doi: 10.1016/j.agsy.2014.01.005 Hünerberg, M., S. McGinn, K. Beauchemin, T. Entz, E. Okine, O. Harstad, and T. McAllister. 2015. Impact of ruminal pH on enteric methane emissions. J. Anim. Sci. 93:1760-1766. Hynes, D. N., S. Stergiadis, A. Gordon, and T. Yan. 2016. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass. J. Dairy Sci. 99:8858-8866. doi: 10.3168/jds.2016-11509 IPCC. 2014. Climate Change 2014: Synthesis Report. https://www.ipcc.ch/report/ar5/syr/ IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. https://www.ipcc.ch/report/ar6/wg2/ Ipharraguerre, I. R., and J. H. Clark. 2003. Soyhulls as an alternative feed for lactating dairy cows: A review. J. Dairy Sci. 86:1052-1073. doi: 10.3168/jds.S0022-030273689-3 Ipharraguerre, I. R., R. R. Ipharraguerre, and J. H. Clark. 2002. Performance of lactating dairy cows fed varying amounts of soyhulls as a replacement for corn grain. J. Dairy Sci. 85:2905-2912. doi: 10.3168/jds.S0022-030274378-6 Jayathilakan, K., K. Sultana, K. Radhakrishna, and A. S. Bawa. 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 49:278-293. doi: 10.1007/s13197-011-0290-7 Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492. doi: 10.2527/1995.7382483x Jonker, A., G. Molano, C. Antwi, and G. C. Waghorn. 2016. Enteric methane and carbon dioxide emissions measured using respiration chambers, the sulfur hexafluoride tracer technique, and a GreenFeed head-chamber system from beef heifers fed alfalfa silage at three allowances and four feeding frequencies. J. Anim. Sci. 94:4326-4337. doi: 10.2527/jas.2016-0646 Judd, L. M., and R. A. Kohn. 2018. Test of conditions that affect in vitro production of volatile fatty acids and gases. J. Anim. Sci. 96:694-704. doi: 10.1093/jas/skx082 Kang, K., H. Cho, S. Jeong, S. Jeon, M. Lee, S. Lee, Y. Baek, J. Oh, and S. Seo. 2022. Application of a hand-held laser methane detector for measuring enteric methane emissions from cattle in intensive farming. J. Anim. Sci. 100. doi: 10.1093/jas/skac211 Karageorgou, A., A.-L. Hager-Theodorides, M. Goliomytis, I. Politis, D. Konstantas, T. Massouras, S. Papanikolaou, P. Diamantopoulou, and P. Simitzis. 2024. Effect of the replacement of wheat straw by spent mushroom substrate in the diet of dairy ewes during late lactation on milk production, composition, oxidation stability and udder health. Sustainability 16:4550. doi: 10.3390/su16114550 Kawashima, T., W. Sumamal, F. Terada, and M. Shibata. 2001. Respiration trial system using ventilated flow-through method with a face mask, Japan International Research Center for Agricultural Sciences. Kidane, A., M. Øverland, L. T. Mydland, and E. Prestløkken. 2018. Interaction between feed use efficiency and level of dietary crude protein on enteric methane emission and apparent nitrogen use efficiency with Norwegian Red dairy cows. J. Anim. Sci. 96:3967-3982. doi: 10.1093/jas/sky256 Kılıç, C., A. Gürgen, S. Yıldız, Z. Can, and A. Değirmenci. 2024. Total phenolics, tannin contents, antioxidant properties, protein and sensory analysis of Pleurotus ostreatus, Pleurotus citrinopileatus and Pleurotus djamor cultivated on different sawdusts. Maderas. Ciencia y tecnología 26. doi: 10.22320/s0718221x/2024.20 Knapp, J. R., G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97:3231-3261. doi: 10.3168/jds.2013-7234 Kobayashi, N., F. Hou, A. Tsunekawa, T. Yan, F. Tegegne, A. Tassew, Y. Mekuriaw, S. Mekuriaw, B. Hunegnaw, W. Mekonnen, and T. Ichinohe. 