Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99737
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧奕璋zh_TW
dc.contributor.advisorYi-Chang Luen
dc.contributor.author黃政勛zh_TW
dc.contributor.authorJheng-Syun Huangen
dc.date.accessioned2025-09-17T16:31:53Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.
[2] T. Bunk, P. Wendler, and N. Steinger. cpu-energy-meter. Github link: https:// github.com/sosy-lab/cpu-energy-meter, 2021.
[3] D.S.Cali, K. Kanellopoulos, J. Lindegger, Z. Bingöl, G. S. Kalsi, Z. Zuo, C. Firtina, M.B.Cavlak, J. Kim, N. M.Ghiasi, et al. Segram: A universal hardware accelerator for genomic sequence-to-graph and sequence-to-sequence mapping. In Proceedings of the 49th Annual International Symposium on Computer Architecture, pages 638-655, 2022.
[4] L. Clarke, X. Zheng-Bradley, R. Smith, E. Kulesha, C. Xiao, I. Toneva, B. Vaughan, D. Preuss, R. Leinonen, M. Shumway, et al. The 1000 genomes project: data management and community access. Nature methods, 9(5):459–462, 2012.
[5] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Dawson, W. Jones, S. Garg, C. Markello, M. F. Lin, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature biotechnology, 36(9):875–879, 2018.
[6] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner. Riffa 2.1: A reusable integration framework for fpga accelerators. ACM Trans. Reconfigurable Technol. Syst., 8(4), 9 2015.
[7] C. Jain, S. Misra, H. Zhang, A. Dilthey, and S. Aluru. Accelerating sequence alignment to graphs. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 451–461. IEEE, 2019.
[8] H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics, 32(14):2103–2110, 2016.
[9] H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100, 2018.
[10] Y. Ono, K. Asai, and M. Hamada. Pbsim: Pacbio reads simulator—toward accurate genome assembly. Bioinformatics, 29(1):119–121, 2013.
[11] B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison. Genome graphs and the evolution of genome inference. Genome research, 27(5):665–676, 2017.
[12] M. Rautiainen and T. Marschall. Graphaligner: rapid and versatile sequence-to-graph alignment. Genome biology, 21(1):253, 2020.
[13] Z.-W. Shen, J.-S. Huang, and Y.-C. Lu. A memory-efficient accelerator for 128 parallel sequence-to-graph alignment in variant-enriched regions. In 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), pages 1–5. IEEE, 2024.
[14] Y. Turakhia, G. Bejerano, and W. J. Dally. Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly. ACM SIGPLAN Notices, 53(2):199–213, 2018
[15] Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally. Darwin-wga: A coprocessor provides increased sensitivity in whole genome alignments with high speedup. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 359–372. IEEE, 2019.
[16] H. Zhang, S. Wu, S. Aluru, and H. Li. Fast sequence to graph alignment using the graph wavefront algorithm. arXiv preprint arXiv:2206.13574, 2022.
[17] 黃士豪. 基於邁爾斯位元-向量演算法之長片段序列對圖比對硬體加速平台設計. 臺灣大學電子工程學研究所學位論文,2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99737-
dc.description.abstract  序列比對一直是生物資訊領域中的基礎工具,用於找出讀段與線性參考基因組之間的相似性。然而,單一的參考序列無法完整涵蓋不同族群間的遺傳多樣性。為了解決這個限制,參考基因組圖的概念應運而生,透過圖結構來表現遺傳變異,進而促成了序列對圖比對演算法的發展。
  本研究提出一個用於種子與延伸啟發式序列對圖比對的硬體加速器,實作於現場可程式化邏輯閘陣列(FPGA)上並以160MHz運行。我們採用軟硬體協同設計的流程,包含基因組圖索引建構、讀段種子尋找、種子分群與序列對圖史密斯-沃特曼比對等步驟。我們提出一種創新的向前更新技巧,將仿射間隙罰分模型整合至現有的序列對圖史密斯-沃特曼演算法中,使本研究成為首個支援仿射間隙罰分的序列對圖比對硬體加速器。實驗結果顯示,我們的設計在真實的人類基因組圖上,相較於VG可達到最高19.60倍的加速效果,對GraphAligner則可達到最高24.53倍的加速,展現出其在長讀段序列對圖比對任務中的高效能與實用性。
zh_TW
dc.description.abstractSequence alignment has long been a fundamental tool in bioinformatics for identifying similarities between read sequences and a linear reference genome. However, a single reference sequence cannot fully capture the genetic diversity across populations. To address this limitation, the concept of the reference genome graph has emerged, which represents genetic variations through a graph structure. This has led to the development of sequence-to-graph alignment algorithms.
This work presents a hardware accelerator for seed-and-extend sequence-to-graph alignment, implemented on a Terasic FPGA running at 160 MHz. Our design adopts a software–hardware co-designed flow that includes graph indexing, read seeding, seed clustering, and alignment. We propose a novel forward update technique and incorporate the affine gap penalty model into the existing sequence-to-graph Smith-Waterman algorithm, making this work the first sequence-to-graph hardware accelerator to support affine gap penalties. Experiment results show that our design achieves up to 19.60× speedup over VG and 24.53× over GraphAligner on real human genome graphs, demonstrating its efficiency and suitability for long-read sequence-to-graph alignment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:31:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:31:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 iii
摘要 v
Abstract vii
目次 ix
圖次 xiii
表次 xv

第一章 緒論 ............................................................ 1
1.1 論文貢獻 ............................................................ 2
1.2 論文架構 ............................................................ 3

第二章 背景知識與相關研究 ............................................................ 5
2.1 基因序列 .......................................................... 5
2.2 基因序列比對 .................................................... 6
  2.2.1 史密斯-沃特曼演算法 ................................. 7
  2.2.2 仿射間隙罰分模型 .................................... 7
  2.2.3 種子與延伸 ............................................. 10
  2.2.4 Darwin 簡介 ............................................ 11
2.3 基因組圖 .......................................................... 13
2.4 基因序列對圖比對 ............................................ 14
  2.4.1 GraphAligner 簡介 ..................................... 14

第三章 演算法 .......................................................... 17
3.1 種子尋找 .......................................................... 17
  3.1.1 基因組圖索引建構 .................................... 18
  3.1.2 基因組圖索引儲存 .................................... 19
3.2 種子分群 .......................................................... 22
3.3 基因組圖前處理 .............................................. 24
3.4 序列對圖比對 .................................................. 25
  3.4.1 應用於基因組圖之史密斯-沃特曼演算法 ......... 26
  3.4.2 仿射間隙罰分模型及向前更新策略 .................. 27
3.5 序列回溯 .......................................................... 29
3.6 小區塊計算 ...................................................... 30
  3.6.1 帶狀比對 .................................................. 33

第四章 硬體設計 .................................................. 35
4.1 系統架構設計 .................................................. 35
4.2 系統運作流程 .................................................. 36
4.3 動態隨機存取記憶體與環形緩衝器 ......................... 37
4.4 塊狀記憶體 ...................................................... 37
4.5 讀段種子模組 .................................................. 38
  4.5.1 讀段極小元計算 ........................................ 38
  4.5.2 尋找種子命中 ............................................ 39
4.6 序列對圖比對模組 .......................................... 40
  4.6.1 處理單元 .................................................. 40
  4.6.2 多處理單元陣列 ........................................ 41
  4.6.3 尋找最高及最低分 ...................................... 43
  4.6.4 資料輸出 .................................................. 44

第五章 實驗與結果分析 .................................................. 45
5.1 實驗測試資料 .................................................. 45
  5.1.1 參考基因組圖 ............................................ 45
  5.1.2 讀段基因序列 ............................................ 46
5.2 實驗比較對象 .................................................. 46
  5.2.1 延伸種子參數調整 ...................................... 47
5.3 實驗環境與硬體規格 ...................................... 48
5.4 實驗結果 .......................................................... 48
  5.4.1 完整流程結果分析 ...................................... 48
  5.4.2 種子與延伸個別分析 .................................. 52
  5.4.3 功耗分析 .................................................. 53
  5.4.4 設計特色分析 ............................................ 54

第六章 結論與未來展望 .............................................................. 55
6.1 結論 .............................................................. 55
6.2 未來展望 ........................................................ 55

參考文獻 .......................................................... 57
-
dc.language.isozh_TW-
dc.subject基因組圖zh_TW
dc.subject基因序列比對zh_TW
dc.subject現場可程式化邏輯閘陣列zh_TW
dc.subject硬體加速器zh_TW
dc.subject仿射間隙罰分zh_TW
dc.subjectAffine gap penaltyen
dc.subjectHardware acceleratoren
dc.subjectFPGAen
dc.subjectGenome graphen
dc.subjectSequence alignmenten
dc.title支援仿射間隙罰分之基因序列對圖比對硬體加速器設計zh_TW
dc.titleA Hardware Accelerator for Sequence-to-Graph Alignment with an Affine Gap Penalty Modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉宗德;陳和麟zh_TW
dc.contributor.oralexamcommitteeTsung-Te Liu;Ho-Lin Chenen
dc.subject.keyword基因序列比對,基因組圖,仿射間隙罰分,硬體加速器,現場可程式化邏輯閘陣列,zh_TW
dc.subject.keywordSequence alignment,Genome graph,Affine gap penalty,Hardware accelerator,FPGA,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202503486-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2027-08-14-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved