請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊瑋誠 | zh_TW |
| dc.contributor.advisor | Wei-Cheng Yang | en |
| dc.contributor.author | 黃玟瑀 | zh_TW |
| dc.contributor.author | Wun-Yu Huang | en |
| dc.date.accessioned | 2025-09-17T16:26:32Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Ando, H., Niki, Y., Ito, M., Akiyama, K., Matsui, M. S., Yarosh, D. B., & Ichihashi, M. (2012). Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. Journal of Investigative Dermatology, 132(4), 1222–1229. https://doi.org/10.1038/jid.2011.413
Aoki, H., Yamada, Y., Hara, A., & Kunisada, T. (2009). Two distinct types of mouse melanocyte: Differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes. Development, 136(15), 2511–2521. https://doi.org/10.1242/dev.037168 Berry, C. E., Downer, M., Jr., Morgan, A. G., Griffin, M., Liang, N. E., Kameni, L., Parker, J. B. L., Guo, J., Longaker, M. T., & Wan, D. C. (2023). The effects of mechanical force on fibroblast behavior in cutaneous injury. Frontiers in Surgery, 10, 1167067. https://doi.org/10.3389/fsurg.2023.1167067 Bossley, M. I., & Woolfall, M. A. (2014). Recovery from severe cutaneous injury in two free-ranging bottlenose dolphins (Tursiops spp.). Journal of Marine Animals and Their Ecology, 7(1), 12–16. Boukhedouni, N., Martins, C., Darrigade, A. S., Drullion, C., Rambert, J., Barrault, C., Garnier, J., Jacquemin, C., Thiolat, D., Lucchese, F., Morel, F., Ezzedine, K., Taieb, A., Bernard, F. X., Seneschal, J., & Boniface, K. (2020). Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. JCI Insight, 5(11), e133772. https://doi.org/10.1172/jci.insight.133772 Breathnach, A. S. (1960). Melanocytes in early regenerated human epidermis. Journal of Investigative Dermatology, 35(4), 245–251. https://doi.org/10.1038/jid.1960.113 Brenner, M., & Hearing, V. J. (2008). The protective role of melanin against UV damage in human skin. Photochemistry and Photobiology, 84(3), 539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x Bruce-Allen, L. J., & Geraci, J. R. (1985). Wound healing in the bottlenose dolphin (Tursiops truncatus). Canadian Journal of Fisheries and Aquatic Sciences, 42(2), 216–228. https://doi.org/10.1139/f85-029 Carney, B. C., McKesey, J. P., Rosenthal, D. S., & Shupp, J. W. (2018). Treatment strategies for hypopigmentation in the context of burn hypertrophic scars. Plastic and Reconstructive Surgery – Global Open, 6(1), e1642. https://doi.org/10.1097/GOX.0000000000001642 Carney, B. C., Travis, T. E., Moffatt, L. T., Johnson, L. S., McLawhorn, M. M., Simbulan-Rosenthal, C. M., Rosenthal, D. S., & Shupp, J. W. (2021). Hypopigmented burn hypertrophic scar contains melanocytes that can be signaled to re-pigment by synthetic alpha-melanocyte stimulating hormone in vitro. PLOS ONE, 16(3), e0248985. https://doi.org/10.1371/journal.pone.0248985 Caro, T., Beeman, K., Stankowich, T., & Whitehead, H. (2011). The functional significance of colouration in cetaceans. Evolutionary Ecology, 25(6), 1231–1245. https://doi.org/10.1007/s10682-011-9479-5 Chadwick, S. L., Yip, C., Ferguson, M. W., & Shah, M. (2013). Repigmentation of cutaneous scars depends on original wound type. Journal of Anatomy, 223(1), 74–82. https://doi.org/10.1111/joa.12052 Chuang, L. T. (2023). Histopathological study on hypopigmented scars in Risso’s dolphins (Grampus griseus) (Master’s thesis, National Taiwan University). National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/n7azhq Cichorek, M., Wachulska, M., Stasiewicz, A., & Tyminska, A. (2013). Skin melanocytes: Biology and development. Advances in Dermatology and Allergology, 30(1), 30–41. https://doi.org/10.5114/pdia.2013.33376 Cox, P. M., Dhillon, A. P., Howe, S., Pittilo, R. M., & Rode, J. (1989). Repopulation of guinea-pig skin by melanocytes during wound healing: A morphometric study. British Journal of Experimental Pathology, 70(6), 679–689. Dutta, S., Panda, S., Singh, P., Tawde, S., Mishra, M., Andhale, V., Athavale, A., & Keswani, S. M. (2020). Hypopigmentation in burns is associated with alterations in the architecture of the skin and the dendricity of the melanocytes. Burns, 46(4), 906–917. https://doi.org/10.1016/j.burns.2019.10.003 Geraci, J. R., & Bruce-Allen, L. (1987). Slow process of wound repair in beluga whales, Delphinapterus leucas. Canadian Journal of Fisheries and Aquatic Sciences, 44(9), 1661–1665. Grace, M. A., Dias, L. A., Maze-Foley, K., Sinclair, C., Mullin, K. D., Garrison, L., & Noble, L. (2018). Cookiecutter shark bite wounds on cetaceans of the Gulf of Mexico. Aquatic Mammals, 43(5), 491–499. https://doi.org/10.1578/am.44.5.2018.491 Griffeth, R. J., Garcia-Parraga, D., Mellado-Lopez, M., Crespo-Picazo, J. L., Soriano-Navarro, M., Martinez-Romero, A., & Moreno-Manzano, V. (2014). Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus). PLOS ONE, 9(9), e108439. https://doi.org/10.1371/journal.pone.0108439 Heath, R. L., Thomlinson, A. M., & Shah, M. (2009). Melanocytes and burn wound healing. Burns, 35(Suppl. 1), S44. https://doi.org/10.1016/j.burns.2009.06.175 Hossain, M. R., Ansary, T. M., Komine, M., & Ohtsuki, M. (2021). Diversified stimuli-induced inflammatory pathways cause skin pigmentation. International Journal of Molecular Sciences, 22(8), 3970. https://doi.org/10.3390/ijms22083970 Imokawa, G., Kobayashi, T., Miyagishi, M., Higashi, K., & Yada, Y. (1997). The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Research, 10(4), 218–228. https://doi.org/10.1111/j.1600-0749.1997.tb00488.x Imokawa, G., Yada, Y., Morisaki, N., & Kimura, M. (1998). Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. The Biochemical Journal, 330(Pt 3), 1235–1239. https://doi.org/10.1042/bj3301235 Johnson, S. P., Catania, J. M., Harman, R. J., & Jensen, E. D. (2012). Adipose-derived stem cell collection and characterization in bottlenose dolphins (Tursiops truncatus). Stem Cells and Development, 21(16), 2949–2957. https://doi.org/10.1089/scd.2012.0039 Keswell, D., Kidson, S. H., & Davids, L. M. (2015). Melanocyte migration is influenced by E-cadherin-dependent adhesion of keratinocytes in both two- and three-dimensional in vitro wound models. Cell Biology International, 39(2), 169–176. https://doi.org/10.1002/cbin.10350 Kim, N. H., & Lee, A. Y. (2010). Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. Journal of Investigative Dermatology, 130(9), 2231–2239. https://doi.org/10.1038/jid.2010.99 Kim, J. C., Park, T. J., & Kang, H. Y. (2022). Skin-aging pigmentation: Who is the real enemy? Cells, 11(16), 2473. https://doi.org/10.3390/cells11162541 Kitamura, R., Tsukamoto, K., Harada, K., Shimizu, A., Shimada, S., Kobayashi, T., & Imokawa, G. (2004). Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: Role of SCF/KIT protein interactions and the downstream effector, MITF-M. The Journal of Pathology, 202(4), 463–475. https://doi.org/10.1002/path.1538 Koch, S., Nava, P., Addis, C., Kim, W., Denning, T. L., Li, L., Parkos, C. A., & Nusrat, A. (2011). The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair. Gastroenterology, 141(1), 259–268.e8. https://doi.org/10.1053/j.gastro.2011.03.043 Kovacs, D., Cardinali, G., Aspite, N., Cota, C., Luzi, F., Bellei, B., Briganti, S., Amantea, A., Torrisi, M. R., & Picardo, M. (2010). Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. British Journal of Dermatology, 163(5), 1020–1027. https://doi.org/10.1111/j.1365-2133.2010.09946.x Kuwahara, M., Hatoko, M., Tada, H., & Tanaka, A. (2001). E-cadherin expression in wound healing of mouse skin. Journal of Cutaneous Pathology, 28(4), 191–199. https://doi.org/10.1034/j.1600-0560.2001.028004191.x Laist, D. W., Knowlton, A. R., Mead, J. G., Collet, A. S., & Podesta, M. (2001). Collisions between ships and whales. Marine Mammal Science, 17(1), 35–75. Lee, A. Y. (2012). Role of keratinocytes in the development of vitiligo. Annals of Dermatology, 24(2), 115–125. https://doi.org/10.5021/ad.2012.24.2.115 Li, L., Fukunaga-Kalabis, M., Yu, H., Xu, X., Kong, J., Lee, J. T., & Herlyn, M. (2010). Human dermal stem cells differentiate into functional epidermal melanocytes. Journal of Cell Science, 123(Pt 6), 853–860. https://doi.org/10.1242/jcs.061598 Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature, 445(7130), 843–850. https://doi.org/10.1038/nature05660 Mariani, M., Miragliuolo, A., Mussi, B., Russo, G. F., Ardizzone, G., & Pace, D. S. (2016). Analysis of the natural markings of Risso’s dolphins (Grampus griseus) in the central Mediterranean Sea. Journal of Mammalogy, 97(6), 1512–1524. https://doi.org/10.1093/jmammal/gyw109 Martic, I., Jansen-Durr, P., & Cavinato, M. (2022). Effects of air pollution on cellular senescence and skin aging. Cells, 11(14), 2202. https://doi.org/10.3390/cells11142220 Martinez-Levasseur, L. M., Gendron, D., Knell, R. J., O’Toole, E. A., Singh, M., & Acevedo-Whitehouse, K. (2011). Acute sun damage and photoprotective responses in whales. Proceedings of the Royal Society B: Biological Sciences, 278(1711), 1581–1586. https://doi.org/10.1098/rspb.2010.1903 Joblon, M., Pokras, M., Morse, B., Harry, C. T., Rose, K. S., Sharp, S., Niemeyer, M. E., Patchett, K. M., Sharp, W. B., & Moore, M. J. (2014). Body condition scoring system for delphinids based on short-beaked common dolphins (Delphinus delphis). Journal of Marine Animals and Their Ecology, 7(1), 5–13. Meyer, W., & Seegers, U. (2004). A preliminary approach to epidermal antimicrobial defense in the Delphinidae. Marine Biology, 144(5), 841–844. https://doi.org/10.1007/s00227-003-1256-8 Morales-Guerrero, B., Barragán-Vargas, C., Silva-Rosales, G. R., Ortega-Ortiz, C. D., Gendron, D., Martinez-Levasseur, L. M., & Acevedo-Whitehouse, K. (2017). Melanin granules, melanophages and a fully melanized epidermis are common traits of odontocete and mysticete cetaceans. Veterinary Dermatology, 28(2), 213–e50. https://doi.org/10.1111/vde.12392 Nishimura, E. K., Yoshida, H., Kunisada, T., & Nishikawa, S. I. (1999). Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Developmental Biology, 215(2), 155–166. https://doi.org/10.1006/dbio.1999.9478 Norman, S. A., Flynn, K. R., Zerbini, A. N., Gulland, F. M. D., Moore, M. J., Raverty, S., Rotstein, D. S., Mate, B. R., Hayslip, C., Gendron, D., Sears, R., Douglas, A. B., & Calambokidis, J. (2017). Assessment of wound healing of tagged gray (Eschrichtius robustus) and blue (Balaenoptera musculus) whales in the eastern North Pacific using long‐term series of photographs. Marine Mammal Science, 34(1), 27–53. https://doi.org/10.1111/mms.12443 Oh, S. H., Kim, J. Y., Kim, M. R., Do, J. E., Shin, J. Y., & Hann, S. K. (2012). DKK1 is highly expressed in the dermis of vitiligo lesion: Is there association between DKK1 and vitiligo? Journal of Dermatological Science, 66(2), 163–165. https://doi.org/10.1016/j.jdermsci.2012.01.010 Olaya-Ponzone, L., Espada, R., Martín Moreno, E., Cárdenas Marcial, I., & García-Gómez, J. C. (2020). Injuries, healing and management of common dolphins (Delphinus delphis) in human-impacted waters in the south Iberian Peninsula. Journal of the Marine Biological Association of the United Kingdom, 100(2), 315–325. https://doi.org/10.1017/s0025315420000090 Pepper, F. J. (1954). The epithelial repair of skin wounds in the guinea-pig with special reference to the participation of melanocytes. Journal of Morphology, 95(3), 471–499. https://doi.org/10.1002/jmor.1050950305 Reichert Faria, A., Jung, J. E., Silva de Castro, C. C., & de Noronha, L. (2017). Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies. Pathology – Research and Practice, 213(3), 199–204. https://doi.org/10.1016/j.prp.2016.12.019 Serre, C., Busuttil, V., & Botto, J. M. (2018). Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. International Journal of Cosmetic Science, 40(4), 328–347. https://doi.org/10.1111/ics.12466 Snell, R. S. (1963). A study of the melanocytes and melanin in a healing deep wound. Journal of Anatomy, 97(Pt 2), 243–253. Su, C. Y., Hughes, M. W., Liu, T. Y., Chuong, C. M., Wang, H. V., & Yang, W. C. (2022a). Defining wound healing progression in cetacean skin: Characteristics of full-thickness wound healing in Fraser’s dolphins (Lagenodelphis hosei). Animals, 12(5), 637. https://doi.org/10.3390/ani12050637 Su, C. Y., Wang, H. V., Hughes, M. W., Liu, T. Y., Chuong, C. M., & Yang, W. C. (2022b). Successful repigmentation of full-thickness wound healing in Fraser’s dolphins (Lagenodelphis hosei). Animals, 12(12), 1482. https://doi.org/10.3390/ani12121482 Sun, Q., Rabbani, P., Takeo, M., Lee, S. H., Lim, C. H., Noel, E. S., Taketo, M. M., Myung, P., Millar, S., & Ito, M. (2018). Dissecting Wnt signaling for melanocyte regulation during wound healing. Journal of Investigative Dermatology, 138(7), 1591–1600. https://doi.org/10.1016/j.jid.2018.01.030 Swope, V. B., Abdel-Malek, Z., Kassem, L. M., & Nordlund, J. J. (1991). Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. The Journal of Investigative Dermatology, 96(2), 180–185. https://doi.org/10.1111/1523-1747.ep12460991 Tang, A., Eller, M. S., Hara, M., Yaar, M., Hirohashi, S., & Gilchrest, B. A. (1994). E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. Journal of Cell Science, 107(4), 983–992. https://doi.org/10.1242/jcs.107.4.983 Tinkle, C. L., Lechler, T., Pasolli, H. A., & Fuchs, E. (2004). Conditional targeting of E-cadherin in skin: Insights into hyperproliferative and degenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 552–557. https://doi.org/10.1073/pnas.0307437100 Travis, T. E., Ghassemi, P., Ramella-Roman, J. C., Prindeze, N. J., Paul, D. W., Moffatt, L. T., Jordan, M. H., & Shupp, J. W. (2015). A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar. Journal of Burn Care & Research, 36(1), 77–86. https://doi.org/10.1097/BCR.0000000000000154 Upadhyay, P. R., Ho, T., & Abdel-Malek, Z. A. (2021). Participation of keratinocyte- and fibroblast-derived factors in melanocyte homeostasis, the response to UV, and pigmentary disorders. Pigment Cell & Melanoma Research, 34(4), 762–776. https://doi.org/10.1111/pcmr.12985 van Weelden, C., Tixier, P., Doniol-Valcroze, T., Guinet, C., & Towers, J. R. (2025). Divergent killer whale populations exhibit similar acquisition but different healing rates of conspecific scars. Behavioral Ecology and Sociobiology, 79(3), Article 39. https://doi.org/10.1007/s00265-025-03576-6 Weller, D. W. (2002). Predation on marine mammals. In W. F. Perrin, B. Würsig, & J. G. M. Thewissen (Eds.), Encyclopedia of marine mammals (pp. 985–994). Academic Press. Yamaguchi, Y., Itami, S., Watabe, H., Yasumoto, K., Abdel-Malek, Z. A., Kubo, T., Rouzaud, F., Tanemura, A., Yoshikawa, K., & Hearing, V. J. (2004). Mesenchymal-epithelial interactions in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. The Journal of Cell Biology, 165(2), 275–285. https://doi.org/10.1083/jcb.200311122 Yamaguchi, Y., Passeron, T., Hoashi, T., Watabe, H., Rouzaud, F., Yasumoto, K., Hara, T., Tohyama, C., Katayama, I., Miki, T., & Hearing, V. J. (2008). Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes. The FASEB Journal, 22(4), 1009–1020. https://doi.org/10.1096/fj.07-9475com Yamaguchi, Y., Morita, A., Maeda, A., & Hearing, V. J. (2009). Regulation of skin pigmentation and thickness by Dickkopf 1 (DKK1). The Journal of Investigative Dermatology Symposium Proceedings, 14(1), 73–75. https://doi.org/10.1038/jidsymp.2009.4 Yoon, J. E., Kim, Y., Kwon, S., Kim, M., Kim, Y. H., Kim, J. H., Park, T. J., & Kang, H. Y. (2018). Senescent fibroblasts drive ageing pigmentation: A potential therapeutic target for senile lentigo. Theranostics, 8(17), 4620–4632. https://doi.org/10.7150/thno.26975 Yoshida, H., Kunisada, T., Grimm, T., Nishimura, E. K., Nishioka, E., & Nishikawa, S. I. (2001). Review: Melanocyte migration and survival controlled by SCF/c-kit expression. The Journal of Investigative Dermatology Symposium Proceedings, 6(1), 1–5. https://doi.org/10.1046/j.0022-202x.2001.00006.x Yuan, X. H., & Jin, Z. H. (2018). Paracrine regulation of melanogenesis. The British Journal of Dermatology, 178(3), 632–639. https://doi.org/10.1111/bjd.15651 Zasloff, M. (2011). Observations on the remarkable (and mysterious) wound-healing process of the bottlenose dolphin. The Journal of Investigative Dermatology, 131(12), 2503–2505. https://doi.org/10.1038/jid.2011.220 Zhong, C., Liang, G., Li, P., Shi, K., Li, F., Zhou, J., & Xu, D. (2023). Inflammatory response: The target for treating hyperpigmentation during the repair of a burn wound. Frontiers in Immunology, 14, 1009137. https://doi.org/10.3389/fimmu.2023.1009137 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99708 | - |
| dc.description.abstract | 鯨豚的皮膚有很強的自我修復能力,即使是很深的傷口,也常常能在海水環境中自然癒合,不容易感染或留下疤痕。然而,皮膚損傷後的色素恢復機制尚不清楚,特別是在癒合後仍持續低色素沉澱的傷口中。儘管部分鯨豚物種已觀察到色素還原現象,但黑色素細胞在傷口癒合過程中的細胞層次機制,以及不同物種之間的色素還原差異,尚缺乏系統性探討。本研究分析了幾種不同海豚(糙齒海豚、小虎鯨、瑞氏海豚和弗氏海豚)在皮膚傷口癒合過程中的黑色素變化,並進一步探討導致傷口持續低色素沉澱的潛在機制。本研究中以Fontana–Masson染色及免疫組織化學方法評估黑色素細胞的數量、分布及與表皮的附著情形,也針對細胞間的連接蛋白 E-cadherin 以及抑制黑色素功能的 Dickkopf-1(DKK1)蛋白之表現進行分析,以探討其與低色素沉澱傷口之相關性。結果顯示,糙齒海豚(Steno bredanensis)、小虎鯨(Feresa attenuata)在腹側傷口中常見持續性低色素沉澱,而瑞氏海豚(Grampus griseus)在腹側與背側傷口皆可觀察到類似現象。這種穩定存在的低色素性傷口,在已發表的鯨豚組織學研究中尚不常見,也是本研究的一項重要觀察。這些傷口區域伴隨黑色素細胞密度下降及其由基底層脫離至上皮表層的現象。細胞間連結與訊號表現亦受到影響,包括E-cadherin訊號減弱及早期癒合階段DKK1表現上升。相較之下,弗氏海豚(Lagenodelphis hosei)則展現良好的色素還原能力,傷口中黑色素細胞數量豐富,並具有較強的E-cadherin訊號表現。這些證據皆表明不同海豚科物種間在皮膚色素恢復的能力上的顯著差異,其中細胞黏連不穩定、黑色素細胞脫離或受抑制性訊號干擾,都可能是部分物種傷口低色素沉澱的成因。這項研究提供關於鯨豚色素還原的比較性資料,亦可為治療如人類白斑症等色素異常疾病及鯨豚傷口照護策略帶來啟發。 | zh_TW |
| dc.description.abstract | Cetaceans possess an exceptional capacity for wound healing in a marine environment and are frequently able to recover from deep skin injuries without infection or scarring. However, the mechanisms regulating post-injury pigmentation remain unclear, particularly in cases where healed wounds persist as white areas. While repigmentation has been observed in some cetaceans, the cellular basis of melanocyte behavior and interspecies differences in pigment restoration have not been systematically investigated. This study aimed to characterize melanocyte distribution and repigmentation dynamics in full-thickness wounds across multiple delphinid species, with a focus on understanding why certain wounds remain hypopigmented. To investigate potential mechanisms underlying these differences, we examined melanocyte number, morphology, and epidermal adhesion using Fontana–Masson staining, and immunohistochemistry. The analysis also included assessment of suprabasal melanocytes, E-cadherin distribution, and melanocyte-specific markers across wound stages. Additionally, Dickkopf-1 (DKK1), a Wnt pathway antagonist known to suppress melanocyte function, was evaluated for its potential involvement in repigmentation failure. Results showed that rough-toothed dolphins (Steno bredanensis) and pygmy killer whales (Feresa attenuata) commonly exhibited persistent hypopigmentation in ventral wounds, while Risso’s dolphins (Grampus griseus) displayed similar features in both ventral and dorsal wounds. These depigmented areas were characterized by reduced melanocyte density and suprabasal detachment. Such a persistent hypopigmented wound pattern has been rarely documented in histological studies of cetacean wound healing. These wounds also showed weakened E-cadherin expression and elevated DKK1 levels, particularly in the early stages of healing. In contrast, Fraser’s dolphins (Lagenodelphis hosei) demonstrated successful repigmentation, characterized by abundant melanocytes spanning both basal and suprabasal layers and stronger E-cadherin signals. These findings highlight species-specific differences in melanocyte behavior and suggest that impaired adhesion, detachment, or inhibitory signaling may underlie hypopigmentation in some delphinids. This study provides a comparative framework for understanding pigment regeneration in cetaceans and offers new insights into potential therapeutic strategies for treating pigmentary disorders such as vitiligo and for improving wound care in cetaceans. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:26:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:26:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii Abstract iii Contents v List of figures viii List of tables x Chapter 1 Introduction 1 1.1 Skin Color Variation in Cetaceans 1 1.2 Wound Healing Characteristics in Cetacean Skin 2 1.3 Post-injury Melanocyte Dynamics in Mammals 4 1.4 Other factors affecting melanocyte functions in mammals 6 1.5 Melanocyte Behavior in Cetacean Skin and Wound Healing 7 Chapter 2 Materials and methods 11 2.1 Sample collection and preparation 11 2.2 Fontana-Masson staining 11 2.3 Antibody selection 12 2.4 Immunohistochemical staining 13 2.5 Melanocytes counting 13 2.6 Immunofluorescence staining 13 Chapter 3 Result 15 3.1 Rough-toothed dolphins 15 3.1.1 Gross appearance of wounds 15 3.1.2 Melanin distribution by Fontana-Masson staining 15 3.1.3 Melanocyte detection by pan-melanocytic antibody cocktail staining 16 3.1.4 Cell adhesion evaluation by E-cadherin staining 16 3.1.5 Melanocytic inhibitor expression by DKK1 staining 17 3.2 Pygmy killer whales 18 3.2.1 Gross appearance of wounds 18 3.2.2 Melanocyte detection by pan-melanocytic antibody cocktail staining 18 3.2.3 Cell adhesion evaluation by E-cadherin staining 18 3.2.4 Melanocytic inhibitor expression by DKK1 staining 18 3.3 Risso’s dolphins 19 3.3.1 Gross appearance of wounds 19 3.3.2 Melanocyte detection by pan-melanocytic antibody cocktail staining 19 3.3.3 Cell adhesion evaluation by E-cadherin staining 19 3.4 Fraser’s dolphins 20 3.4.1 Gross appearance of wounds 20 3.4.2 Melanocyte detection by pan-melanocytic antibody cocktail staining 20 3.4.3 Cell adhesion evaluation by E-cadherin staining 21 3.4.4 Melanocytic inhibitor expression by DKK1 staining 21 Chapter 4 Discussion 22 Reference 30 | - |
| dc.language.iso | en | - |
| dc.subject | 海豚 | zh_TW |
| dc.subject | 傷口癒合 | zh_TW |
| dc.subject | 色素還原 | zh_TW |
| dc.subject | 低色素沉澱傷口 | zh_TW |
| dc.subject | 黑色素細胞脫離 | zh_TW |
| dc.subject | E-cadherin | zh_TW |
| dc.subject | DKK1 | zh_TW |
| dc.subject | E-cadherin | en |
| dc.subject | dolphin | en |
| dc.subject | DKK1 | en |
| dc.subject | wound healing | en |
| dc.subject | repigmentation | en |
| dc.subject | hypopigmented wound | en |
| dc.subject | melanocyte detachment | en |
| dc.title | 四種海豚科動物全層皮膚傷口癒合中色素恢復差異之組織病理學研究 | zh_TW |
| dc.title | Repigmentation Variation in Full-Thickness Wound Healing in Four Delphinid Species: A Histopathological Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王浩文;林頌然 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Ven Wang;Sung-Jan Lin | en |
| dc.subject.keyword | 海豚,傷口癒合,色素還原,低色素沉澱傷口,黑色素細胞脫離,E-cadherin,DKK1, | zh_TW |
| dc.subject.keyword | dolphin,wound healing,repigmentation,hypopigmented wound,melanocyte detachment,E-cadherin,DKK1, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202503322 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-01 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