2021. Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows. Anim. Biosci. 34:1415-1424. doi: 10.5713/ab.20.0739 Kohn, R., and R. Boston. 2000. The role of thermodynamics in controlling rumen metabolism. Modelling nutrient utilization in farm animals. 11-24. doi:10.1079/9780851994499.0011 Lee, C., K. A. Beauchemin, J. Dijkstra, D. L. Morris, K. Nichols, P. J. Kononoff, and D. Vyas. 2022. Estimates of daily oxygen consumption, carbon dioxide and methane emissions, and heat production for beef and dairy cattle using spot gas sampling. J. Dairy Sci. 105:9623-9638. doi: 10.3168/jds.2022-22213 Lee, C., R. Araujo, K. Koenig, and K. Beauchemin. 2015. Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers. J. Anim. Sci. 93:2391-2404. doi: 10.2527/jas.2014-8845 Leong, Y. K., T.-W. Ma, J.-S. Chang, and F.-C. Yang. 2022. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresour. Technol. 344:126157. doi: 10.1016/j.biortech.2021.126157 Levrault, C. M., G. F. Difford, G. Steinheim, P. W. G. Groot Koerkamp, and N. W. M. Ogink. 2023. Validation of the methane production measurement accuracy and ranking capacity of portable accumulation chambers for use with small ruminants. Biosyst. Eng. 236:201-211. doi: 10.1016/j.biosystemseng.2023.10.010 Li, M. M., S. Ghimire, B. A. Wenner, R. A. Kohn, J. L. Firkins, B. Gill, and M. D. Hanigan. 2022. Effects of acetate, propionate, and pH on volatile fatty acid thermodynamics in continuous cultures of ruminal contents. J. Dairy Sci. 105:8879-8897. doi: 10.3168/jds.2022-22084 Lin, S., J. Chang, J. Sun, and P. Xu. 2022. Improvement of the detection sensitivity for tunable diode laser absorption spectroscopy: A review. Front. Phys. 10:853966. doi: 10.3389/fphy.2022.853966 Ma, Z., R. Wang, M. Wang, X. Zhang, H. Mao, and Z. Tan. 2018. Short communication: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows. J. Dairy Sci. 101:5153-5158. doi: 10.3168/jds.2017-14096 Makkar, H., O. Sharma, R. Dawra, and S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170-2173. doi: 10.3168/jds.S0022-030282477-6 Manafiazar, G., S. Zimmerman, and J. A. Basarab. 2017. Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed emissions monitoring system. Canadian J. Anim. Sci. 97:118-126. doi: 10.1139/cjas-2015-0190 Martin Hünerberg, Shannan M. Little, Karen A. Beauchemin, Sean M. McGinn, Don O’Connor, Erasmus K. Okine, Odd M. Harstad, Roland Kröbel, Tim A. McAllister, Martín, C., G. I. Zervakis, S. Xiong, G. Koutrotsios, and K. O. Strætkvern. 2023. Spent substrate from mushroom cultivation: Exploitation potential toward various applications and value-added products. Bioengineered 14:2252138. doi: 10.1080/21655979.2023.2252138 Martínez-Fernández, G., L. Abecia, A. I. Martín-García, E. Ramos-Morales, G. Hervás, E. Molina-Alcaide, and D. R. Yáñez-Ruiz. 2013. In vitro–in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Animal 7:1925-1934. doi: 10.1017/S1751731113001699 Moon, Y. H., P. G. Shin, and S. J. Cho. 2012. Feeding value of spent mushroom (Pleurotus eryngii) substrate. J. Mushroom 10:236-243. doi: 10.14480/JM.2012.10.4.236 Morgavi, D. P., E. Forano, C. Martin, and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024-1036. doi: 10.1017/S1751731110000546 Muizelaar, W., Bani, P., Kuhla, B., Larsen, M., Tapio, I., Yáñez-Ruiz, D. R., and van Gastelen, S. 2020. Rumen fluid sampling via oral stomach tubing