Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99742
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲zh_TW
dc.contributor.advisorCheng-Che Hsuen
dc.contributor.author戴詠宸zh_TW
dc.contributor.authorYung-Chen Taien
dc.date.accessioned2025-09-17T16:32:54Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J. P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, and N. Mason, "The 2012 Plasma Roadmap," J. Phys. D-Appl. Phys., 45 (25), 37 (2012).
2. I. Adamovich, S. D. Baalrud, A. Bogaerts, P. J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden, P. Favia, D. B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I. D. Kaganovich, U. Kortshagen, M. J. Kushner, N. J. Mason, S. Mazouffre, S. M. Thagard, H. R. Metelmann, A. Mizuno, E. Moreau, A. B. Murphy, B. A. Niemira, G. S. Oehrlein, Z. L. Petrovic, L. C. Pitchford, Y. K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M. M. Turner, M. C. M. van de Sanden, and A. Vardelle, "The 2017 Plasma Roadmap: Low temperature plasma science and technology," J. Phys. D-Appl. Phys., 50 (32), 46 (2017).
3. I. Adamovich, S. Agarwal, E. Ahedo, L. L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P. J. Bruggeman, C. Canal, E. H. Choi, S. Coulombe, Z. Donkó, D. B. Graves, S. Hamaguchi, D. Hegemann, M. Hori, H. H. Kim, G. M. W. Kroesen, M. J. Kushner, A. Laricchiuta, X. Li, T. E. Magin, S. Mededovic Thagard, V. Miller, A. B. Murphy, G. S. Oehrlein, N. Puac, R. M. Sankaran, S. Samukawa, M. Shiratani, M. Šimek, N. Tarasenko, K. Terashima, E. Thomas Jr, J. Trieschmann, S. Tsikata, M. M. Turner, I. J. van der Walt, M. C. M. van de Sanden, and T. von Woedtke, "The 2022 Plasma Roadmap: low temperature plasma science and technology," Journal of Physics D: Applied Physics, 55 (37)(2022).
4. G. Y. Park, S. J. Park, M. Y. Choi, I. G. Koo, J. H. Byun, J. W. Hong, J. Y. Sim, G. J. Collins, and J. K. Lee, "Atmospheric-pressure plasma sources for biomedical applications," Plasma Sources Sci. Technol., 21 (4), 21 (2012).
5. N. K. Kaushik, B. Ghimire, Y. Li, M. Adhikari, M. Veerana, N. Kaushik, N. Jha, B. Adhikari, S. J. Lee, K. Masur, T. von Woedtke, K. D. Weltmann, and E. H. Choi, "Biological and medical applications of plasma-activated media, water and solutions," Biol. Chem., 400 (1), 39-62 (2019).
6. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. von Woedtke, R. Brandenburg, T. von dem Hagen, and K. D. Weltmann, "Low temperature atmospheric pressure plasma sources for microbial decontamination," J. Phys. D-Appl. Phys., 44 (1), 18 (2011).
7. E. Stoffels, Y. Sakiyama, and D. B. Graves, "Cold atmospheric plasma: Charged species and their interactions with cells and tissues," Ieee Transactions on Plasma Science, 36 (4), 1441-1457 (2008).
8. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk micromachining of silicon," Proceedings of the IEEE, 86 (8), 1536-1551 (1998).
9. J. W. Coburn, and H. F. Winters, "PLASMA-ETCHING - DISCUSSION OF MECHANISMS," Journal of Vacuum Science & Technology, 16 (2), 391-403 (1979).
10. S. Banna, A. Agarwal, K. Tokashiki, C. Hong, S. Rauf, V. Todorow, K. Ramaswamy, K. Collins, P. Stout, L. Jeong-Yun, Y. Junho, S. Kyoungsub, C. Sang-Jun, C. Han-Soo, K. Hyun-Joong, L. Changhun, and D. Lymberopoulos, "Inductively Coupled Pulsed Plasmas in the Presence of Synchronous Pulsed Substrate Bias for Robust, Reliable, and Fine Conductor Etching," IEEE Transactions on Plasma Science, 37 (9), 1730-1746 (2009).
11. M. R. Baklanov, J.-F. de Marneffe, D. Shamiryan, A. M. Urbanowicz, H. Shi, T. V. Rakhimova, H. Huang, and P. S. Ho, "Plasma processing of low-k dielectrics," Journal of Applied Physics, 113 (4)(2013).
12. V. M. Donnelly, and A. Kornblit, "Plasma etching: Yesterday, today, and tomorrow," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 31 (5)(2013).
13. G. S. Hwang, and K. P. Giapis, "Mechanism of charging reduction in pulsed plasma etching," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 37 (4B), 2291-2301 (1998).
14. C. Meyer, S. Müller, E. L. Gurevich, and J. Franzke, "Dielectric barrier discharges in analytical chemistry," The Analyst, 136 (12), 2427 (2011).
15. J. Vincent, H. Wang, O. Nibouche, and P. Maguire, "Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning," Plasma Sources Sci. Technol., 29 (8), 10 (2020).
16. T. Krähling, S. Müller, C. Meyer, A.-K. Stark, and J. Franzke, "Liquid electrode dielectric barrier discharge for the analysis of solved metals," Journal of Analytical Atomic Spectrometry, 26 (10)(2011).
17. X. Peng, X. Guo, F. Ge, and Z. Wang, "Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection," Journal of Analytical Atomic Spectrometry, 34 (2), 394-400 (2019).
18. B. Mitra, B. Levey, and Y. B. Gianchandani, "Hybrid Arc/Glow Microdischarges at Atmospheric Pressure and Their Use in Portable Systems for Liquid and Gas Sensing," IEEE Transactions on Plasma Science, 36 (4), 1913-1924 (2008).
19. D. Luo, D. Ma, Y. He, X. Li, S. Wang, and Y. Duan, "Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling," Microchemical Journal, 130, 33-39 (2017).
20. D. Mariotti, and R. M. Sankaran, "Microplasmas for nanomaterials synthesis," J. Phys. D-Appl. Phys., 43 (32), 21 (2010).
21. Q. Chen, J. Li, and Y. Li, "A review of plasma–liquid interactions for nanomaterial synthesis," Journal of Physics D: Applied Physics, 48 (42), 424005 (2015).
22. A. T. Ambujakshan, J. M. Pringle, C. S. Corr, Z. Chen, J. du Plessis, P. D. Hodgson, and X. J. Dai, "Superior performance of plasma treated water as an anodizing electrolyte for producing nanoporous titanium dioxide nanotubes," Plasma Processes and Polymers, 14 (12)(2017).
23. A. T. Ambujakshan, A. Sadek, K. Magniez, S. Mateti, E. Mayes, G. Devi, J. M. Pringle, J. d. Plessis, Z. Chen, C. S. Corr, P. D. Hodgson, and X. J. Dai, "Plasma treated water - A promising electrolyte to produce nanoporous titanium dioxide nanotubes," Plasma Processes and Polymers, 14 (9)(2017).
24. J. Patel, L. Nemcova, P. Maguire, W. G. Graham, and D. Mariotti, "Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry," Nanotechnology, 24 (24), 245604 (2013).
25. X. Ma, S. Li, V. Hessel, L. Lin, S. Meskers, and F. Gallucci, "Synthesis of luminescent carbon quantum dots by microplasma process," Chemical Engineering and Processing - Process Intensification, 140, 29-35 (2019).
26. C. Meyer, S. Muller, E. L. Gurevich, and J. Franzke, "Dielectric barrier discharges in analytical chemistry," Analyst, 136 (12), 2427-2440 (2011).
27. D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29 (2)(2011).
28. K. Tachibana, "Current status of microplasma research," IEEJ Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006).
29. D. Mariotti, "Nonequilibrium and effect of gas mixtures in an atmospheric microplasma," Applied Physics Letters, 92 (15)(2008).
30. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, "Microplasmas: Sources, particle kinetics, and biomedical applications," Plasma Processes and Polymers, 5 (4), 322-344 (2008).
31. V. Karanassios, "Microplasmas for chemical analysis: analytical tools or research toys?," Spectroc. Acta Pt. B-Atom. Spectr., 59 (7), 909-928 (2004).
