請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99712完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林立虹 | zh_TW |
| dc.contributor.advisor | Li-Hung Lin | en |
| dc.contributor.author | 連婉吟 | zh_TW |
| dc.contributor.author | Wan-Yin Lien | en |
| dc.date.accessioned | 2025-09-17T16:27:15Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 1 Judd, E. J. et al. A 485-million-year history of Earth’s surface temperature. Science 385, eadk3705 (2024). https://doi.org:doi:10.1126/science.adk3705
2 Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO<sub>2</sub> emissions. Proceedings of the National Academy of Sciences 112, 13272-13277 (2015). https://doi.org:doi:10.1073/pnas.1510856112 3 Consortium*†, T. C. C. P. I. P. et al. Toward a Cenozoic history of atmospheric CO<sub>2</sub>. Science 382, eadi5177 (2023). https://doi.org:doi:10.1126/science.adi5177 4 Raupach, M. R. & Canadell, J. G. Carbon and the Anthropocene. Current Opinion in Environmental Sustainability 2, 210-218 (2010). https://doi.org:https://doi.org/10.1016/j.cosust.2010.04.003 5 Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems 12, e2019MS001916 (2020). https://doi.org:https://doi.org/10.1029/2019MS001916 6 Gier, B. K. et al. Representation of the terrestrial carbon cycle in CMIP6. Biogeosciences 21, 5321-5360 (2024). https://doi.org:10.5194/bg-21-5321-2024 7 Berner, R. A. (2004). The Phanerozoic Carbon Cycle: CO2 and O2. doi:https://doi.org/10.1093/oso/9780195173338.001.0001 8 Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nature Reviews Earth & Environment 1, 284-299 (2020). https://doi.org:https://doi.org/10.1038/s43017-020-0058-6 9 Burdige, D. J. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochemical Cycles 19 (2005). https://doi.org:https://doi.org/10.1029/2004GB002368 10 Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81-115 (1995). https://doi.org:https://doi.org/10.1016/0304-4203(95)00008-F 11 Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. A framework for understanding whole-Earth carbon cycling. In Deep Carbon: Past to Present (eds Hazen, R. M., Jones, A. P. & Baross, J. A.) 313–357 (2019). 12 Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nature Geoscience 8, 450-453 (2015). https://doi.org:10.1038/ngeo2421 13 Moon, S., Chamberlain, C. P. & Hilley, G. E. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochimica et Cosmochimica Acta 134, 257-274 (2014). https://doi.org:https://doi.org/10.1016/j.gca.2014.02.033 14 Burke, A. et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Science Letters 496, 168-177 (2018). https://doi.org:https://doi.org/10.1016/j.epsl.2018.05.022 15 Hemingway, J. D. et al. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360, 209-212 (2018). https://doi.org:https://doi.org/10.1126/science.aao6463 16 Petsch, S. T., Eglinton, T. I. & Edwards, K. J. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science 292, 1127-1131 (2001). https://doi.org:https://doi.org/10.1126/science.1058332 17 Zondervan, J. R. et al. Rock organic carbon oxidation CO2 release offsets silicate weathering sink. Nature (2023). https://doi.org:https://doi.org/10.1038/s41586-023-06581-9 18 Stewart, E. M. et al. Carbonation and decarbonation reactions: Implications for planetary habitability. American Mineralogist 104, 1369-1380 (2019). https://doi.org:10.2138/am-2019-6884 19 Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1-22 (2004). https://doi.org:https://doi.org/10.1016/j.geoderma.2004.01.032 20 Schito, A., Muirhead, D. K. & Parnell, J. Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy. Earth-Science Reviews 237, 104292 (2023). https://doi.org:https://doi.org/10.1016/j.earscirev.2022.104292 21 Nair, S. S., Saha, T., Dey, P. & Bhadra, S. Thermal oxidation of graphite as the first step for graphene preparation: effect of heating temperature and time. Journal of Materials Science 56, 3675-3691 (2021). https://doi.org:https://doi.org/10.1007/s10853-020-05481-x 22 Morales, C. et al. In-situ study of the carbon gasification reaction of highly oriented pyrolytic graphite promoted by cobalt oxides and the novel nanostructures appeared after reaction. Carbon 158, 588-597 (2020). https://doi.org:https://doi.org/10.1016/j.carbon.2019.11.030 23 Contescu, C. I. et al. Practical aspects for characterizing air oxidation of graphite. Journal of nuclear materials 381, 15-24 (2008). https://doi.org:https://doi.org/10.1016/j.jnucmat.2008.07.020 24 Sparkes, R. B., Hovius, N., Galy, A. & Liu, J. T. Survival of graphitized petrogenic organic carbon through multiple erosional cycles. Earth and Planetary Science Letters 531, 115992 (2020). https://doi.org:https://doi.org/10.1016/j.epsl.2019.115992 25 Leythaeuser, D. Effects of weathering on organic matter in shales. Geochimica et Cosmochimica Acta 37, 113-120 (1973). https://doi.org:https://doi.org/10.1016/0016-7037(73)90249-4 26 Clayton, J. L. & Swetland, P. J. Subaerial weathering of sedimentary organic matter. Geochimica et Cosmochimica Acta 42, 305-312 (1978). https://doi.org:https://doi.org/10.1016/0016-7037(78)90183-7 27 Peucker-Ehrenbrink, B. & Hannigan, R. E. Effects of black shale weathering on the mobility of rhenium and platinum group elements. Geology 28, 475-478 (2000). https://doi.org:10.1130/0091-7613(2000)28<475:Eobswo>2.0.Co;2 28 Jaffe, L. A., Peucker-Ehrenbrink, B. & Petsch, S. T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering. Earth and Planetary Science Letters 198, 339-353 (2002). https://doi.org:https://doi.org/10.1016/S0012-821X(02)00526-5 29 Littke, R., Klussmann, U., Krooss, B. & Leythaeuser, D. Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics. Geochimica et Cosmochimica Acta 55, 3369-3378 (1991). https://doi.org:https://doi.org/10.1016/0016-7037(91)90494-P 30 Hilton, R. G. et al. Concentration‐discharge relationships of dissolved rhenium in Alpine catchments reveal its use as a tracer of oxidative weathering. Water Resources Research 57, e2021WR029844 (2021). https://doi.org:https://doi.org/10.1029/2021WR029844 31 Grant, K. E. et al. Validating the rhenium proxy for rock organic carbon oxidation using weathering profiles. Chemical Geology 671, 122464 (2025). https://doi.org:https://doi.org/10.1016/j.chemgeo.2024.122464 32 Ogrič, M. et al. Low rates of rock organic carbon oxidation and anthropogenic cycling of rhenium in a slowly denuding landscape. Earth Surface Processes and Landforms 48, 1202-1218 (2023). https://doi.org:https://doi.org/10.1002/esp.5543 33 Clark, K. E. et al. Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance. Journal of Geophysical Research: Biogeosciences 122, 449-469 (2017). https://doi.org:https://doi.org/10.1002/2016JG003615 34 Bouchez, J. et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology 38, 255-258 (2010). https://doi.org:https://doi.org/10.1130/G30608.1 35 Galy, V., Beyssac, O., France-Lanord, C. & Eglinton, T. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322, 943-945 (2008). https://doi.org:https://doi.org/10.1126/science.1161408 36 Hilton, R. G., Gaillardet, J., Calmels, D. & Birck, J.-L. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth and Planetary Science Letters 403, 27-36 (2014). https://doi.org:https://doi.org/10.1016/j.epsl.2014.06.021 37 Horan, K. et al. Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie River Basin. American Journal of Science 319, 473-499 (2019). https://doi.org:https://doi.org/10.2475/06.2019.02 38 Horan, K. et al. Mountain glaciation drives rapid oxidation of rock-bound organic carbon. Science Advances 3, e1701107 (2017). https://doi.org:https://doi.org/10.1126/sciadv.1701107 39 Dellinger, M. et al. High rates of rock organic carbon oxidation sustained as Andean sediment transits the Amazon foreland-floodplain. Proceedings of the National Academy of Sciences 120, e2306343120 (2023). https://doi.org:https://doi.org/10.1073/pnas.2306343120 40 Miller, C. A., Peucker-Ehrenbrink, B. & Schauble, E. A. Theoretical modeling of rhenium isotope fractionation, natural variations across a black shale weathering profile, and potential as a paleoredox proxy. Earth and Planetary Science Letters 430, 339-348 (2015). https://doi.org:https://doi.org/10.1016/j.epsl.2015.08.008 41 Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228-231 (2019). 42 Tune, A. K., Druhan, J. L., Lawrence, C. R. & Rempe, D. M. Deep root activity overprints weathering of petrogenic organic carbon in shale. Earth and Planetary Science Letters 607, 118048 (2023). https://doi.org:https://doi.org/10.1016/j.epsl.2023.118048 43 Milliman, J. D. & Farnsworth, K. L. River discharge to the coastal ocean: a global synthesis. (Cambridge University Press, 2011). 44 Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Organic Geochemistry 27, 185-193 (1997). https://doi.org:https://doi.org/10.1016/S0146-6380(97)00061-2 45 Soulet, G. et al. Technical note: In situ measurement of flux and isotopic composition of CO2 released during oxidative weathering of sedimentary rocks. Biogeosciences 15, 4087-4102 (2018). https://doi.org:https://doi.org/10.5194/bg-15-4087-2018 46 Soulet, G. et al. Temperature control on CO2 emissions from the weathering of sedimentary rocks. Nature Geoscience 14, 665-671 (2021). https://doi.org:https://doi.org/10.1038/s41561-021-00805-1 47 Roylands, T. et al. Capturing the short-term variability of carbon dioxide emissions from sedimentary rock weathering in a remote mountainous catchment, New Zealand. Chemical Geology 608, 121024 (2022). https://doi.org:https://doi.org/10.1016/j.chemgeo.2022.121024 48 Roylands, T. et al. Probing the exchange of CO2 and O2 in the shallow critical zone during weathering of marl and black shale. Earth Surf. Dynam. 12, 271-299 (2024). https://doi.org:https://doi.org/10.5194/esurf-12-271-2024 49 Tune, A. K., Druhan, J. L., Wang, J., Bennett, P. C. & Rempe, D. M. Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. Journal of Geophysical Research: Biogeosciences 125, e2020JG005795 (2020). https://doi.org:https://doi.org/10.1029/2020JG005795 50 Sun, X., Fan, D., Hu, L., Yang, Z. & Guo, Z. Oxidation of petrogenic organic carbon in a large river-dominated estuary. Geochimica et Cosmochimica Acta 338, 136-153 (2022). https://doi.org:https://doi.org/10.1016/j.gca.2022.10.028 51 Dalai, T. K., Singh, S. K., Trivedi, J. R. & Krishnaswami, S. Dissolved rhenium in the Yamuna river system and the Ganga in the Himalaya: role of black shale weathering on the budgets of Re, Os, and U in rivers and CO2 in the atmosphere. Geochimica et Cosmochimica Acta 66, 29-43 (2002). https://doi.org:https://doi.org/10.1016/S0016-7037(01)00747-5 52 Wan, J. et al. Hydrological control of rock carbon fluxes from shale weathering. Nature Water (2024). https://doi.org:10.1038/s44221-024-00293-8 53 Suan, G. et al. The underground weathering of Toarcian black shales from SE France and its paleoenvironmental, taphonomical and biogeochemical consequences. Sedimentary Geology 477, 106809 (2025). https://doi.org:https://doi.org/10.1016/j.sedgeo.2025.106809 54 Keller, C. K. & Bacon, D. H. Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2, and 14CO2. Global Biogeochemical Cycles 12, 361-372 (1998). https://doi.org:https://doi.org/10.1029/98GB00742 55 Blattmann, T. M. Ideas and perspectives: Emerging contours of a dynamic exogenous kerogen cycle. Biogeosciences 19, 359-373 (2022). https://doi.org:10.5194/bg-19-359-2022 56 Chen, C. Y., Willett, S. D., Christl, M. & Shyu, J. B. H. Drainage basin dynamics during the transition from early to mature orogeny in Southern Taiwan. Earth and Planetary Science Letters 562, 116874 (2021). https://doi.org:https://doi.org/10.1016/j.epsl.2021.116874 57 Torres, M. A., West, A. J. & Li, G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. nature 507, 346-349 (2014). https://doi.org:https://doi.org/10.1038/nature13030 58 Gaillardet, J., Dupré, B., Louvat, P. & Allegre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical geology 159, 3-30 (1999). https://doi.org:https://doi.org/10.1016/S0009-2541(99)00031-5 59 Spence, J. & Telmer, K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera. Geochimica et Cosmochimica Acta 69, 5441-5458 (2005). https://doi.org:https://doi.org/10.1016/j.gca.2005.07.011 60 Blattmann, T. M., Letsch, D. & Eglinton, T. I. On the geological and scientific legacy of petrogenic organic carbon. American Journal of Science 318, 861-881 (2018). https://doi.org:https://doi.org/10.2475/08.2018.02 61 Repasch, M. et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection. Nature Geoscience 14, 842-848 (2021). https://doi.org:https://doi.org/10.1038/s41561-021-00845-7 62 Leithold, E. L., Blair, N. E. & Wegmann, K. W. Source-to-sink sedimentary systems and global carbon burial: A river runs through it. Earth-Science Reviews 153, 30-42 (2016). https://doi.org:https://doi.org/10.1016/j.earscirev.2015.10.011 63 Kao, S. J. et al. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics 2, 127-139 (2014). https://doi.org:https://doi.org/10.5194/esurf-2-127-2014 64 Hilton, R. G. et al. Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Global Biogeochemical Cycles 26 (2012). https://doi.org:https://doi.org/10.1029/2012GB004314 65 Clark, K. E. et al. New views on “old” carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes. Geochemistry, Geophysics, Geosystems 14, 1644-1659 (2013). https://doi.org:https://doi.org/10.1002/ggge.20122 66 Leithold, E. L., Blair, N. E. & Perkey, D. W. Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers. Global Biogeochemical Cycles 20 (2006). https://doi.org:https://doi.org/10.1029/2005GB002677 67 Larsen, I. J. et al. Rapid Soil Production and Weathering in the Southern Alps, New Zealand. Science 343, 637-640 (2014). https://doi.org:https://doi.org/10.1126/science.1244908 68 Teng, L. S. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57-76 (1990). https://doi.org:https://doi.org/10.1016/0040-1951(90)90188-E 69 Chen, C.-T., Lo, C.-H., Wang, P.-L. & Lin, L.-H. Extensional mountain building along convergent plate boundary: Insights from the active Taiwan mountain belt. Geology 50, 1245-1249 (2022). https://doi.org:https://doi.org/10.1130/g50311.1 70 Beyssac, O. et al. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26 (2007). https://doi.org:https://doi.org/10.1029/2006TC002064 71 Baziotis, I., Tsai, C. H., Ernst, W. G., Jahn, B. M. & Iizuka, Y. New P–T constraints on the Tamayen glaucophane‐bearing rocks, eastern Taiwan: Perple_X modelling results and geodynamic implications. Journal of Metamorphic Geology 35, 35-54 (2017). https://doi.org:https://doi.org/10.1111/jmg.12218 72 Yui, T. F. Isotopic composition of carbonaceous material in metamorphic rocks from the mountain belt of Taiwan. International Geology Review 47, 310-325 (2005). https://doi.org:https://doi.org/10.2747/0020-6814.47.3.310 73 Dadson, S. J. et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648-651 (2003). https://doi.org:https://doi.org/10.1038/nature02150 74 Stanley, R. S., RS, S., LB, H., HC, C. & HN, H. in Memoir of the Geological Society of China 4 Vol. 4 443-473 (1981). 75 Yui, T. F. et al. Subduction-related 200 Ma Talun metagranite, SE Taiwan: an age constraint for Palaeo-Pacific plate subduction beneath South China Block during the Mesozoic. International Geology Review 59, 333-346 (2017). https://doi.org:https://doi.org/10.1080/00206814.2016.1261259 76 Kao, S. J. & Milliman, J. D. Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. The Journal of Geology 116, 431-448 (2008). https://doi.org:https://doi.org/10.1086/590921 77 Lehu, R. et al. Deep-sea sedimentation offshore eastern Taiwan: facies and processes characterization. Marine Geology 369, 1-18 (2015). https://doi.org:https://doi.org/10.1016/j.margeo.2015.05.013 78 Bao, R., Blattmann, T. M., McIntyre, C., Zhao, M. & Eglinton, T. I. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments. Earth and Planetary Science Letters 505, 76-85 (2019). https://doi.org:https://doi.org/10.1016/j.epsl.2018.10.013 79 Tesi, T., Semiletov, I., Dudarev, O., Andersson, A. & Gustafsson, Ö. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross‐shelf transport in the Laptev and East Siberian shelf seas. Journal of Geophysical Research: Biogeosciences 121, 731-752 (2016). https://doi.org:https://doi.org/10.1002/2015JG003067 80 Yu, M. et al. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport. Geochimica et Cosmochimica Acta 262, 78-91 (2019). https://doi.org:https://doi.org/10.1016/j.gca.2019.07.040 81 Xing, T. et al. Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57, 515-519 (2013). https://doi.org:https://doi.org/10.1016/j.carbon.2013.02.029 82 Chen, C.