method. In: S. D. Mesgaran, R. Baumont, L. Munksgaard, D. Humphries, E. Kennedy, J. Dijkstra, R. Dewherst, H. Ferguson, M. Terré, and B. Kuhla, editors, Methods in cattle physiology and behaviour–Recommendations from the SmartCow consortium. PUBLISSO, Cologne. Murray, R. M., A. M. Bryant and R. A. Leng. 1975. Measurement of methane production in sheep. In: Tracer studies on nonprotein nitrogen for ruminants II. International Atomic Energy Agency, Vienna. p. 21-27. Murray, R. M., A. M. Bryant, and R. A. Leng. 1976. Rates of production of methane in the rumen and large intestine of sheep. Br. J. Nutr. 36:1-14. doi: 10.1079/BJN19760053 Nasrollahi, S. M., M. Imani, and Q. Zebeli. 2016. A meta-analysis and meta-regression of the impact of particle size, level, source and preservation method of forages on chewing behavior and ruminal fermentation in dairy cows. Anim. Feed Sci. Technol. 219:144-158. doi: 10.1016/j.anifeedsci.2016.06.012 Niu, M., E. Kebreab, A. N. Hristov, J. Oh, C. Arndt, A. Bannink, A. R. Bayat, A. F. Brito, T. Boland, D. Casper, L. A. Crompton, J. Dijkstra, M. A. Eugène, P. C. Garnsworthy, M. N. Haque, A. L. F. Hellwing, P. Huhtanen, M. Kreuzer, B. Kuhla, P. Lund, J. Madsen, C. Martin, S. C. McClelland, M. McGee, P. J. Moate, S. Muetzel, C. Muñoz, P. O'Kiely, N. Peiren, C. K. Reynolds, A. Schwarm, K. J. Shingfield, T. M. Storlien, M. R. Weisbjerg, D. R. Yáñez-Ruiz, and Z. Yu. 2018. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob. Chang. Biol. 24:3368-3389. doi: 10.1111/gcb.14094 NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington, DC. Ørskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. doi:10.1017/s0021859600063048 Oss, D. B., M. I. Marcondes, F. S. Machado, L. G. R. Pereira, T. R. Tomich, G. O. Ribeiro, M. L. Chizzotti, A. L. Ferreira, M. M. Campos, R. M. Maurício, A. V. Chaves, and T. A. McAllister. 2016. An evaluation of the face mask system based on short-term measurements compared with the sulfur hexafluoride (SF6) tracer, and respiration chamber techniques for measuring CH4 emissions. Anim. Feed Sci. Technol. 216:49-57. doi: 10.1016/j.anifeedsci.2016.03.008 Patra, A. K. 2017. Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitig. Adapt. Strateg. Glob. Chang. 22:629-650. doi: 10.1007/s11027-015-9691-7 Place, S. E., Y. Pan, Y. Zhao, and F. M. Mitloehner. 2011. Construction and operation of a ventilated hood system for measuring greenhouse gas and volatile organic compound emissions from cattle. Animals 1:433-446. doi: 10.3390/ani1040433 Polsky, L., and M. A. G. von Keyserlingk. 2017. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 100:8645-8657. doi: 10.3168/jds.2017-12651 Qiu, S., X. Zhang, W. Xia, Z. Li, L. Wang, Z. Chen, and S. Ge. 2023. Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure. Sci. Total Environ. 877:162702. doi: 10.1016/j.scitotenv.2023.162702 Ramírez-Bribiesca, J. E., A. Soto-Sánchez, L. M. Hernández-Calva, J. Salinas-Chavira, J. R. Galaviz-Rodriguez, R. G. Cruz-Monterrosa, and S. Vargas-López. 2010. Influence of Pleurotus ostreatus spent corn straw on performance and carcass characteristics of feedlot Pelibuey lambs. Indian J. Anim. Sci. 80:754-757. Rangubhet, K.T., M. C. Mangwe, V. Mlambo, Y. K. Fan, and H. I. Chiang. 2017. Enteric methane emissions and protozoa populations in Holstein steers fed spent mushroom (Flammulina velutipes) substrate silage-based diets. Anim. Feed Sci. Technol. 