32. T. Matsumoto, D. Wang, T. Namihira, and H. Akiyam, in Air Pollution - A Comprehensive Perspective, 2012.
33. T. Oda, presented at the ICESP X, 2006 (unpublished).
34. C. Ye, Y. Xu, X. Huang, Z. Xing, J. Yuan, and Z. Ning, "Effect of low-frequency power on etching of SiCOH low-k films in CHF3 13.56MHz/2MHz dual-frequency capacitively coupled plasma," Microelectronic Engineering, 86 (3), 421-424 (2009).
35. C. C. Welch, D. L. Olynick, Z. Liu, A. Holmberg, C. Peroz, A. P. Robinson, M. D. Henry, A. Scherer, T. Mollenhauer, and V. Genova, presented at the International Conference Micro-and Nano-Electronics 2012, 2013 (unpublished).
36. M. A. Lieberman, and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing, 2nd Edition ", Blackwell Science Publ, Oxford, (2005), pp.
37. P. K. Singh, J. Hopwood, and S. Sonkusale, "Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma," Scientific Reports, 4(2014).
38. S. Liu, Y. L. Yu, and J. H. Wang, "Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry," Journal of Analytical Atomic Spectrometry, 32 (11), 2118-2126 (2017).
39. X. Yuan, J. Tang, and Y. X. Duan, "Microplasma Technology and Its Applications in Analytical Chemistry," Applied Spectroscopy Reviews, 46 (7), 581-605 (2011).
40. R. Foest, M. Schmidt, and K. Becker, "Microplasmas, an emerging field of low-temperature plasma science and technology," Int. J. Mass Spectrom., 248 (3), 87-102 (2006).
41. U. Kogelschatz, "Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications," Plasma Chemistry and Plasma Processing, 23 (1), 1-46 (2003).
42. C. Meyer, D. Demecz, E. L. Gurevich, U. Marggraf, G. Jestel, and J. Franzke, "Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy," Journal of Analytical Atomic Spectrometry, 27 (4)(2012).
43. N. Jiang, A. L. Ji, and Z. X. Cao, "Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism," Journal of Applied Physics, 106 (1), 7 (2009).
44. Y.-J. Yang, and C.-C. Hsu, "A Flexible Paper-Based Microdischarge Array Device: A Novel Route to Cost-Effective and Simple Setup Microplasma Generation Devices," IEEE Transactions on Plasma Science, 42 (12), 3756-3759 (2014).
45. Z. Cao, J. L. Walsh, and M. G. Kong, "Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment," Applied Physics Letters, 94 (2), 3 (2009).
46. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge," Plasma Sources Sci. Technol., 14 (4), 700-711 (2005).
47. P. Bruggeman, and C. Leys, "Non-thermal plasmas in and in contact with liquids," J. Phys. D-Appl. Phys., 42 (5), 28 (2009).
48. M. A. Ridenti, J. A. Souza-Corrêa, and J. Amorim, "Experimental study of unconfined surface wave discharges at atmospheric pressure by optical emission spectroscopy," Journal of Physics D: Applied Physics, 47 (4)(2014).
49. M. D. Calzada, M. Moisan, A. Gamero, and A. Sola, "Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure," Journal of Applied Physics, 80 (1), 46-55 (1996).
50. R. S. Mangina, J. M. Ajello, R. A. West, and D. Dziczek, "HIGH-RESOLUTION ELECTRON-IMPACT EMISSION SPECTRA AND VIBRATIONAL EMISSION CROSS SECTIONS FROM 330–1100 nm FOR N2," The Astrophysical Journal Supplement Series, 196 (1)(2011).
51. D. Phillips, "Determination of gas temperature from unresolved bands in the spectrum from a nitrogen discharge," Journal of Physics D: Applied Physics, 9 (3), 507 (1976).
52. J. Voráč, P. Synek, L. Potočňáková, J. Hnilica, and V. Kudrle, "Batch processing of overlapping molecular spectra as a tool for spatio-temporal diagnostics of power modulated microwave plasma jet," Plasma Sources Science and Technology, 26 (2)(2017).
53. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, "Optical diagnostics of atmospheric pressure air plasmas," Plasma Sources Sci. Technol., 12 (2), 125-138 (2003).
54. H.-J. Kunze, "Introduction to plasma spectroscopy ", Springer Science & Business Media, (2009), pp.
55. S. Mukasa, S. Nomura, H. Toyota, T. Maehara, F. Abe, and A. Kawashima, "Temperature distributions of radio-frequency plasma in water by spectroscopic analysis," Journal of Applied Physics, 106 (11)(2009).
56. P. V. Kostyuk, J. Y. Park, S. B. Han, and S. H. Park, "Effect of Ni and TiO2on hydrogen generation from aqueous solution with non-thermal plasma," Journal of Physics D: Applied Physics, 41 (9)(2008).
57. A. Corney, "Atomic and laser spectroscopy ", Clarendon Press Oxford, (1978), pp.
58. S. C. T. Arthur J. Mccormack, and W. D. Cooke, "Sensitive Selective Gas Chromatography Detector Based on Emission Spectrometry of Organic Compounds," Analytical Chemistry, 37, 1470-1476 (1965).
59. R. Guchardi, and P. C. Hauser, "Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector," The Analyst, 129 (4)(2004).
60. D. B. Luo, Y. X. Duan, Y. He, and B. Gao, "A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit," Sci Rep, 4, 7451 (2014).
61. Y. Tian, P. Wu, X. Wu, X. Jiang, K. Xu, and X. Hou, "Corona discharge radical emission spectroscopy: a multi-channel detector with nose-type function for discrimination analysis," Analyst, 138 (8), 2249-2253 (2013).
62. T. Yang, D. X. Gao, Y. L. Yu, M. L. Chen, and J. H. Wang, "Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath," Talanta, 146, 603-608 (2016).
63. S. B. Bayram, and M. V. Freamat, "Vibrational spectra of N2: An advanced undergraduate laboratory in atomic and molecular spectroscopy," American Journal of Physics, 80 (8), 664-669 (2012).
64. R. Guchardi, and P. C. Hauser, "A capacitively coupled microplasma in a fused silica capillary," J. Anal. At. Spectrom., 18 (9), 1056-1059 (2003).
65. W. S. McCulloch, and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, 5, 115-133 (1943).
66. A. Turing, "Computing machinery and intelligence," Mind, 59 (236), 433-460 (1950).
67. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, 521 (7553), 436-444 (2015).
68. L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie, and L. Farhan, "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," J Big Data, 8 (1), 53 (2021).
69. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, 25(2012).
70. K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, (2014).
71. G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren, "Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks," Neurocomputing (Amst), 335, 34-45 (2019).
72. M. L. Giger, "Machine Learning in Medical Imaging," J Am Coll Radiol, 15 (3 Pt B), 512-520 (2018).
73. J. Zhao, X. Hou, M. Pan, and H. Zhang, "Attention-based generative adversarial network in medical imaging: A narrative review," Comput Biol Med, 149, 105948 (2022).
74. D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A. Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, and K. Zhang, "Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning," Cell, 172 (5), 1122-1131 e1129 (2018).
75. N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and J. C. Gerdes, "Neural network vehicle models for high-performance automated driving," Sci. Robot., 4 (28), 13 (2019).
76. K. Shinde, J. Lee, M. Humt, A. Sezgin, and R. Triebel, "Learning Multiplicative Interactions with Bayesian Neural Networks for Visual-Inertial Odometry," arXiv:2007.07630 (2020).
77. A. Amini, A. Soleimany, S. Karaman, and D. Rus, "Spatial Uncertainty Sampling for End-to-End Control," arXiv:1805.04829 (2018).
78. F. Verdoja, J. Lundell, and V. Kyrki, presented at the 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), 2019 (unpublished).
79. A. Siddhant, and Z. C. Lipton, "Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study," arXiv:1808.05697 (2018).
80. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention Is All You Need," arXiv:1706.03762 (2017).
81. A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer, M. Steinegger, D. Bhowmik, and B. Rost, "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning," Ieee Transactions on Pattern Analysis and Machine Intelligence, 44 (10), 7112-7127 (2022).
82. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Q. Zhou, W. Li, and P. J. Liu, "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer," Journal of Machine Learning Research, 21(2020).
83. S. J. Hong, and G. S. May, "Neural-Network-Based Sensor Fusion of Optical Emission and Mass Spectroscopy Data for Real-Time Fault Detection in Reactive Ion Etching," IEEE Transactions on Industrial Electronics, 52 (4), 1063-1072 (2005).