-T. et al. Thermal History of the Northern Taiwanese Slate Belt and Implications for Wedge Growth During the Neogene Arc-Continent Collision. Tectonics 38, 3335-3350 (2019). https://doi.org:https://doi.org/10.1029/2019TC005604 83 Beyssac, O. et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 59, 2267-2276 (2003). https://doi.org:https://doi.org/10.1016/S1386-1425(03)00070-2 84 Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. & Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731-1742 (2005). https://doi.org:https://doi.org/10.1016/j.carbon.2005.02.018 85 Lahfid, A. et al. Evolution of the Raman spectrum of carbonaceous material in low‐grade metasediments of the Glarus Alps (Switzerland). Terra nova 22, 354-360 (2010). https://doi.org:https://doi.org/10.1111/j.1365-3121.2010.00956.x 86 Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J. Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of metamorphic Geology 20, 859-871 (2002). https://doi.org:https://doi.org/10.1046/j.1525-1314.2002.00408.x 87 Henry, D. G., Jarvis, I., Gillmore, G. & Stephenson, M. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews 198, 102936 (2019). https://doi.org:https://doi.org/10.1016/j.earscirev.2019.102936 88 Wang, A., Freeman, J. J. & Jolliff, B. L. Understanding the Raman spectral features of phyllosilicates. Journal of Raman Spectroscopy 46, 829-845 (2015). https://doi.org:https://doi.org/10.1002/jrs.4680 89 Ess, M. N. et al. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: Structural changes during heating. Carbon 105, 572-585 (2016). https://doi.org:https://doi.org/10.1016/j.carbon.2016.04.056 90 Nayak, K. et al. Clay-mineral distribution in recent deep-sea sediments around Taiwan: Implications for sediment dispersal processes. Tectonophysics, 228974 (2021). https://doi.org:https://doi.org/10.1016/j.tecto.2021.228974 91 Lin, B. et al. Island-wide variation in provenance of riverine sedimentary organic carbon: A case study from Taiwan. Earth and Planetary Science Letters 539, 116238 (2020). https://doi.org:https://doi.org/10.1016/j.epsl.2020.116238 92 Keil, R. G. & Mayer, L. M. in Treatise on Geochemistry (Second Edition) Vol. 12 (eds Heinrich D. Holland & Karl K. Turekian) 337-359 (Elsevier, 2014). 93 Barré, P., Fernandez-Ugalde, O., Virto, I., Velde, B. & Chenu, C. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects. Geoderma 235, 382-395 (2014). https://doi.org:https://doi.org/10.1016/j.geoderma.2014.07.029 94 Brodie, C. R. et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chemical Geology 282, 67-83 (2011). https://doi.org:https://doi.org/10.1016/j.chemgeo.2011.01.007 95 Kim, M.-S. et al. Effects of HCl pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples. Rapid Communications in Mass Spectrometry 30, 1567-1575 (2016). https://doi.org:https://doi.org/10.1002/rcm.7600 96 Bao, R., McNichol, A. P., Hemingway, J. D., Lardie Gaylord, M. C. & Eglinton, T. I. Influence of Different Acid Treatments on the Radiocarbon Content Spectrum of Sedimentary Organic Matter Determined by RPO/Accelerator Mass Spectrometry. Radiocarbon 61, 395-413 (2019). https://doi.org:https://doi.org/10.1017/RDC.2018.125 97 Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews 75, 29-57 (2006). https://doi.org:https://doi.org/10.1016/j.earscirev.2005.10.003 98 Schito, A., Romano, C., Corrado, S., Grigo, D. & Poe, B. Diagenetic thermal evolution of organic matter by Raman spectroscopy. Organic Geochemistry 106, 57-67 (2017). https://doi.org:https://doi.org/10.1016/j.orggeochem.2016.12.006 99 Tang, C.-H., Hsu, Y.-J., Barbot, S., Moore, J. D. P. & Chang, W.-L. Lower-crustal rheology and thermal gradient in the Taiwan orogenic belt illuminated by the 1999 Chi-Chi earthquake. Science Advances 5, eaav3287 (2019). https://doi.org:https://doi.org/10.1126/sciadv.aav3287 100 Ivleva, N., McKeon, U., Niessner, R. & Pöschl, U. Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: soot, humic-like substances, and inorganic compounds. Aerosol Science and Technology 41, 655-671 (2007). https://doi.org:https://doi.org/10.1080/02786820701376391 101 Chen, R. et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology 20, 2356-2367 (2014). https://doi.org:https://doi.org/10.1111/gcb.12475 102 Shahbaz, M. et al. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils 53, 287-301 (2017). https://doi.org:https://doi.org/10.1007/s00374-016-1174-9 103 Bernard, L. et al. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Functional Ecology (2022). https://doi.org:https://doi.org/10.1111/1365-2435.14038 104 Banc, C. et al. pH control on organic and organo-mineral colloids carrying major and trace elements in leachates of wetland sludge deposits. Chemical Engineering Journal 471, 144244 (2023). https://doi.org:https://doi.org/10.1016/j.cej.2023.144244 105 Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change 5, 588-595 (2015). https://doi.org:https://doi.org/10.1038/nclimate2580 106 Fang, Q. et al. Mineral weathering is linked to microbial priming in the critical zone. Nature Communications 14, 345 (2023). https://doi.org:https://doi.org/10.1038/s41467-022-35671-x 107 Amundson, R. in Treatise on Geochemistry (Second Edition) (eds Heinrich D. Holland & Karl K. Turekian) 1-26 (Elsevier, 2014). 108 Lebedeva, M. I. & Brantley, S. L. Weathering and erosion of fractured bedrock systems. Earth Surface Processes and Landforms 42, 2090-2108 (2017). https://doi.org:https://doi.org/10.1002/esp.4177 109 Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J. & Chen, H. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta 74, 3164-3181 (2010). https://doi.org:https://doi.org/10.1016/j.gca.2010.03.004 110 Arnarson, T. S. & Keil, R. G. Changes in organic matter–mineral interactions for marine sediments with varying oxygen exposure times. Geochimica et Cosmochimica Acta 71, 3545-3556 (2007). https://doi.org:https://doi.org/10.1016/j.gca.2007.04.027 111 Tanabe, T. Radiation damage of graphite - degradation of material parameters and defect structures. Physica Scripta 1996, 7 (1996). https://doi.org:https://doi.org/10.1088/0031-8949/1996/T64/001 112 Welham, N. J. & Williams, J. S. Extended milling of graphite and activated carbon. Carbon 36, 1309-1315 (1998). https://doi.org:https://doi.org/10.1016/S0008-6223(98)00111-0 113 Henschke, B., Schubert, H., Blöcker, J., Atamny, F. & Schlögl, R. Mechanistic aspects of the reaction between carbon and oxygen. Thermochimica Acta 234, 53-83 (1994). https://doi.org:https://doi.org/10.1016/0040-6031(94)85135-2 114 Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Annual review of marine science 4, 401-423 (2012). https://doi.org:https://doi.org/10.1146/annurev-marine-120709-142717 115 Hsu, H.-H., Liu, C.-S., Chen, T.-T. & Hung, H.-T. Stratigraphic framework and sediment wave fields associated with canyon-levee systems in the Huatung Basin offshore Taiwan Orogen. Marine Geology 433, 106408 (2021). https://doi.org:https://doi.org/10.1016/j.margeo.2020.106408 116 Morton, A. C. & Hallsworth, C. R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary geology 124, 3-29 (1999). https://doi.org:https://doi.org/10.1016/S0037-0738(98)00118-3 117 Palandri, J. L. & Kharaka, Y. K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Report No. 2004-1068, (2004). 118 Heřmanská, M., Voigt, M. J., Marieni, C., Declercq, J. & Oelkers, E. H. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology 597, 120807 (2022). https://doi.org:https://doi.org/10.1016/j.chemgeo.2022.120807 119 Heřmanská, M., Voigt, M. J., Marieni, C., Declercq, J. & Oelkers, E. H. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology 636, 121632 (2023). https://doi.org:https://doi.org/10.1016/j.chemgeo.2023.121632 120 Wang, P.-L. et al. Microbial communities modulate chemical weathering and carbon dioxide cycling in an active orogen in Taiwan. Communications Earth & Environment 5, 174 (2024). https://doi.org:10.1038/s43247-024-01345-3 121 Blattmann, T. M. et al. Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports 9, 2945 (2019). https://doi.org:https://doi.org/10.1038/s41598-019-39272-5 122 Lien, W.-Y. et al. Two-stage oxidation of petrogenic organic carbon in a rapidly exhuming small mountainous catchment. Communications Earth & Environment 6, 45 (2025). https://doi.org:10.1038/s43247-025-02015-8 123 Petsch, S. T. in Treatise on Geochemistry 217-238 (2014). 124 Maier, M. & Schack-Kirchner, H. Using the gradient method to determine soil gas flux: A review. Agricultural and forest meteorology 192, 78-95 (2014). https://doi.org:http://dx.doi.org/10.1016/j.agrformet.2014.03.006 125 Fang, C. & Moncrieff, J. B. An Improved Dynamic Chamber Technique for Measuring CO<sub>2</sub> Efflux from the Surface of Soil. Functional Ecology 10, 297-305 (1996). https://doi.org:https://doi.org/10.2307/2389856 126 Camarda, M., Gurrieri, S. & Valenza, M. Effects of soil gas permeability and recirculation flux on soil CO2 flux measurements performed using a closed dynamic accumulation chamber. Chemical Geology 265, 387-393 (2009). https://doi.org:https://doi.org/10.1016/j.chemgeo.2009.05.002 127 Kutzbach, L. et al. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4, 1005-1025 (2007). https://doi.org:https://doi.org/10.5194/bg-4-1005-2007 128 Pirk, N. et al. Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations. Biogeosciences 13, 903-912 (2016). https://doi.org:https://doi.org/10.5194/bg-13-903-2016 129 Pingintha, N., Leclerc, M., Beasley, J., Zhang, G. & Senthong, C. Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus B: Chemical and Physical Meteorology 62, 47-58 (2010). https://doi.org:https://doi.org/10.1111/j.1600-0889.2009.00445.x 130 Massman, W. J. A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment 32, 1111-1127 (1998). https://doi.org:https://doi.org/10.1016/S1352-2310(97)00391-9 131 Tsang, Y. W. The Effect of Tortuosity on Fluid Flow Through a Single Fracture. Water Resources Research 20, 1209-1215 (1984). https://doi.org:https://doi.org/10.1029/WR020i009p01209 132 Murata, S. & Saito, T. Estimation of Tortuosity of Fluid Flow Through a Single Fracture. Journal of Canadian Petroleum Technology 42 (2003). https://doi.org:https://doi.org/10.2118/03-12-03 133 Shen, L. & Chen, Z. Critical review of the impact of tortuosity on diffusion. Chemical Engineering Science 62, 3748-3755 (2007). https://doi.org:https://doi.org/10.1016/j.ces.2007.03.041 134 Moldrup, P. et al. Predicting the Gas Diffusion Coefficient in Repacked Soil Water-Induced Linear Reduction Model. Soil Science Society of America Journal 64, 1588-1594 (2000). https://doi.org:https://doi.org/10.2136/sssaj2000.6451588x 135 Knauer, M., Carrara, M., Rothe, D., Niessner, R. & Ivleva, N. P. Changes in Structure and Reactivity of Soot during Oxidation and Gasification by Oxygen, Studied by Micro-Raman Spectroscopy and Temperature Programmed Oxidation. Aerosol Science and Technology 43, 1-8 (2009). https://doi.org:10.1080/02786820802422250 136 Lien, W.-Y. et al. A novel design for continuous measurement of CO2 from deep remineralization of petrogenic organic carbon. Vadose Zone Journal 24, e70020 (2025). https://doi.org:https://doi.org/10.1002/vzj2.70020 137 Chen, W. S., Yeh, J. J. & Syu, S. J. Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics 750, 56-69 (2019). https://doi.org:https://doi.org/10.1016/j.tecto.2018.09.003 138 Lo, P.