234:78-87. doi: 10.1016/j.anifeedsci.2017.06.005 Ravindran, R., S. Jaiswal, N. Abu-Ghannam, and A. K. Jaiswal. 2018. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain. Bioresour. Technol. 248:272-279. doi: 10.1016/j.biortech.2017.06.039 Reinold, M. R. 1997. Manual prático de cervejaria. São Paulo: Aden 214 Reynolds, C. K., L. A. Crompton, and J. A. Mills. 2010. Improving the efficiency of energy utilisation in cattle. Anim. Prod. Sci. 51:6-12. doi: 10.1071/AN10160 Ricci, P., M. G. G. Chagunda, J. Rooke, J. G. M. Houdijk, C.-A. Duthie, J. Hyslop, R. Roehe, and A. Waterhouse. 2014. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers. J. Anim. Sci. 92:5239-5250. doi: 10.2527/jas.2014-7676 Rochette, Y., A. Jonker, P. Moate, A. Vanlierde, and C. Martin. 2021. Sulphur hexafluoride (SF6) tracer technique. In: G. Viereck, B. Kuhla and S. Danesh Mesgaran, editors, Methods in cattle physiology and behaviour research – Recommendations from the SmartCow consortium. PUBLISSO, Cologne. Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81:3222-3230. doi: 10.3168/jds.S0022-030275886-2 Russell, J. B., and D. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39:604-610. Rymer, C., J. A. Huntington, B. A. Williams, and D. I. Givens. 2005. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 123-124:9-30. doi: 10.1016/j.anifeedsci.2005.04.055 Santos, M., J. Jiménez, B. Bartolomé, C. Gómez-Cordovés, and M. Del Nozal. 2003. Variability of brewer’s spent grain within a brewery. Food Chem. 80:17-21. doi: 10.1016/S0308-8146(02)00229-7 Schingoethe, D. J., K. F. Kalscheur, A. R. Hippen, and A. D. Garcia. 2009. Invited review: The use of distillers products in dairy cattle diets. J. Dairy Sci. 92:5802-5813. doi: 10.3168/jds.2009-2549 Silveira, S. R., S. A. Terry, T. E. Biffin, R. M. Maurício, L. G. R. Pereira, A. L. Ferreira, R. S. Ribeiro, J. P. Sacramento, T. R. Tomich, F. S. Machado, M. M. Campos, M. A. S. Gama, and A. V. Chaves. 2019. Replacement of soybean meal with soybean cake reduces methane emissions in dairy cows and an assessment of a face-mask technique for methane measurement. Front. Vet. Sci. 6:295. doi: 10.3389/fvets.2019.00295 Sorg, D., G. F. Difford, S. Mühlbach, B. Kuhla, H. H. Swalve, J. Lassen, T. Strabel, and M. Pszczola. 2018. Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows. Comput. Electron. Agric. 153:285-294. doi: 10.1016/j.compag.2018.08.024 Tedeschi, L. O., A. L. Abdalla, C. Álvarez, S. W. Anuga, J. Arango, K. A. Beauchemin, P. Becquet, A. Berndt, R. Burns, C. De Camillis, J. Chará, J. M. Echazarreta, M. Hassouna, D. Kenny, M. Mathot, R. M. Mauricio, S. C. McClelland, M. Niu, A. A. Onyango, R. Parajuli, L. G. R. Pereira, A. del Prado, M. Paz Tieri, A. Uwizeye, and E. Kebreab. 2022. Quantification of methane emitted by ruminants: A review of methods. J. Anim. Sci. 100. doi: 10.1093/jas/skac197 Ungerfeld, E. M. 2020. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.00589 van Gastelen, S., E. C. Antunes-Fernandes, K. A. Hettinga, G. Klop, S. J. J. Alferink, W. H. Hendriks, and J. Dijkstra. 2015. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets. J. Dairy Sci. 98:1915-1927. doi: 10.3168/jds.2014-8552 van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 Velazco, J. I., R. Hegarty, D. Cottle, and L. Li. 2016. Quantifying daily methane production of beef cattle from multiple short-term measures using the GreenFeed system. https://hdl.handle.net/1959.11/23580 Wang, G. B., W. L. Ho, Y. Z. Lee, and Z. M. Chen. 2020. Mushroom industry survey. 