84. K. Ghosh, A. Stuke, M. Todorovic, P. B. Jorgensen, M. N. Schmidt, A. Vehtari, and P. Rinke, "Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra," Adv Sci (Weinh), 6 (9), 1801367 (2019).
85. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, "Deep learning ", MIT press Cambridge, (2016), pp.
86. V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, and D. R. Webster, "Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs," JAMA, 316 (22), 2402-2410 (2016).
87. A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks," Nature, 542 (7639), 115-118 (2017).
88. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, "End to End Learning for Self-Driving Cars," arXiv:1604.07316 (2016).
89. M. Bansal, A. Krizhevsky, and A. Ogale, "ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst," arXiv:1812.03079 (2018).
90. C. Yang, Z. Guo, D. Fernandes Barbin, Z. Dai, N. Watson, M. Povey, and X. Zou, "Hyperspectral Imaging and Deep Learning for Quality and Safety Inspection of Fruits and Vegetables: A Review," J Agric Food Chem, 73 (17), 10019-10035 (2025).
91. P. Mishra, D. Passos, F. Marini, J. Xu, J. M. Amigo, A. A. Gowen, J. J. Jansen, A. Biancolillo, J. M. Roger, D. N. Rutledge, and A. Nordon, "Deep learning for near-infrared spectral data modelling: Hypes and benefits," TrAC Trends in Analytical Chemistry, 157(2022).
92. A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, "Improving language understanding by generative pre-training," (2018).
93. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, "Language models are unsupervised multitask learners," OpenAI blog, 1 (8), 9 (2019).
94. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, "Language Models are Few-Shot Learners," arXiv:2005.14165 (2020).
95. OpenAI, "GPT-4 Technical Report," arXiv:2303.08774 (2023).
96. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," arXiv:1810.04805 (2018).
97. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, "LLaMA: Open and Efficient Foundation Language Models," arXiv:2302.13971 (2023).
98. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, "High-Resolution Image Synthesis with Latent Diffusion Models," arXiv:2112.10752 (2021).
99. A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, "Zero-Shot Text-to-Image Generation," arXiv:2102.12092 (2021).
100. C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. Kamyar Seyed Ghasemipour, B. Karagol Ayan, S. S. Mahdavi, R. Gontijo Lopes, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi, "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding," arXiv:2205.11487 (2022).
101. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network," arXiv:1609.04802 (2016).
102. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-Image Translation with Conditional Adversarial Networks," arXiv:1611.07004 (2016).
103. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks," arXiv:1703.10593 (2017).
104. T. Karras, S. Laine, and T. Aila, "A Style-Based Generator Architecture for Generative Adversarial Networks," arXiv:1812.04948 (2018).
105. K. Fukushima, "NEOCOGNITRON - A SELF-ORGANIZING NEURAL NETWORK MODEL FOR A MECHANISM OF PATTERN-RECOGNITION UNAFFECTED BY SHIFT IN POSITION," Biol. Cybern., 36 (4), 193-202 (1980).
106. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, "Backpropagation applied to handwritten zip code recognition," Neural Comput., 1 (4), 541-551 (1989).
107. "Gradient-based learning applied to document recognition," Proceedings of the IEEE, 86 (11), 2278-2324 (1998).
108. K. Simonyan, and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556 (2014).
109. J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," arXiv:1411.4038 (2014).
110. K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv pre-print server, (2015).
111. L. Qian, T. Yu, and J. Yang, "Multi-Scale Feature Fusion of Covariance Pooling Networks for Fine-Grained Visual Recognition," Sensors (Basel), 23 (8)(2023).
112. J. Long, E. Shelhamer, and T. Darrell, presented at the Proceedings of the IEEE conference on computer vision and pattern recognition, 2015 (unpublished).
113. H. Xu, Z. Zhou, Y. Wang, W. Kang, B. Sun, H. Li, and Y. Qiao, "Digging into Uncertainty in Self-supervised Multi-view Stereo," arXiv:2108.12966 (2021).
114. H. Fan, M. Ferianc, Z. Que, X. Niu, M. Rodrigues, and W. Luk, "Accelerating Bayesian Neural Networks via Algorithmic and Hardware Optimizations," IEEE Transactions on Parallel and Distributed Systems, 33 (12), 3387-3399 (2022).
115. C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, "Weight Uncertainty in Neural Networks," arXiv:1505.05424 (2015).
116. Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse, "Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches," arXiv:1803.04386 (2018).
117. H. J. Hortúa, R. Volpi, D. Marinelli, and L. Malagò, "Parameter estimation for the cosmic microwave background with Bayesian neural networks," Physical Review D, 102 (10)(2020).
118. D. P. Kingma, and M. Welling, "Auto-Encoding Variational Bayes," arXiv:1312.6114 (2013).
119. I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, presented at the International conference on learning representations, 2017 (unpublished).
120. A. van den Oord, O. Vinyals, and K. Kavukcuoglu, "Neural Discrete Representation Learning," arXiv:1711.00937 (2017).
121. K. Sohn, H. Lee, and X. Yan, "Learning structured output representation using deep conditional generative models," Advances in neural information processing systems, 28(2015).
122. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative Adversarial Networks," arXiv:1406.2661 (2014).
123. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, "Improved Techniques for Training GANs," arXiv:1606.03498 (2016).
124. A. Radford, L. Metz, and S. Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks," arXiv:1511.06434 (2015).
125. M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein GAN," arXiv:1701.07875 (2017).
126. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, "Improved Training of Wasserstein GANs," arXiv:1704.00028 (2017).
127. M. Mirza, and S. Osindero, "Conditional Generative Adversarial Nets," arXiv:1411.1784 (2014).
128. L. Dinh, J. Sohl-Dickstein, and S. Bengio, "Density estimation using Real NVP," arXiv:1605.08803 (2016).
129. L. Dinh, D. Krueger, and Y. Bengio, "NICE: Non-linear Independent Components Estimation," arXiv:1410.8516 (2014).
130. D. P. Kingma, and P. Dhariwal, "Glow: Generative Flow with Invertible 1x1 Convolutions," arXiv:1807.03039 (2018).
131. J. Ho, A. Jain, and P. Abbeel, "Denoising Diffusion Probabilistic Models," arXiv:2006.11239 (2020).
132. J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, "Deep Unsupervised Learning using Nonequilibrium Thermodynamics," arXiv:1503.03585 (2015).
133. A. Nichol, and P. Dhariwal, "Improved Denoising Diffusion Probabilistic Models," arXiv:2102.09672 (2021).
134. P. Dhariwal, and A. Nichol, "Diffusion Models Beat GANs on Image Synthesis," arXiv:2105.05233 (2021).
135. J. T. Kim, "Exploring Effectiveness of Multimodal Variational Autoencoders on Text-Image Tasks,"
136. M. S. Uddin, and J. Li, "Generative Adversarial Networks for Visible to Infrared Video," Recent Advances in Image Restoration with Applications to Real World Problems, 57 (2020).
137. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, "Score-Based Generative Modeling through Stochastic Differential Equations," arXiv:2011.13456 (2020).
138. F. Jelinek, "Self-organized language modeling for speech recognition," Readings in speech recognition, 450-506 (1990).
139. S. F. Chen, and J. Goodman, "An empirical study of smoothing techniques for language modeling," Computer Speech & Language, 13 (4), 359-394 (1999).
140. S. M. Katz, "ESTIMATION OF PROBABILITIES FROM SPARSE DATA FOR THE LANGUAGE MODEL COMPONENT OF A SPEECH RECOGNIZER," Ieee Transactions on Acoustics Speech and Signal Processing, 35 (3), 400-401 (1987).
141. R. Rosenfeld, "Two decades of statistical language modeling: Where do we go from here?," Proceedings of the IEEE, 88 (8), 1270-1278 (2000).
142. J. L. Elman, "Finding structure in time," Cognitive science, 14 (2), 179-211 (1990).
143. S. Hochreiter, and J. Schmidhuber, "Long short-term memory," Neural Comput., 9 (8), 1735-1780 (1997).
144. K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," arXiv:1406.1078 (2014).
145. Y. Ma, R. Wang, M. Zong, W. Ji, Y. Wang, and B. Ye, "Convolutional transformer network for fine-grained action recognition," Neurocomputing, 569(2024).
146. A. D. Bonzanini, K. Shao, D. B. Graves, S. Hamaguchi, and A. Mesbah, "Foundations of machine learning for low-temperature plasmas: methods and case studies," Plasma Sources Science and Technology, 32 (2)(2023).
147. R. Anirudh, R. Archibald, M. S. Asif, M. M. Becker, S. Benkadda, P.-T. Bremer, R. H. S. Budé, C. S. Chang, L. Chen, R. M. Churchill, J. Citrin, J. A. Gaffney, A. Gainaru, W. Gekelman, T. Gibbs, S. Hamaguchi, C. Hill, K. Humbird, S. Jalas, S. Kawaguchi, G.-H. Kim, M. Kirchen, S. Klasky, J. L. Kline, K. Krushelnick, B. Kustowski, G. Lapenta, W. Li, T. Ma, N. J. Mason, A. Mesbah, C. Michoski, T. Munson, I. Murakami, H. N. Najm, K. E. J. Olofsson, S. Park, J. L. Peterson, M. Probst, D. Pugmire, B. Sammuli, K. Sawlani, A. Scheinker, D. P. Schissel, R. J. Shalloo, J. Shinagawa, J. Seong, B. K. Spears, J. Tennyson, J. Thiagarajan, C. M. Ticoş, J. Trieschmann, J. v. Dijk, B. V. Essen, P. Ventzek, H. Wang, J. T. L. Wang, Z. Wang, K. Wende, X. Xu, H. Yamada, T. Yokoyama, and X. Zhang, "2022 Review of Data-Driven Plasma Science," IEEE Transactions on Plasma Science, 51 (7), 1750-1838 (2023).
148. M. He, R. Bai, S. Tan, D. Liu, and Y. Zhang, "Data‐driven plasma science: A new perspective on modeling, diagnostics, and applications through machine learning," Plasma Processes and Polymers, (2024).
149. J. Vorobioff, N. Boggio, S. Moncayo, J. O. Caceres, and C. A. Rinaldi, "Corona discharge induced plasma spectroscopy (CDIPS) for quantitative analysis of gas mixtures," Journal of Analytical Atomic Spectrometry, 31 (10), 2053-2059 (2016).
150. A. D. Bonzanini, K. Shao, A. Stancampiano, D. B. Graves, and A. Mesbah, "Perspectives on Machine Learning-Assisted Plasma Medicine: Toward Automated Plasma Treatment," IEEE Transactions on Radiation and Plasma Medical Sciences, 6 (1), 16-32 (2022).
151. D. Gidon, X. Pei, A. D. Bonzanini, D. B. Graves, and A. Mesbah, "Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources," IEEE Transactions on Radiation and Plasma Medical Sciences, 3 (5), 597-605 (2019).
152. M. Witman, D. Gidon, D. B. Graves, B. Smit, and A. Mesbah, "Sim-to-real transfer reinforcement learning for control of thermal effects of an atmospheric pressure plasma jet," Plasma Sources Science and Technology, 28 (9)(2019).
153. D. Gidon, H. S. Abbas, A. D. Bonzanini, D. B. Graves, J. Mohammadpour Velni, and A. Mesbah, "Data-driven LPV model predictive control of a cold atmospheric plasma jet for biomaterials processing," Control Engineering Practice, 109(2021).
154. L. Lin, and M. Keidar, "A map of control for cold atmospheric plasma jets: From physical mechanisms to optimizations," Applied Physics Reviews, 8 (1)(2021).
155. A. Mesbah, and D. B. Graves, "Machine learning for modeling, diagnostics, and control of non-equilibrium plasmas," Journal of Physics D: Applied Physics, 52 (30)(2019).
156. B. Kim, and D. Kim, "Use of neural network to in situ conditioning of semiconductor plasma processing equipment," Applied Soft Computing, 12 (2), 826-831 (2012).
157. T. Shah Mansouri, H. Wang, D. Mariotti, and P. Maguire, "Methane detection to 1 ppm using machine learning analysis of atmospheric pressure plasma optical emission spectra," Journal of Physics D: Applied Physics, 55 (22)(2022).
158. M. A. Miller, R. M. Churchill, A. Dener, C. S. Chang, T. Munson, and R. Hager, "Encoder–decoder neural network for solving the nonlinear Fokker–Planck–Landau collision operator in XGC," Journal of Plasma Physics, 87 (2)(2021).
159. F. Krüger, T. Gergs, and J. Trieschmann, "Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations," Plasma Sources Science and Technology, 28 (3)(2019).
160. P. W. Stokes, D. G. Cocks, M. J. Brunger, and R. D. White, "Determining cross sections from transport coefficients using deep neural networks," Plasma Sources Science and Technology, 29 (5)(2020).
161. S. Kawaguchi, K. Takahashi, H. Ohkama, and K. Satoh, "Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma," Plasma Sources Science and Technology, 29 (2)(2020).
162. H. Sang Jeen, G. S. May, and P. Dong-Cheol, "Neural network modeling of reactive ion etching using optical emission spectroscopy data," IEEE Transactions on Semiconductor Manufacturing, 16 (4), 598-608 (2003).
163. B. Kim, and M. Kwon, "Prediction of plasma etch process by using actinometry-based optical emission spectroscopy data and neural network," J. Mater. Process. Technol., 209 (5), 2620-2626 (2009).
164. S. Das, D. P. Das, C. K. Sarangi, and B. Bhoi, "Estimation of hydrogen flow rate in atmospheric Ar:H2 plasma by using artificial neural network," Neural Computing and Applications, 32 (5), 1357-1365 (2018).
165. K. Shao, X. Pei, D. B. Graves, and A. Mesbah, "Active learning-guided exploration of parameter space of air plasmas to enhance the energy efficiency of NOx production," Plasma Sources Science and Technology, 31 (5)(2022).
166. T. Gergs, T. Mussenbrock, and J. Trieschmann, "Physics-separating artificial neural networks for predicting initial stages of Al sputtering and thin film deposition in Ar plasma discharges," Journal of Physics D: Applied Physics, 56 (8)(2023).
167. J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, "Predicting disruptive instabilities in controlled fusion plasmas through deep learning," Nature, 568 (7753), 526-531 (2019).
168. D. Stokes, and G. S. May, "Real-time control of reactive ion etching using neural networks," Ieee Transactions on Semiconductor Manufacturing, 13 (4), 469-480 (2000).
169. A. F. Kanta, G. Montavon, M. P. Planche, and C. Coddet, "Plasma Spray Process On-Line Control by Artificial Intelligence Methodology," Advanced Engineering Materials, 9 (1-2), 105-113 (2007).
170. T. A. Choudhury, N. Hosseinzadeh, and C. C. Berndt, "Artificial Neural Network application for predicting in-flight particle characteristics of an atmospheric plasma spray process," Surface & Coatings Technology, 205 (21), 4886-4895 (2011).
171. E. S. Dalvand, M. Ebrahimi, and S. G. Pouryoussefi, "Experimental investigation, modeling and prediction of transition from uniform discharge to filamentary discharge in DBD plasma actuators using artificial neural network," Appl. Therm. Eng., 129, 50-61 (2018).
172. J. E. Ball, D. T. Anderson, and C. S. Chan, "Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community," Journal of Applied Remote Sensing, 11 (04), 1 (2017).
173. U. W. Liebal, A. N. T. Phan, M. Sudhakar, K. Raman, and L. M. Blank, "Machine Learning Applications for Mass Spectrometry-Based Metabolomics," Metabolites, 10 (6), 243 (2020).
174. F. Lussier, V. Thibault, B. Charron, G. Q. Wallace, and J.-F. Masson, "Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering," TrAC Trends in Analytical Chemistry, 124(2020).
175. X. L. Zhang, T. Lin, J. F. Xu, X. Luo, and Y. B. Ying, "DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis," Anal. Chim. Acta, 1058, 48-57 (2019).
176. J. Acquarelli, T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori, "Convolutional neural networks for vibrational spectroscopic data analysis," Anal. Chim. Acta, 954, 22-31 (2017).
177. Y. Liu, "Adversarial nets for baseline correction in spectra processing," Chemometrics and Intelligent Laboratory Systems, 213(2021).
178. Y. V. Kistenev, V. E. Skiba, V. V. Prischepa, D. A. Vrazhnov, and A. V. Borisov, "Super-resolution reconstruction of noisy gas-mixture absorption spectra using deep learning," Journal of Quantitative Spectroscopy and Radiative Transfer, 289(2022).