-C., Lo, W., Chiu, Y.-C. & Wang, T.-T. Movement characteristics of a creeping slope influenced by river erosion and aggradation: Study of Xinwulü River in southeastern Taiwan. Engineering Geology 295, 106443 (2021). https://doi.org:https://doi.org/10.1016/j.enggeo.2021.106443 139 Kuo, C.-Y. et al. Occurrences of Deep-Seated Creeping Landslides in Accordance with Hydrological Water Storage in Catchments. Frontiers in Earth Science 9 (2021). https://doi.org:10.3389/feart.2021.743669 140 Etiope, G. & Martinelli, G. Migration of carrier and trace gases in the geosphere: an overview. Physics of the Earth and Planetary Interiors 129, 185-204 (2002). https://doi.org:https://doi.org/10.1016/S0031-9201(01)00292-8 141 da Silva, M. T. Q. S., do Rocio Cardoso, M., Veronese, C. M. P. & Mazer, W. Tortuosity: A brief review. Materials Today: Proceedings 58, 1344-1349 (2022). https://doi.org:https://doi.org/10.1016/j.matpr.2022.02.228 142 Gasda, S. E., Nordbotten, J. M. & Celia, M. A. Vertically averaged approaches for CO2 migration with solubility trapping. Water Resources Research 47 (2011). https://doi.org:https://doi.org/10.1029/2010WR009075 143 Oldenburg, C. M. & Unger, A. J. A. On Leakage and Seepage from Geologic Carbon Sequestration Sites: Unsaturated Zone Attenuation. Vadose Zone Journal 2, 287-296 (2003). https://doi.org:10.2113/2.3.287 144 Zhao, Y., Zhang, Q. & Chen, X. Experimental investigation on effect of water film thickness in unsaturated sandstone cores on CO2 transport during geologic storage. Journal of Hydrology 601, 126595 (2021). https://doi.org:https://doi.org/10.1016/j.jhydrol.2021.126595 145 Kim, H., Annable, M. D. & Rao, P. S. C. Gaseous Transport of Volatile Organic Chemicals in Unsaturated Porous Media: Effect of Water-Partitioning and Air−Water Interfacial Adsorption. Environmental Science & Technology 35, 4457-4462 (2001). https://doi.org:10.1021/es001965l 146 Lewis, E. R. & Wallace, D. W. R. (Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States), United States, 1998). 147 Pelletier, G., Lewis, E. & Wallace, D. CO2Sys. XLS: A calculator for the CO2 system in seawater for Microsoft Excel/VBA, Wash. State Dept. of Ecology/Brookhaven Nat. Lab., Olympia, WA/Upton, NY, USA (2007). 148 Emrich, K., Ehhalt, D. H. & Vogel, J. C. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters 8, 363-371 (1970). https://doi.org:https://doi.org/10.1016/0012-821X(70)90109-3 149 Zhang, J., Quay, P. D. & Wilbur, D. O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta 59, 107-114 (1995). https://doi.org:https://doi.org/10.1016/0016-7037(95)91550-D 150 Bigi, S. et al. CO2 flow through a fractured rock volume: Insights from field data, 3D fractures representation and fluid flow modeling. International Journal of Greenhouse Gas Control 18, 183-199 (2013). https://doi.org:https://doi.org/10.1016/j.ijggc.2013.07.011 151 Lee, I. H. & Ni, C.-F. Fracture-based modeling of complex flow and CO2 migration in three-dimensional fractured rocks. Computers & Geosciences 81, 64-77 (2015). https://doi.org:https://doi.org/10.1016/j.cageo.2015.04.012 152 Altman, S. J., Uchida, M., Tidwell, V. C., Boney, C. M. & Chambers, B. P. Use of X-ray absorption imaging to examine heterogeneous diffusion in fractured crystalline rocks. Journal of Contaminant Hydrology 69, 1-26 (2004). https://doi.org:https://doi.org/10.1016/S0169-7722(03)00153-0 153 Grisak, G. E. & Pickens, J. F. Solute transport through fractured media: 1. The effect of matrix diffusion. Water Resources Research 16, 719-730 (1980). https://doi.org:https://doi.org/10.1029/WR016i004p00719 154 Yu, C. et al. Data collection handbook to support modeling the impacts of radioactive material in soil. Medium: ED; Size: 152 p. (Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div., United States, 1993). 155 McWhorter, D. B. & Sunada, D. K. Ground-water hydrology and hydraulics. (Water Resources Publication, 1977). 156 Staněk, M. & Géraud, Y. Granite microporosity changes due to fracturing and alteration: secondary mineral phases as proxies for porosity and permeability estimation. Solid Earth 10, 251-274 (2019). https://doi.org:10.5194/se-10-251-2019 157 Lellei-Kovács, E. et al. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. European Journal of Soil Biology 47, 247-255 (2011). https://doi.org:https://doi.org/10.1016/j.ejsobi.2011.05.004 158 CURIEL YUSTE, J. et al. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology 13, 2018-2035 (2007). https://doi.org:https://doi.org/10.1111/j.1365-2486.2007.01415.x 159 Lin, C.-W. et al. Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Engineering Geology 123, 3-12 (2011). https://doi.org:https://doi.org/10.1016/j.enggeo.2011.06.007 160 Chen, C.-W., Oguchi, T., Hayakawa, Y. S., Saito, H. & Chen, H. Relationship between landslide size and rainfall conditions in Taiwan. Landslides 14, 1235-1240 (2017). https://doi.org:10.1007/s10346-016-0790-7 161 Chen, H. et al. Effects of topography, lithology, rainfall and earthquake on landslide and sediment discharge in mountain catchments of southeastern Taiwan. Geomorphology 133, 132-142 (2011). 162 Cherkinsky, A., Brecheisen, Z. & Richter, D. Carbon and Oxygen Isotope Composition in Soil Carbon Dioxide and Free Oxygen within Deep Ultisols at the Calhoun CZO, South Carolina, USA. Radiocarbon 60, 1357-1366 (2018). https://doi.org:10.1017/RDC.2018.99 163 Tokunaga, T. K. et al. Deep Vadose Zone Respiration Contributions to Carbon Dioxide Fluxes from a Semiarid Floodplain. Vadose Zone Journal 15 (2016). https://doi.org:10.2136/vzj2016.02.0014 164 Hovius, N., Stark, C. P., Chu, H. T. & Lin, J. C. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. The Journal of Geology 108, 73-89 (2000). https://doi.org:https://doi.org/10.1086/314387 165 Yanites, B. J., Tucker, G. E., Mueller, K. J. & Chen, Y. G. How rivers react to large earthquakes: Evidence from central Taiwan. Geology 38, 639-642 (2010). https://doi.org:https://doi.org/10.1130/G30883.1 166 Bagnold, R. A. An approach to the sediment transport problem from general physics. Report No. 422I, (1966). 167 Yanites, B. J. et al. Incision and channel morphology across active structures along the Peikang River, central Taiwan: Implications for the importance of channel width. GSA Bulletin 122, 1192-1208 (2010). https://doi.org:https://doi.org/10.1130/b30035.1 168 Chim, L. K., Yen, J.-Y., Huang, S.-Y., Liou, Y.-S. & Tsai, L. L.-Y. Using Raman Spectroscopy of Carbonaceous Materials to track exhumation of an active orogenic belt: An example from Eastern Taiwan. Journal of Asian Earth Sciences 164, 248-259 (2018). https://doi.org:https://doi.org/10.1016/j.jseaes.2018.06.030 169 Nibourel, L., Herman, F., Cox, S. C., Beyssac, O. & Lavé, J. Provenance analysis using Raman spectroscopy of carbonaceous material: A case study in the Southern Alps of New Zealand. Journal of Geophysical Research: Earth Surface 120, 2056-2079 (2015). https://doi.org:https://doi.org/10.1002/2015JF003541 170 Deng, K. et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland. Earth-Science Reviews 164, 31-47 (2017). https://doi.org:https://doi.org/10.1016/j.earscirev.2016.10.015 171 Chen, T.-W. et al. Retro-Foredeep Basin Evolution in Taiwan: Zircon U-Pb and Hf Isotope Constraints From the Coastal Range. Geochemistry, Geophysics, Geosystems 24, e2022GC010787 (2023). https://doi.org:https://doi.org/10.1029/2022GC010787 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99712 | - |
| dc.description.abstract | 岩石源有機碳的氧化會釋放大量二氧化碳至大氣中,進而抵銷原本可藉由長期地質碳封存作用所去除的二氧化碳,造山運動可將岩石源有機碳快速抬升至地表,促進氧化作用的進行,然而其具體的氧化途徑與條件仍未被充分釐清,尤以造山帶變質岩中的高度石墨化岩石源有機碳為甚。在此框架下,台灣東部的卑南溪流域位處活躍造山帶,並廣泛分佈蘊含碳質的變質岩,可作為研究岩石源有機碳氧化的理想天然場域,卑南溪為台灣主要的沈積物輸出源之一,在此流域中,快速剝蝕雖得以促進氧化作用,但因高侵蝕速率,岩石源有機碳於短時間內經由河流系統輸送至海洋埋藏,氧化作用的相對重要性需進一步探討。本研究首先透過拉曼光譜分析,評估卑南溪流域及其相連的海底峽谷中,陸源及海洋材料的岩石源有機碳結構轉變,結果顯示,高度石墨化結構在土壤發育過程中轉變為相對無序的結構,後者又於海洋沈積物往深海搬運過程中耗損,揭示岩石源有機碳的二階段氧化歷程,並經由同位素質量平衡模型估算陸域近地表氧化所釋放的二氧化碳通量為20–35 tC km-2 yr-1。為探討地下龐大的岩石源有機碳儲庫所貢獻的氧化通量,本研究進一步設計適用於變質岩地層的地下二氧化碳現地連續測量系統,並於流域內一處坡頂井孔中,分別以被動模式或主動抽氣循環模式進行觀測,結果顯示,地下二氧化碳通量顯著受控於岩體結構,且主動抽氣可能導致通量的高估。此測量方法後續延伸應用至原井孔與流域內另一位於坡腳的井孔,並擴大觀測時間範圍,測量結果顯示坡腳的通量雖較高,但同位素質量平衡模型則指出岩石源有機碳氧化對坡頂二氧化碳有更高的貢獻比例;本研究以坡頂井孔層理清晰的地層特性作為代表參數設置,建立一維擴散反應模型,並結合實測數據,探討地層內非均質構造對於氣體遷移與通量估算的影響,此模型估算出地下岩石源有機碳氧化可釋放至大氣的二氧化碳通量為2–9 tC km-2 yr-1,此數值的估算並未考慮反應帶的分佈或於深度的延伸性,亦未納入不同反應物與環境條件的差異,此保守的估算量可達近地表通量的10%以上,更高於大河流域的地表氧化通量至少一個數量級,顯示造山帶變質岩中的石墨化岩石源有機碳具高度反應性,並扮演長期碳循環中的重要角色。 | zh_TW |
| dc.description.abstract | The oxidation of petrogenic organic carbon (OCpetro) has been reported to contribute a large CO2 flux to the atmosphere that can counteract geological sequestration processes. While mountain building processes rapidly expose OCpetro to surface environments conductive to aerobic oxidation, where and how OCpetro is susceptible to degradation in active orogens remain elusive. Particularly, the degradability of highly graphitic OCpetro in metamorphic rocks, which constitute a large portion of active orogens, is poorly constrained and requires further investigations. In this regard, the Beinan catchment, predominantly composed of carbonaceous metamorphic rocks and situated in the active Taiwan orogen, provides an ideal natural setting for studying OCpetro oxidation. The Beinan River represents one of the major sediment exports in Taiwan. While OCpetro oxidation is facilitated by rapid denudation in this catchment, OCpetro in rock detritus is efficiently transported by rivers to the ocean for burial, reducing the likelihood of further oxidation within such a short timeframe. Whether OCpetro oxidation predominates under these two competing pathways needs further investigations. In this thesis, we first demonstrated the structural transformation of OCpetro in both terrestrial and marine materials from the Beinan catchment and its connecting submarine canyon by using Raman spectroscopy. The increased disorder in graphitic structures for weathered materials and the depletion of disordered forms for marine sediments suggest a two-stage oxidation of highly graphitic OCpetro during soil development and submarine transit. The isotopic mixing model further yielded a CO2 flux of 20–35 tC km-2 yr-1 to the atmosphere during soil development. In order to account for the oxidation flux from the vast reservoir in the subsurface, we proposed a novel design for continuous in situ measurements and large-volume sampling of subsurface CO2 feasible for metamorphic rocks and applied it to a borehole at a hilltop in the studied catchment either by passive mode or active recirculation. Our measurements revealed that subsurface CO2 fluxes were highly dependent on geological context and suggest a potential overestimation by active recirculation. The same methodology was further extended to the measurements at the original site and the base of another hillslope over a broader observational timeframe. The CO2 measurements and isotopic analyses revealed a lower CO2 flux but higher contribution of OCpetro oxidation at the hilltop relative to the hill base. To transform the borehole observations to a more realistic and quantifiable framework for subsurface gas production and transport, a one-dimensional diffusion-reaction model was developed on the basis that the formation characteristics at the hilltop site was representative and clearly distinguishable to address the influence of heterogeneously distributed formation fabrics. Using field measurements as boundary constraints, the model yielded a CO2 emission from COpetro oxidation at 2–9 tC km-2 yr-1. This high oxidation flux represents a conservative estimate, as it does not account for the spatial and vertical extent of the reaction zone, nor variations in the graphitization degree of OCpetro and environmental conditions. Nevertheless, the flux amounts to over 10% of oxidation flux in the surface soil and is higher than the fluxes for large river systems, underscoring the reactivity of graphitic OCpetro in metamorphic rocks within active orogens and its important role in the geological carbon cycle. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:27:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:27:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Doctoral dissertation acceptance certificate i
Acknowledgements ii Abstract iv Contents ix List of figures xiii List of tables xv Chapter 1 Introduction 1 Background 1 Thesis overview 17 References 19 Chapter 2 Two-stage oxidation of petrogenic organic carbon in a rapidly exhuming small mountainous catchment 29 Abstract 29 Introduction 30 Methods 34 Site background 34 Sampling and field processing 35 Sample processing 38 Analyses of Raman spectroscopy 38 Categorization of mineral-OCpetro relationships 41 Analyses of isotopic compositions 44 Results 45 Discussion 54 Raman spectral characteristics of rock samples 54 The first stage of OCpetro oxidation 55 Mechanical mixing of OCpetro in river sediments 61 The second stage of OCpetro oxidation 63 Mineral association 65 Implications for carbon cycle 67 Conclusions 70 References 71 Chapter 3 A novel design for continuous measurement of CO2 from deep remineralization of petrogenic organic carbon 87 Abstract 87 Introduction 88 Methods 91 Study area 91 Instrumentation and configuration for CO2 measurement 93 Workflow for in situ CO2 measurement 97 Calculation of CO2 flux and evaluations 100 Results and discussion 102 ∆CO2 concentrations over time 102 CO2 accumulation rates 105 Estimation of CO2 diffusion length 107 Origins of CO2 emanated from rock formations 108 The potential mechanisms underlying CO2 concentration variation 109 Comparisons of CO2 release rates with other geological settings 111 Perspectives and potential applications 112 Conclusions 115 References 116 Chapter 4 Subsurface texture-controlled oxidation flux of petrogenic organic carbon in metamorphic terranes 124 Abstract 124 Introduction 125 Methods 129 Study area 129 In situ measurement and sampling for subsurface, surface, and aquatic environments 132 Measurements of carbon concentration and isotopic composition 135 CO2 accumulation rate and CO2 flux calculation 135 Results 137 In situ measurement of gaseous CO2 concentration and the resultant flux 137 Geochemical data for CO2 and groundwater 139 Discussion 140 Characteristics of subsurface CO2 reservoirs and transport 140 The potential contribution of OCpetro oxidation to the subsurface CO2 and DIC 148 Subsurface gas dynamics simulated by the reaction-diffusion model 150 Construction of the numerical mode 151 Simulated CO2 depth profiles for Scenario I 156 Potential oxidation rates of OCpetro for Scenario I 160 Simulated CO2 depth profiles for Scenario II 163 Potential oxidation rates of OCpetro for Scenario II 165 An overview of subsurface gas dynamics 167 Implications for future work 169 Conclusions 171 References 173 Chapter 5 Conclusions and perspectives 186 Supplementary information for Chapter 2 190 Supplementary Note 1: The residence time of river sediments 190 Supplementary Note 2: The provenance of OCpetro in river sediments 191 Supplementary Note 3: Comparison between fox and Raman parameter 194 Supplementary Note 4: CO2 flux from OCpetro oxidation during soil development 195 Supplementary Discussion 1: The interpretation and justification of Raman and compositional data 196 Supplementary Discussion 2: Assessment on the oxidation fraction of OCpetro in marine sediments 199 References 212 Supplementary information for Chapter 4 216 References 231 | - |
| dc.language.iso | en | - |
| dc.subject | 氧化通量 | zh_TW |
| dc.subject | 岩石源有機碳 | zh_TW |
| dc.subject | 造山系統 | zh_TW |
| dc.subject | 二氧化碳釋放 | zh_TW |
| dc.subject | 岩石風化 | zh_TW |
| dc.subject | rock weathering | en |
| dc.subject | CO2 emission | en |
| dc.subject | active orogen | en |
| dc.subject | oxidation flux | en |
| dc.subject | petrogenic organic carbon | en |
| dc.title | 造山帶中岩石源有機碳氧化在碳循環的重要性:以卑南溪流域為例 | zh_TW |
| dc.title | The significance of petrogenic organic carbon oxidation for the carbon cycle in active orogens: Insights from the Beinan catchment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 王珮玲;劉雅瑄;陳致同;張詠斌;傅慶州;李宗祐;梁碧清;劉厚均 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Ling Wang;Ya-Hsuan Liou;Chih-Tung Chen;Yuan-Pin Chang;Ching-Chou Fu;Tsung-Yu Lee;Biqing Liang;Hou-Chun Liu | en |
| dc.subject.keyword | 岩石源有機碳,氧化通量,岩石風化,二氧化碳釋放,造山系統, | zh_TW |
| dc.subject.keyword | petrogenic organic carbon,oxidation flux,rock weathering,CO2 emission,active orogen, | en |
| dc.relation.page | 231 | - |
| dc.identifier.doi | 10.6342/NTU202503876 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2028-08-04 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2028-08-04 | 18.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