108 year Promoting plan for leapfrogging the domestic vegetable industries by the Agriculture and Food Agency, Council of Agriculture, Executive Yuan. Wang, K., X. Nan, K. Chu, J. Tong, L. Yang, S. Zheng, G. Zhao, L. Jiang, and B. Xiong. 2018. Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.02764 Warner, D., A. Bannink, B. Hatew, H. Van Laar, and J. Dijkstra. 2017. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows. J. Anim. Sci. 95:3687-3699. doi: 10.2527/jas.2017.1459 Williams, S. R. O., M. C. Hannah, J. L. Jacobs, W. J. Wales, and P. J. Moate. 2019. Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals 9. doi: 10.3390/ani9121006 Wolin, M. J., T. L. Miller, and C. S. Stewart. 1997. Microbe-microbe interactions. In: P. N. Hobson and C. S. Stewart, editors, The Rumen Microbial Ecosystem. Springer Netherlands, Dordrecht. p. 467-491. Yáñez-Ruiz, D. R., A. Bannink, J. Dijkstra, E. Kebreab, D. P. Morgavi, P. O’Kiely, C. K. Reynolds, A. Schwarm, K. J. Shingfield, Z. Yu, and A. N. Hristov. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Anim. Feed Sci. Technol. 216:1-18. doi: 10.1016/j.anifeedsci.2016.03.016 Yang, K., Y. Qing, Q. Yu, X. Tang, G. Chen, R. Fang, and H. Liu. 2021. By-product feeds: current understanding and future perspectives. Agriculture 11:207. doi: 10.3390/agriculture11030207 Zhai, X., T. Lu, S. Tang, X. Liu, X. Ma, G. Han, and C. Wang. 2015. Methane emission from sheep respiration and sheepfolds during the grazing season in a desert grassland. The Open Atmospheric Science Journal 9:23-28. doi: 10.2174/1874282301509010023 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99751 | - |
| dc.description.abstract | 考量近年國內乳牛產業面臨飼料進口成本上升壓力,加上國際間推動淨零碳排之趨勢,使低成本、低碳排的農副產物開發為替代性飼糧原料之潛力愈受重視。替代性飼糧除須具備維持生產性能之能力,其對瘤胃甲烷排放之影響亦為重要評估指標。體外發酵法雖能有效比較飼糧餵飼後之甲烷生成潛力,但是實際降低排放之程度仍須經由體內法驗證。現行利用活體之甲烷偵測技術多具成本高昂與偵測效率低之特性,限制甲烷排放資料之取得與應用。因此,本研究旨在優化實驗室開發中之面罩偵測技術,並評估其應用於分析乳牛餵飼農副產物飼糧後,改變甲烷排放效果的可行性。
試驗第一階段針對夏季試驗中觀察到乳牛呼氣量異常偏高之情形,於原面罩裝置新增兩種單向閥,並透過乳牛呼氣測驗評估實際分流成效。結果顯示,自製閥設計可有效降低乳牛換氣頻率,所呈現之呼氣波形亦較未分流及壓縮袋閥設計更為平緩。甲烷產量結果亦顯示,分流設計有助於減少未分流下流量過高與甲烷濃度蓄積的情況,有利提升結果穩定性。而在流場模型結果,顯示流量計與分流出口之理論分流比為1:4,然而根據此比例回推之總呼氣量顯著高於乳牛標準呼氣量。顯示精確的分流比例仍須藉由建構能模擬乳牛實際呼吸模式之變動流場模型,或實際由裝置測試進行優化。 第二階段將改良後之面罩結合三種偵測時機(餵飼後0小時、2至3小時、6小時),應用於泌乳牛之農副產物替代飼糧的甲烷排放體內外整合評估試驗。第一部分將杏鮑菇菇包青貯以三種比例(0%、25%、40%)取代完全混合日糧中之燕麥草。體外發酵結果顯示,隨著菇包青貯添加比例上升,中洗纖維消化率顯著提升,甲烷產量亦呈上升趨勢。比較揮發性脂肪酸(volatile fatty acid, VFA)、輔酶M(coenzyme M, CoM)與甲烷產量間關聯性,顯示由VFA推估之甲烷產量與實測結果具高度相關性,可作為甲烷生成間接評估指標。乳牛餵飼試驗結果顯示,乳牛採食量與乳量在不同菇包取代率下並無顯著差異,面罩試驗資料亦顯示飼糧間甲烷產量無顯著差異,與體外結果一致。整體結果顯示,以杏鮑菇菇包青貯取代燕麥後可維持乳量表現,並且不會導致甲烷產量增加。 第二部分副產物試驗採用兩種粗蛋白濃度(15%、17%)下,搭配三種副產物(啤酒粕青貯與豆殼粒)添加量(10%、20%、30%),配製成四種泌乳牛飼糧(CP17×10、CP15×10、CP15×20、CP15×30)。體外發酵結果顯示,於CP15%條件下,隨副產物添加量上升,中洗纖維消化率與甲烷產量皆顯著提升。在相同副產物添加量(10%)下,則以CP17% 組具有較高之中洗纖維消化率與甲烷產量。由發酵液VFA推估之甲烷產量與實測結果具有高度相關性。而在體內試驗中,以面罩測得四組飼糧的甲烷產量無顯著差異,瘤胃液中乙酸產量亦無顯著差異,丙酸產量則呈現CP15×20組高於CP17×10組之趨勢,顯示體內甲烷與VFA結果與體外結果不一致。此差異可能源自副產物取代後飼糧物理特性(如纖維片段大小與結構)改變,導致體外系統無法充分模擬體內實際發酵情況。而關於面罩法未能反映丙酸產量上升可能具有的降甲烷潛力,推測其準確性可能受限於本試驗每日一次餵飼模式下,甲烷排放曲線變異程度較大的影響。 綜合而言,本試驗顯示體外系統在評估副產物飼糧之甲烷排放實際降低效果時可能存在誤差,實際效果仍須透過體內試驗加以驗證。應用面罩法作為短時間採樣技術,其準確性與穩定之餵飼管理模式有關。未來應進一步於穩定飼養管理條件下優化面罩法之測定操作參數,期望建立一套快速、低成本且具實用性的甲烷排放評估技術,而有助於篩選評估農副產物應用於飼糧後之甲烷排放狀況。 | zh_TW |
| dc.description.abstract | Agricultural byproducts have emerged as low-cost, low-carbon alternative ingredients for dairy cattle in response to rising feed import costs and the global trend toward net-zero carbon emissions. When evaluating such ingredients, it is essential to confirm their capacity to maintain production performance while also considering their impact on enteric methane emissions. Although in vitro fermentation is effective for assessing the methane-reducing potential of diets, the actual effects must still be verified through in vivo methods. However, current in vivo methane detection techniques are often costly and inefficient, limiting their applicability in field settings. Therefore, this study aimed to optimize a face mask system in development and evaluate its feasibility for assessing variations in methane emissions from cattle fed agricultural byproduct-based diets.
In the first phase, two types of one-way valves were incorporated into the original face mask device to address the abnormally high minute ventilation observed during summer trials. Respiration tests showed that the hand-made valve reduced the cow's respiratory frequency and produced a more stable exhalation pattern than the non-diversion and the space-bag valve. Methane emission data further indicated that the one-way valve design helped mitigate excessive minute ventilation and methane accumulation, thereby improving measurement stability. Flow field modeling revealed a theoretical diversion ratio of 1:4 between the flowmeter and the valve outlet; however, applying this ratio to estimate total minute ventilation produced values substantially higher than those typically observed in dairy cows. This suggests that further calibration is needed through dynamic simulation or practical validation. In the second phase, in vivo and in vitro evaluations of agricultural byproduct-based diets for lactating cows were conducted. The modified face mask method was used to estimate methane emissions at 0, 2–3, and 6 hours post-feeding. In the first trial, Pleurotus eryngii spent mushroom substrate (SMS) silage replaced oat hay in the total mixed ration at three levels (0%, 25%, 40%). In vitro fermentation results showed that increasing SMS inclusion significantly improved neutral detergent fiber digestibility (IVNDFD), while methane production remained statistically unchanged. VFA-predicted methane was highly correlated with measured values, suggesting its potential as an alternative indicator. In the in vivo trial, no significant differences in dry matter intake or milk yield were observed among diets. Methane emissions measured using the face mask method also showed no significant variation, consistent with in vitro findings. Overall, replacing oat hay with Pleurotus eryngii SMS silage maintained production performance without increasing methane production. In the second trial, four diets were formulated with two crude protein (CP) levels (15%, 17%) and three inclusion levels (10%, 20%, 30%) of brewer's spent grain silage and soybean hull pellets. In vitro results showed that under 15% CP, increasing byproduct inclusion significantly increased IVNDFD and methane production. At the 10% inclusion level, the 17% CP diet had higher IVNDFD and methane production than the 15% CP diet. VFA-predicted methane showed strong correlation with measured values, consistent with the first trial. However, in vivo methane emissions did not differ significantly among diets. Rumen acetate concentrations remained similar across diets, while propionate tended to be higher in the CP15×20 group than in CP17×10. These in vivo findings did not align with in vitro results, likely due to variations in diet physical properties (e.g., particle size and structure) after byproduct replacement, which limited the in vitro system's ability to simulate in vivo conditions accurately. Moreover, the once-daily feeding schedule may have caused significant fluctuations in methane emission patterns, limiting the face mask method's ability to detect the potential methane reduction in the CP15×20 group. In conclusion, in vitro systems may introduce bias when assessing the methane-reducing potential of byproduct-based diets, highlighting the necessity of in vivo validation. This study also emphasizes that the accuracy of the face mask method as a short-term sampling technique depends on consistent feeding management. Future efforts should focus on optimizing operational parameters under consistent feeding patterns to develop a rapid, cost-effective, and practical approach for evaluating methane emissions from agricultural byproduct-based diets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:34:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:34:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目次 VII 圖次 X 表次 XII 前言 1 壹、文獻探討 2 一、 農副產物作為乳牛飼糧之利用 2 (一) 菇類栽培殘餘基質 2 (二) 酒粕類 3 (三) 豆殼粒 4 二、 農副產物之甲烷生成評估 4 (一) 甲烷生成原理 5 (二) 農副產物餵飼對瘤胃甲烷生成之影響 6 三、 甲烷排放檢測技術 8 (一) 體外發酵技術 9 (二) 活體法 10 四、 短時間採樣法偵測條件之建立 19 (一) 每日甲烷產量與呼氣量資料 19 (二) 每日甲烷生成曲線 19 (三) 測定時間條件之建立 21 貳、材料與方法 23 一、 面罩氣流通量改良試驗 24 (一) 面罩技術介紹 24 (二) 面罩法改良前甲烷評估試驗 26 (三) 面罩分流試驗 26 二、 添加農副產物之飼糧配方組合 28 (一) 杏鮑菇菇包青貯飼糧 28 (二) 啤酒粕青貯與豆殼粒飼糧 30 三、 營養組成分析 32 (一) 試驗樣品準備 32 (二) 乾物質測定 32 (三) 中洗纖維 32 (四) 酸洗纖維 33 (五) 粗蛋白 34 (六) 粗脂肪 35 (七) 灰分 36 (八) 非纖維碳水化合物 36 四、 農副產物飼糧之體外發酵評估 36 (一) 試驗樣品準備 36 (二) 體外乾物質與中洗纖維消化率 37 (三) 體外產氣發酵試驗 39 (四) 產氣動力學 42 (五) 發酵產物分析 42 (六) 甲烷產量與其生成指標(VFA、coenzyme M)評估 45 五、 農副產物飼糧之面罩法評估 49 (一) 杏鮑菇菇包青貯替代餵飼試驗 49 (二) 啤酒粕青貯與豆殼粒替代餵飼試驗 49 六、 統計分析 50 參、結果與討論 51 一、 面罩氣流通量改良試驗 51 (一) 面罩法改良前甲烷評估試驗 51 (二) 單向閥於動物試驗之分流成效 52 (三) 理論分流模型 55 二、 杏鮑菇菇包青貯添加於飼糧之體內外整合分析 57 (一) 飼糧營養組成分析 57 (二) 體外發酵試驗 58 (三) 動物餵飼試驗 65 (四) 體內外整合分析 68 三、 啤酒粕青貯與豆殼粒添加於飼糧之體內外整合分析 69 (一) 飼糧營養組成分析 69 (二) 體外發酵試驗 70 (三) 動物餵飼試驗 78 (四) 瘤胃液中揮發性脂肪酸組成與面罩法甲烷產量之比較 87 (五) 體內外整合分析 90 肆、結論 92 伍、參考文獻 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 農副產物 | zh_TW |
| dc.subject | 甲烷排放 | zh_TW |
| dc.subject | 乳牛 | zh_TW |
| dc.subject | 體內外評估 | zh_TW |
| dc.subject | 呼氣面罩 | zh_TW |
| dc.subject | Dairy cows | en |
| dc.subject | In vitro–in vivo evaluation | en |
| dc.subject | Respiratory face mask | en |
| dc.subject | Agricultural byproducts | en |
| dc.subject | Methane emissions | en |
| dc.title | 體外發酵與面罩技術於農副產物添加於乳牛飼糧降低甲烷排放評估之應用 | zh_TW |
| dc.title | Application of the in vitro fermentation and the face mask technique in evaluating the methane mitigation potential of dairy cow diets with agricultural by-products | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 范耕榛;陳栢元;陳怡璇 | zh_TW |
| dc.contributor.oralexamcommittee | Geng-Jen Fan;Bo-Yuan Chen;Yi-Hsuan Chen | en |
| dc.subject.keyword | 甲烷排放,農副產物,呼氣面罩,體內外評估,乳牛, | zh_TW |
| dc.subject.keyword | Methane emissions,Agricultural byproducts,Respiratory face mask,In vitro–in vivo evaluation,Dairy cows, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202503080 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