179. W. J. Thrift, S. Ronaghi, M. Samad, H. Wei, D. G. Nguyen, A. S. Cabuslay, C. E. Groome, P. J. Santiago, P. Baldi, A. I. Hochbaum, and R. Ragan, "Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing," ACS Nano, 14 (11), 15336-15348 (2020).
180. X. Fan, W. Ming, H. Zeng, Z. Zhang, and H. Lu, "Deep learning-based component identification for the Raman spectra of mixtures," Analyst, 144 (5), 1789-1798 (2019).
181. Y. Y. Liu, J. J. Xu, Y. Tao, T. Fang, W. B. Du, and A. P. Ye, "Rapid and accurate identification of marine microbes with single-cell Raman spectroscopy," Analyst, 145 (9), 3297-3305 (2020).
182. W. Lu, X. Chen, L. Wang, H. Li, and Y. V. Fu, "Combination of an Artificial Intelligence Approach and Laser Tweezers Raman Spectroscopy for Microbial Identification," Anal Chem, 92 (9), 6288-6296 (2020).
183. C. S. Ho, N. Jean, C. A. Hogan, L. Blackmon, S. S. Jeffrey, M. Holodniy, N. Banaei, A. A. E. Saleh, S. Ermon, and J. Dionne, "Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning," Nat. Commun., 10, 8 (2019).
184. J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon, and S. J. Gibson, "Deep convolutional neural networks for Raman spectrum recognition: a unified solution," Analyst, 142 (21), 4067-4074 (2017).
185. J. Hu, Y. Zou, B. Sun, X. Yu, Z. Shang, J. Huang, S. Jin, and P. Liang, "Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection," Spectrochim Acta A Mol Biomol Spectrosc, 265, 120366 (2022).
186. S. Jayasankar, D. Bajhaiya, and S. Narayanan Unni, "Deep learning-enabled soft tissue tumor localization using spatially offset Raman spectral analysis: in-silico investigations," Journal of Physics D: Applied Physics, 55 (39)(2022).
187. T. Kirchberger-Tolstik, P. Pradhan, M. Vieth, P. Grunert, J. Popp, T. W. Bocklitz, and A. Stallmach, "Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy," Anal Chem, 92 (20), 13776-13784 (2020).
188. S. Yu, H. Li, X. Li, Y. V. Fu, and F. Liu, "Classification of pathogens by Raman spectroscopy combined with generative adversarial networks," Sci Total Environ, 726, 138477 (2020).
189. X. Y. Ma, K. D. Wang, K. C. Chou, Q. F. Li, and X. N. Lu, "Conditional Generative Adversarial Network for Spectral Recovery to Accelerate Single-Cell Raman Spectroscopic Analysis," Anal. Chem., 94 (2), 577-582 (2022).
190. Y. Du, D. Han, S. Liu, X. Sun, B. Ning, T. Han, J. Wang, and Z. Gao, "Raman spectroscopy-based adversarial network combined with SVM for detection of foodborne pathogenic bacteria," Talanta, 237, 122901 (2022).
191. P. Mishra, and D. Passos, "Multi-output 1-dimensional convolutional neural networks for simultaneous prediction of different traits of fruit based on near-infrared spectroscopy," Postharvest Biol. Technol., 183, 7 (2022).
192. E. Jannik Bjerrum, M. Glahder, and T. Skov, "Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics," arXiv e-prints, arXiv:1710.01927 (2017).
193. C. Ni, D. Y. Wang, and Y. Tao, "Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy," Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 209, 32-39 (2019).
194. L. Zhang, Y. Wang, Y. Wei, and D. An, "Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel," Food Chem, 370, 131047 (2022).
195. F. Lussier, D. Missirlis, J. P. Spatz, and J. F. Masson, "Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells," ACS Nano, 13 (2), 1403-1411 (2019).
196. W. J. Thrift, and R. Ragan, "Quantification of Analyte Concentration in the Single Molecule Regime Using Convolutional Neural Networks," Anal Chem, 91 (21), 13337-13342 (2019).
197. S. S. Gurbani, E. Schreibmann, A. A. Maudsley, J. S. Cordova, B. J. Soher, H. Poptani, G. Verma, P. B. Barker, H. Shim, and L. A. D. Cooper, "A convolutional neural network to filter artifacts in spectroscopic MRI," Magnetic Resonance in Medicine, 80 (5), 1765-1775 (2018).
198. H. H. Lee, and H. Kim, "Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain," Magnetic Resonance in Medicine, 82 (1), 33-48 (2019).
199. C. Y. Wang, T. S. Ko, and C. C. Hsu, "Interpreting convolutional neural network for real-time volatile organic compounds detection and classification using optical emission spectroscopy of plasma," Anal Chim Acta, 1179, 338822 (2021).
200. S. Kajita, S. Iwai, H. Tanaka, D. Nishijima, K. Fujii, H. van der Meiden, and N. Ohno, "Use of machine learning for a helium line intensity ratio method in Magnum-PSI," Nuclear Materials and Energy, 33(2022).
201. J. E. Choi, D. H. Seol, C. Y. Kim, and S. J. Hong, "Generative Adversarial Network-Based Fault Detection in Semiconductor Equipment with Class-Imbalanced Data," Sensors, 23 (4), 1889 (2023).
202. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, "Physics-informed machine learning," Nature Reviews Physics, 3 (6), 422-440 (2021).
203. C. Meng, S. Griesemer, D. Cao, S. Seo, and Y. Liu, "When physics meets machine learning: a survey of physics-informed machine learning," Machine Learning for Computational Science and Engineering, 1 (1)(2025).
204. K. Bobzin, H. Heinemann, and A. Dokhanchi, "Physics-Informed Neural Networks for Predicting Particle Properties in Plasma Spraying," Journal of Thermal Spray Technology, 34 (2-3), 885-892 (2025).
205. L. Zhong, B. Wu, and Y. Wang, "Low-temperature plasma simulation based on physics-informed neural networks: Frameworks and preliminary applications," Physics of Fluids, 34 (8)(2022).
206. L. Zhong, Q. Gu, and B. Wu, "Deep learning for thermal plasma simulation: Solving 1-D arc model as an example," Computer Physics Communications, 257(2020).
207. Y. Qin, J. Ma, M. Jiang, C. Dong, H. Fu, L. Wang, W. Cheng, and Y. Jin, "Data-driven modeling of Landau damping by physics-informed neural networks," Physical Review Research, 5 (3)(2023).
208. S. Kawaguchi, and T. Murakami, "Physics-informed neural networks for solving the Boltzmann equation of the electron velocity distribution function in weakly ionized plasmas," Japanese Journal of Applied Physics, 61 (8)(2022).
209. J. S. Kim, K. Denpoh, S. Kawaguchi, K. Satoh, and M. Matsukuma, "Numerical strategy for solving the Boltzmann equation with variable E/N using physics-informed neural networks," Journal of Physics D: Applied Physics, 56 (34)(2023).
210. B. Zhang, G. Cai, H. Weng, W. Wang, L. Liu, and B. He, "Physics-informed neural networks for solving forward and inverse Vlasov–Poisson equation via fully kinetic simulation," Machine Learning: Science and Technology, 4 (4)(2023).
211. A. Puleio, R. Rossi, and P. Gaudio, "Calibration of spectra in presence of non-stationary background using unsupervised physics-informed deep learning," Sci Rep, 13 (1), 2156 (2023).
212. L. Lin, S. Gershman, Y. Raitses, and M. Keidar, "Data-driven prediction of the output composition of an atmospheric pressure plasma jet," Journal of Physics D: Applied Physics, 57 (1)(2023).
213. S. Ioffe, and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," arXiv:1502.03167 (2015).
214. P. Bruggeman, D. Schram, M. Á. González, R. Rego, M. G. Kong, and C. Leys, "Characterization of a direct dc-excited discharge in water by optical emission spectroscopy," Plasma Sources Science and Technology, 18 (2)(2009).
215. K. Gazeli, P. Svarnas, P. Vafeas, P. K. Papadopoulos, A. Gkelios, and F. Clément, "Investigation on streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical emission analysis," Journal of Applied Physics, 114 (10)(2013).
216. J. Turicek, N. Ratts, M. Kaltchev, and N. Masoud, "Investigation of a helium tubular cold atmospheric pressure plasma source and polymer surface treatment application," Plasma Sources Science and Technology, 30 (2)(2021).
217. P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, "Gas temperature determination from rotational lines in non-equilibrium plasmas: a review," Plasma Sources Science and Technology, 23 (2)(2014).
218. A. M. E. Sherbini, A. A. S. A. Amer, A. T. Hassan, and T. M. E. Sherbini, "Spectrometric Measurement of Plasma Parameters Utilizing the Target Ambient Gas O I & N I Atomic Lines in LIBS Experiment," Optics and Photonics Journal, 02 (04), 286-293 (2012).
219. C. Aragón, F. Peñalba, and J. A. Aguilera, "Spatial characterization of laser-induced plasmas: distributions of neutral atom and ion densities," Applied Physics A, 79 (4-6), 1145-1148 (2004).
220. J. Han, W. Park, J. Kim, K. H. Lim, G. H. Lee, S. In, J. Park, S. J. Oh, S. K. Nam, D. Y. Sung, and S. Y. Moon, "Synthetic molecular spectra modeling for determining rotational, vibrational, and excitation temperatures of low-pressure nitrogen plasma," Spectrochim Acta A Mol Biomol Spectrosc, 304, 123389 (2024).
221. H.-w. Chang, and C.-c. Hsu, "Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior," Plasma Sources Science and Technology, 20 (4)(2011).
222. Y. Sakiyama, D. B. Graves, H.-W. Chang, T. Shimizu, and G. E. Morfill, "Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species," Journal of Physics D: Applied Physics, 45 (42)(2012).
223. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, "Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures," Plasma Sources Sci. Technol., 1 (3), 207-220 (1992).
224. S. K. J. Rizvi, M. A. Azad, and M. M. Fraz, "Spectrum of Advancements and Developments in Multidisciplinary Domains for Generative Adversarial Networks (GANs)," Arch Comput Methods Eng, 28 (7), 4503-4521 (2021).
225. S. Gao, X. Wang, X. Miao, C. Su, and Y. Li, "ASM1D-GAN: An Intelligent Fault Diagnosis Method Based on Assembled 1D Convolutional Neural Network and Generative Adversarial Networks," Journal of Signal Processing Systems, 91 (10), 1237-1247 (2019).
226. W. Zhang, X. Li, X.-D. Jia, H. Ma, Z. Luo, and X. Li, "Machinery fault diagnosis with imbalanced data using deep generative adversarial networks," Measurement, 152(2020).
227. J. Luque, and D. R. Crosley, "LIFBASE: Database and spectral simulation program (version 1.5)," SRI international report MP, 99 (009)(1999).
228. J. Voráč, and P. Synek, "massiveOES software package . org," OES_muni/massiveoes, (2016).
229. A. R. Hanna, T. L. Van Surksum, and E. R. Fisher, "Investigating the impact of catalysts on N2 rotational and vibrational temperatures in low pressure plasmas," Journal of Physics D: Applied Physics, 52 (34)(2019).
230. A. Bogaerts, E. C. Neyts, O. Guaitella, and A. B. Murphy, "Foundations of plasma catalysis for environmental applications," Plasma Sources Science and Technology, 31 (5)(2022).
231. A. R. Hanna, J. M. Blechle, and E. R. Fisher, "Using Fundamental Spectroscopy to Elucidate Kinetic and Energetic Mechanisms within Environmentally Relevant Inductively Coupled Plasma Systems," J Phys Chem A, 121 (40), 7627-7640 (2017).
232. Q. Yuan, B. Qin, and G. Yin, "The discharge characteristics of capacitively coupled nitrogen plasma driven by 6∼50 MHz by optical emission spectra," Current Applied Physics, 53, 19-24 (2023).
233. Q. Yuan, P. Ren, S. Liu, J. Wang, and G. Yin, "The optical emission spectroscopy of nitrogen plasma driven by the 94.92 MHz/13.56 MHz dual-frequency," Physics Letters A, 384 (12)(2020).
234. H. Akatsuka, H. Kawano, K. Naoi, H. Matsuura, and A. Nezu, "Experimental study on difference in molecular rotation temperatures between neutral molecules and molecular ions in nitrogen plasma and oxygen plasma by optical emission spectroscopy measurement," Japanese Journal of Applied Physics, 56 (5)(2017).
235. H. Fatima, M. U. Ullah, S. Ahmad, M. Imran, S. Sajjad, S.Hussain, and A. Qayyum, "Spectroscopic evaluation of vibrational temperature and electron density in reduced pressure radio frequency nitrogen plasma," SN Applied Sciences, 3 (6)(2021).
236. X. Yuan, X. Ding, Z. Zhao, X. Zhan, and Y. Duan, "Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry," Journal of Analytical Atomic Spectrometry, 27 (12)(2012).
237. L. C. Nunes, G. A. da Silva, L. C. Trevizan, D. Santos Júnior, R. J. Poppi, and F. J. Krug, "Simultaneous optimization by neuro-genetic approach for analysis of plant materials by laser induced breakdown spectroscopy," Spectrochimica Acta Part B: Atomic Spectroscopy, 64 (6), 565-572 (2009).
238. M. Wu, U. Di Caprio, O. Van Der Ha, B. Metten, D. De Clercq, F. Elmaz, S. Mercelis, P. Hellinckx, L. Braeken, F. Vermeire, and M. E. Leblebici, "Simulation and quantitative analysis of Raman spectra in chemical processes with autoencoders," Chemometrics and Intelligent Laboratory Systems, 248(2024).
239. X.-L. Zhang, and C.-C. Hsu, "Using transfer-learning-based algorithms as data reduction strategies for volatile organic compounds classification using plasma spectroscopy," Journal of Physics D: Applied Physics, 56 (32)(2023).
240. M. Liu, J. Zhang, E. Adeli, and D. Shen, "Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer's Disease Diagnosis," IEEE Trans Biomed Eng, 66 (5), 1195-1206 (2019).
241. J. Chen, L. Cheng, X. Yang, J. Liang, B. Quan, and S. Li, presented at the Journal of Physics: Conference Series, 2019 (unpublished).
242. D. Zhang, D. Shen, and I. Alzheimer's Disease Neuroimaging, "Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease," Neuroimage, 59 (2), 895-907 (2012).
243. L. Brand, K. Nichols, H. Wang, L. Shen, and H. Huang, "Joint Multi-Modal Longitudinal Regression and Classification for Alzheimer's Disease Prediction," IEEE Trans Med Imaging, 39 (6), 1845-1855 (2020).
244. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, "FiLM: Visual Reasoning with a General Conditioning Layer," arXiv:1709.07871 (2017).
245. M. Brockschmidt, "GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation," arXiv:1906.12192 (2019).
246. J. Mao, Y. Atwa, Z. Wu, D. McNeill, and H. Shakeel, "Identification of Different Classes of VOCs Based on Optical Emission Spectra Using a Dielectric Barrier Helium Plasma Coupled with a Mini Spectrometer," ACS Meas Sci Au, 4 (2), 201-212 (2024).
247. J. A. C. Broekaert, "Analytical chemistry - Plasma bubbles detect elements," Nature, 455 (7217), 1185-1186 (2008).
248. A. Kitano, A. Iiduka, T. Yamamoto, Y. Ukita, E. Tamiya, and Y. Takamura, "Highly sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow," Anal Chem, 83 (24), 9424-9430 (2011).
249. S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, "A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning," Archives of Computational Methods in Engineering, 27 (4), 1071-1092 (2019).
250. A. Tuniyazi, T. Mu, Q. Li, H. Li, X. Jiang, F. Han, H. Gong, W. Wang, X. Lang, B. Wang, Z. Li, J. Wu, and B. Qin, "Bayesian neural networks enabled snapshot polarized light scattering spectroscopy with uncertainty quantification," Optics and Lasers in Engineering, 160(2023).
251. Y. F. Wang, X. Y. Zhang, Z. M. Niu, and Z. P. Li, "Study of nuclear low-lying excitation spectra with the Bayesian neural network approach," Physics Letters B, 830(2022).
252. K. Shojaei, and L. Mangolini, "Application of machine learning for the estimation of electron energy distribution from optical emission spectra," Journal of Physics D: Applied Physics, 54 (26)(2021).
253. B. S. Kronheim, M. P. Kuchera, and H. B. Prosper, "TensorBNN: Bayesian inference for neural networks using TensorFlow," Computer Physics Communications, 270(2022).
254. H. H. Thodberg, "A review of Bayesian neural networks with an application to near infrared spectroscopy," IEEE transactions on Neural Networks, 7 (1), 56-72 (1996).
255. T. Papamarkou, J. Hinkle, M. T. Young, and D. Womble, "Challenges in Markov Chain Monte Carlo for Bayesian Neural Networks," Statistical Science, 37 (3)(2022).
256. A. Olivier, M. D. Shields, and L. Graham-Brady, "Bayesian neural networks for uncertainty quantification in data-driven materials modeling," Computer Methods in Applied Mechanics and Engineering, 386(2021).
257. M. Magris, and A. Iosifidis, "Bayesian learning for neural networks: an algorithmic survey," Artificial Intelligence Review, (2023).
258. M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya, V. Makarenkov, and S. Nahavandi, "A review of uncertainty quantification in deep learning: Techniques, applications and challenges," Information Fusion, 76, 243-297 (2021).
259. S. Bhandary K, N. Hochgeschwender, P. Plöger, F. Kirchner, and M. Valdenegro-Toro, "Evaluating Uncertainty Estimation Methods on 3D Semantic Segmentation of Point Clouds," arXiv:2007.01787 (2020).
260. T. DeVries, and G. W. Taylor, "Leveraging Uncertainty Estimates for Predicting Segmentation Quality," arXiv:1807.00502 (2018).
261. N. Band, T. G. J. Rudner, Q. Feng, A. Filos, Z. Nado, M. W. Dusenberry, G. Jerfel, D. Tran, and Y. Gal, "Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks," arXiv:2211.12717 (2022).
262. M. M. Hassan, and H. R. Ismail, "Bayesian deep learning applied to diabetic retinopathy with uncertainty quantification," Heliyon, 11 (2)(2025).
263. R. Krishnan, M. Subedar, O. Tickoo, A. Filos, and Y. Gal, "Improving MFVI in Bayesian Neural Networks with Empirical Bayes: a Study with Diabetic Retinopathy Diagnosis," (2019).
264. S. Wang, Y. Liu, C. Wang, H. Luan, and M. Sun, "Improving Back-Translation with Uncertainty-based Confidence Estimation," arXiv:1909.00157 (2019).
265. J. T. Chien, and Y. C. Ku, "Bayesian Recurrent Neural Network for Language Modeling," IEEE Trans Neural Netw Learn Syst, 27 (2), 361-374 (2016).
266. Y. Xiao, and W. Y. Wang, "Quantifying Uncertainties in Natural Language Processing Tasks," arXiv:1811.07253 (2018).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99742-
dc.description.abstract近年來,深度學習技術在電漿光譜分析領域展現出強大潛力。然而,現有應用仍面臨多項挑戰,包括光譜儀解析度受限、模型無法提供預測信心水準,以及針對不同資料場景 (domain) 需重新訓練模型等問題。本論文針對上述挑戰,提出一系列具體且有效的解決方案,進一步推進深度學習於電漿光譜分析的應用範疇。
首先,為克服光譜儀硬體解析度不足的限制,本研究開發了Spec-GAN架構,用以將低解析度 (low-resolution, LR) 光譜轉換為高解析度 (high-resolution, HR) 光譜。實驗以氮氣電漿的second positive emission system放光作為示範。訓練資料使用SpecairTM模擬軟體產生之高解析度與低解析度光譜配對,涵蓋300至1200 K轉動溫度 (Trot) 與2000至6500 K振動溫度 (Tvib) 範圍。測試資料則取自低壓與大氣電漿之電漿光譜,以驗證模型在僅使用低解析度光譜儀獲得光譜時產生高解析度光譜的可行性。訓練過程中導入特徵匹配技術 (feature matching) 以緩解訓練不穩定問題,並利用鑑別器分數的分佈作為監控訓練過程的初步依據。結果顯示,模擬高解析度光譜與生成高解析度光譜之間的加權決定係數 (R̅²) 均大於0.9999。進一步比較生成高解析度光譜與實驗高解析度光譜所擬合出的轉動溫度與振動溫度,其誤差多數低於5%。整體結果表明,當無法取得高解析度光譜儀時,本研究提出的Spec-GAN架構可作為一種高效的替代手段以獲取高解析度光譜。
其次,針對濃度預測與消除概念偏移 (concept shift),本研究提出MTL-VOCNet架構,其為結合分類與迴歸任務的多任務深度學習架構,針對揮發性有機物電漿光譜進行識別與濃度預測,並引入特徵調變模塊以消除不同物質間的概念偏移。實驗中以三個自製微電漿產生裝置 (microplasma generation device, MGD) 收集全新的測試光譜資料,模擬高變異性且無標記的實際應用情境。結果顯示,MTL-VOCNet在未見過之MGD資料中達到近乎100% 的分類準確率,並在濃度迴歸任務中,透過卷積Transformer迴歸架構實現平均絕對百分比誤差僅0.68%,遠優於卷積神經迴歸架構之2.88%、單任務卷積神經迴歸模型之8.6% 以及檢量線方法之13至20% 誤差表現。在預測未知濃度測試中,MTL-VOCNet維持5.5% 左右的誤差,相較於檢量線方法12.2% 左右誤差,展現優異泛化性能。進一步以均勻流形近似與投影 (uniform manifold approximation and projection, UMAP) 與基於遮蔽法之拉曼光譜特徵擷取 (occlusion-based Raman spectra feature extraction, ORSFE) 技術證實,特徵調變模塊可有效消除不同揮發性有機物類別間的特徵差異。整體而言,本研究展示MTL-VOCNet在電漿光譜分析上的高度準確性與消除概念偏移之潛力,為未來電漿診斷與檢測應用提供重要技術基礎。
最後,針對模型預測信心問題,本研究建構了Bayes-CNN架構,其基於電漿光譜之揮發性有機物分類框架,並特別強調預測之信心水準與分佈外資料 (out-of-distribution, OOD) 偵測之能力。為提升模型在不同微電漿產生裝置 (MGD) 間的泛化能力,本研究結合了參數遷移學習 (parameter transfer learning, PTL),使Bayes-CNN在五組未曾見過的MGD資料上達到超過96% 的分類準確率與0.9604的平均F1分數。透過將單一資料點多次推論所得的標準差作為信心閾值,模型分類準確率可進一步提升至100%,但僅有76% 的資料被視為可靠資料,展現出預測可靠性與資料涵蓋率間的彈性取捨能力。Bayes-CNN亦能有效識別分佈外資料,其預測機率約33至70%,顯著較低,且標準差約0.05至0.25,顯著較高。此外,透過ORSFE熱圖分析展現模型可解釋性,結果顯示Bayes-CNN對物理上具意義之放光波段,如CH、C2與Ar具有高度關注。綜合而言,本研究展示了Bayes-CNN在複雜電漿光譜分析中,作為一種穩健、具信心感知 (confidence-aware) 且可解釋性的分析工具之潛力。
zh_TW
dc.description.abstractIn recent years, deep learning has demonstrated great potential in the field of plasma optical emission spectroscopy (OES). However, current applications still encounter several challenges, including limited spectrometer resolution, the absence of confidence estimation in model predictions, and the need to retrain models for different domains. This dissertation addresses these challenges by proposing a series of specific and effective solutions to further advance the application of deep learning in plasma OES.
First, to overcome the hardware limitation of spectral resolution, this study has developed the Spec-GAN architecture, which transforms low-resolution (LR) spectra into high-resolution (HR) spectra. Plasma emissions with second positive system of nitrogen are used for demonstration. The training set consists of paired HR and LR spectra generated by the simulation software, SpecairTM, covering rotational temperatures (Trot) and vibrational temperatures (Tvib) ranging from 300 to 1200 K and 2000 to 6500 K, respectively. The testing set is acquired from both low-pressure and atmospheric-pressure plasmas to evaluate the ability of Spec-GAN to generate HR spectra from experimental LR spectra. To stabilize the training procedure, feature matching is introduced, and the distribution of discriminator scores is used to monitor the training progress. The results show that the weighted coefficient of determination (R̅²) between simulated and generated HR spectra exceeds 0.9999. Additionally, when fitting the to extract, the fitting errors for Trot and Tvib between generated HR spectra and experimental HR spectra are mostly below 5%. These results demonstrate that Spec-GAN is an effective alternative for obtaining HR spectra when high-resolution spectrometers are not available.
Second, to improve the performance of concentration prediction and eliminate concept shift across domains, this study proposes the MTL-VOCNet architecture, a multi-task learning (MTL) model combining classification and regression for plasma OES of volatile organic compounds (VOCs). A feature modulation block (FMB) is introduced to eliminate concept shift between VOC types. Experimental data are collected using three entirely unseen microplasma generation devices (MGDs) to simulate highly variable and unlabeled real-world scenarios. The results show that MTL-VOCNet achieves nearly 100% classification accuracy on unseen MGDs. For regression tasks, the architecture of convolutional transformer network (CTN) reaches a mean absolute percentage error (MAPE) of only 0.68%, significantly outperforming the architecture of convolutional neural network (CNN) with 2.88%, the single-task regression model with 8.6%, and traditional calibration curve methods with 13 to 20%. Under scenarios involving unknown concentrations, MTL-VOCNet maintains an error of around 5.5%, compared to 12.2% for the calibration curve approach, demonstrating excellent generalization. Further analysis using Uniform Manifold Approximation and Projection (UMAP) and occlusion-based Raman spectra feature extraction (ORSFE) confirms that the FMB effectively reduces variability among different VOCs. Overall, this study demonstrates that MTL-VOCNet delivers highly accurate plasma spectral analysis while effectively eliminating concept shift, providing a robust technical foundation for future applications in plasma diagnostics and sensing.
Lastly, to address the issue of confidence estimation in model predictions, this study construct a Bayes-CNN architecture for VOC classification based on plasma OES. Bayes-CNN emphasizes confidence estimation and the ability to detect out-of-distribution (OOD) data. To enhance generalization across different MGDs, parameter transfer learning (PTL) is incorporated, enabling Bayes-CNN to achieve over 96% classification accuracy and an average F1 score of 0.9604 on five unseen MGDs. By using the standard deviation of multiple inferences for a single data point as a confidence threshold, the classification accuracy further increases to 100%, though only 76% of the data is considered reliable, reflecting the trade-off between prediction reliability and reliable data coverage. Bayes-CNN also effectively identifies OOD data, with prediction probabilities ranging from 33 to 70% and standard deviations between 0.05 and 0.25. Furthermore, model interpretability is demonstrated using ORSFE heatmaps, revealing that Bayes-CNN pays close attention to physically meaningful emission bands such as CH, C2, and Ar. Overall, the study highlights Bayes-CNN as a robust, confidence-aware, and interpretable tool for complex plasma spectral analysis.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:32:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:32:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 v
ABSTRACT vii
目次 xi
圖次 xv
表次 xxiv
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第 2 章 文獻回顧 3
2.1 電漿之簡介 3
2.1.1 電漿物理機制 3
2.1.2 低壓電漿系統 6
2.1.3 常壓微電漿系統 10
2.1.4 電漿光譜診斷 14
2.2 人工智慧 (Artificial Intelligence, AI) 25
2.2.1 人工智慧之簡介 25
2.2.2 人工智慧應用領域現況 27
2.3 分辨式人工智慧 (Discriminative AI) 30
2.3.1 卷積神經網路 (Convolutional Neural Network, CNN) 30
2.3.2 貝葉斯神經網路 (Bayesian Neural Network, BNN) 37
2.4 生成式人工智慧 (Generative AI) 41
2.4.1 影像生成模型架構發展 41
2.4.2 語言生成模型架構發展 48
2.5 人工智慧於電漿領域的應用 50
2.5.1 深度學習在電漿上的發展 50
2.5.2 深度學習在光譜上的發展 62
2.5.3 結合物理模型的深度學習演算法 73
第 3 章 實驗裝置與模型架構 79
3.1 電漿光譜資料蒐集平臺 79
3.1.1 電容耦合電漿 (Capacitively Coupled Plasma, CCP) 79
3.1.2 微電漿產生裝置(Microplasma Generation Device, MGD) 81
3.1.3 光學診斷工具 (Optical Diagnostic Tool) 83
3.1.4 實驗藥品與氣體成份 84
3.2 生成對抗網路 (Generative Adversarial Network, GAN) 85
3.2.1 Spec-GAN 85
3.2.2 特徵匹配 (Feature Matching) 91
3.2.3 電漿光譜資料集 92
3.3 多任務學習 (Multi-Task Learning, MTL) 94
3.3.1 MTL-VOCNet 94
3.3.2 電漿光譜資料集 102
3.4 貝葉斯神經網路 (Bayesian Neural Network, BNN) 106
3.4.1 Bayes-CNN 106
3.4.2 參數遷移學習 (Parameter Transfer Learning, PTL) 112
3.4.3 電漿光譜資料集 114
3.5 模型可解釋性與視覺化技術 117
3.5.1 基於遮蔽法之拉曼光譜特徵擷取 (ORSFE) 117
3.5.2 均勻流形近似與投影 (UMAP) 119
第 4 章 Spec-GAN在低解析度光譜之解析度提升 121
4.1 引言 121
4.2 實驗與模型預測之高解析度光譜 123
4.3 鑑別器分數評估分析 129
4.4 Spec-GAN應用於低解析度實驗光譜轉換之表現 132
4.5 電漿轉動溫度與震動溫度之量測 135
4.6 小結 137
第 5 章 MTL-VOCNet於電漿光譜之定性與定量 139
5.1 引言 139
5.2 電漿光譜法之挑戰與使用CNN之單任務迴歸模型潛力 142
5.3 MTL-VOCNet於揮發性有機物識別與濃度預測之表現 149
5.4 特徵調變模塊於消除概念偏移成效之視覺化分析 156
5.5 小結 159
第 6 章 Bayes-CNN於電漿光譜辨識之應用 161
6.1 引言 161
6.2 電漿光譜法之挑戰與CNN/Bayes-CNN模型效能比較 163
6.3 信心閾值對於分類表現的影響與分佈外資料辨識 172
6.4 揮發性有機物光譜與ORSFE熱圖視覺化分析 179
6.5 小結 181
第 7 章 結論 183
第 8 章 未來展望 185
參考文獻 187
附錄 221
附錄A  Spec-GAN補充資料 221
附錄B  MTL-VOCNet補充資料 222
-
dc.language.isozh_TW-
dc.subject光學發射光譜法zh_TW
dc.subject深度學習zh_TW
dc.subject生成對抗網路zh_TW
dc.subject特徵匹配zh_TW
dc.subject多任務學習zh_TW
dc.subject特徵調變zh_TW
dc.subject卷積Transformer網路zh_TW
dc.subject貝葉斯神經網路zh_TW
dc.subject參數遷移學習zh_TW
dc.subject分佈外資料偵測zh_TW
dc.subject機器學習zh_TW
dc.subjectmachine learningen
dc.subjectfeature modulationen
dc.subjectmulti-task learning (MTL)en
dc.subjectfeature matchingen
dc.subjectgenerative adversarial network (GAN)en
dc.subjectdeep learningen
dc.subjectoptical emission spectroscopy (OES)en
dc.subjectout-of-distribution (OOD) detectionen
dc.subjectparameter transfer learning (PTL)en
dc.subjectBayesian neural network (BNN)en
dc.subjectconvolutional transformer network (CTN)en
dc.title深度學習導向之光譜分析於電漿診斷與氣體檢測之研究zh_TW
dc.titleDevelopment of Deep Learning-Based Spectroscopic Analysis for Plasma Diagnostics and Gas Detectionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林祥泰;游琇伃;盧彥文;鄭雲謙zh_TW
dc.contributor.oralexamcommitteeShiang-Tai Lin;Hsiu-Yu Yu;Yen-Wen Lu;Yun-Chien Chengen
dc.subject.keyword機器學習,深度學習,生成對抗網路,特徵匹配,多任務學習,特徵調變,卷積Transformer網路,貝葉斯神經網路,參數遷移學習,分佈外資料偵測,光學發射光譜法,zh_TW
dc.subject.keywordmachine learning,deep learning,generative adversarial network (GAN),feature matching,multi-task learning (MTL),feature modulation,convolutional transformer network (CTN),Bayesian neural network (BNN),parameter transfer learning (PTL),out-of-distribution (OOD) detection,optical emission spectroscopy (OES),en
dc.relation.page225-
dc.identifier.doi10.6342/NTU202503464-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-01
26.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved