請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99700完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑 | zh_TW |
| dc.contributor.advisor | Hsiang-Chieh Lee | en |
| dc.contributor.author | 高子雯 | zh_TW |
| dc.contributor.author | Zi-Wen Kao | en |
| dc.date.accessioned | 2025-09-17T16:25:03Z | - |
| dc.date.available | 2025-12-20 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 1. Radiological Society of North America and American College of Radiology. Radiation dose in X-ray and CT exams [Internet]. RadiologyInfo.org. Available from: https://www.radiologyinfo.org/en/info/safetyxray?utm_source=chatgpt.com
2. Carestream Dental. CS 9600 imaging system [Internet]. MedicalExpo. Available from: https://www.medicalexpo.com/prod/carestream-dental/product-70654-949082.html 3. Neptune Diagnostics. CBCT – Cone Beam Computed Tomography [Internet]. Neptune Diagnostics. Available from: https://neptunediagnostics.in/cbct/ 4. Idiyatullin D, Corum C, et al., Dental magnetic resonance imaging: making the invisible visible. J. Endod. 2011; 37(6): p. 745–752. 5. University Hospital Ulm. Dental MRI – Experimental Cardiovascular Imaging (ExCaVi) [Internet]. Ulm: University Hospital Ulm. Available from: https://www.uniklinik-ulm.de/innere-medizin-ii/experimentelle-forschung/experimental-cardiovascular-imaging-excavi/dental-mri.html 6. Institute of Digital Dentistry. Dentsply Sirona collaborates with Siemens Healthineers on dental MRI for improved diagnostics [Internet]. Institute of Digital Dentistry. Available from: https://instituteofdigitaldentistry.com/dentsply-sirona/dentsply-sirona-collaborates-with-siemens-healthineers-on-dental-mri-for-improved-diagnostics/ 7. Willershausen I., Evangeliou S., et al., Low-field MRI for dental imaging in pediatric patients with supernumerary and ectopic teeth: a comparative study of 0.55 T and ultra-low-dose CT. Invest Radiol. 2024; 59(12): p. 838–844. 8. AIO Bio. Information on Dental MRI [Internet]. AIO Bio; Available from: https://www.aiobio.co.kr/official.php/home/info/3014 9. Welchant. Product Information: Dental MRI [Internet]. Welchant. Available from: https://www.welchant.com/product_d.php?lang=tw&tb=4&id=250 10. MLL Lübeck. Dental OCT [Internet]. MLL Lübeck. Available from: https://mll-luebeck.com/en/public-projects/dental-oct/ 11. Heymann, Harald O., et al., Sturdevant's art and science of operative dentistry. 7th ed. St. Louis: Mosby; 2018. 12. Provenza DV, Seibel W., Oral histology: inheritance and development. 2nd ed. Philadelphia (PA): Lea & Febiger; 1986. 13. Sturdevant, Clifford M., et al., Sturdevant’s art and science of operative dentistry. 4th ed. St. Louis (MO): Mosby; 2002. 14. Wilder-Smith, Petra, et al., Dental OCT. In: Optical Coherence Tomography. Cham: Springer. 2015; p. 2209–2244. 15. Fried, Daniel, et al., Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl. Optics. 1995; 34(7): p. 1278–1285. 16. Shimamura, Yutaka, et al., Influence of tooth-surface hydration conditions on optical coherence-tomography imaging. J. Dent. 2011; 39(8): p. 572–577. 17. Ng, Chung, et al., Near-infrared imaging of demineralization on the occlusal surfaces of teeth without the interference of stains. J. Biomed Optics. 2019; 24(3): 036002. 18. Fried, Daniel, et al., In vivo near-IR imaging of occlusal lesions at 1310 nm. Lasers in Dentistry XVII. Vol. 7884. Bellingham: SPIE; 2011. 56–62. 19. Darling, Cynthia L., et al., Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J. Biomed Optics. 2006; 11(3): 034023. 20. Mehta, Nihaal, et al., Optical coherence tomography angiography distortion correction in widefield montage images. Quant Imaging Med Surg. 2021; 11(3): 928. 21. Tan, Jinzhen, et al., Correction of refractive distortion in whole‐eye optical coherence tomography imaging of the mouse eye. J. Biophotonics. 2022; 15(12): e202200146. 22. Minakaran, Neda, et al., Optical coherence tomography (OCT) in neuro-ophthalmology. Eye (Lond). 2021; 35(1): p. 17–32. 23. Hsieh, Yao-Sheng, et al., Dental optical coherence tomography. Sensors (Basel, Switzerland), 2013; 13(7) : p. 8928–8949. 24. Sattler, Elke, et al., Optical coherence tomography in dermatology. J. Biomed. Opt., 2013; 18. 25. Tan, Hsern Ern Ivan, et al., Optical coherence tomography of the tympanic membrane and middle ear: a review. Otolaryngol. Head Neck Surg. 2018; 159: p, 424–38. 26. Chen, Yu, et al. Integrated optical coherence tomography (OCT) and fluorescence laminar optical tomography (FLOT). IEEE J Sel Top Quantum Electron. 2010; 16(4): p. 755–766. 27. Izatt, Joseph A., et al., Theory of optical coherence tomography. In: Optical Coherence Tomography. Cham: Springer; 2015. p. 65–94. 28. Nathans, Jeremy, Seeing is believing: the development of optical coherence tomography. Proc Natl Acad Sci U S A. 2023; 120(39): e2311129120. 29. Song, Shaozhen, et al., Robust numerical phase stabilization for long‐range swept‐source optical coherence tomography. J. Biophotonics. 2017; 10(11): p. 1398–1410. 30. Bashkansky, Mark, and J. Reintjes, Statistics and reduction of speckle in optical coherence tomography. Optics Letters. 2000; 25(8): p. 545-547. 31. Lv, Hongli, et al., Speckle noise reduction of multi-frame optical coherence tomography data using multi-linear principal component analysis. Optics Express. 2018; 26(9): p. 11804-11818. 32. Duan, Lian, et al., Single-shot speckle noise reduction by interleaved optical coherence tomography. Journal of Biomedical Optics. 2014; 19(12): p. 120501. 33. LaRocca, Francesco, et al., Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming. Biomed Opt Express. 2011; 2(6): p. 1524–1538. 34. Gao, Wenshuo, et al., An improved Sobel edge detection. In: Proceedings of the 3rd International Conference on Computer Science and Information Technology; 2010 Jul; Chengdu, China. IEEE; 2010. 35. Westphal, Volker, et al., Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle. Opt Express. 2002; 10(9): p. 397–404. 36. Huang, David, et al., Optical coherence tomography. Science. 1991; 254(5035): p. 1178–1181. 37. Meng, Zhuo, et al. Measurement of the refractive index of human teeth by optical coherence tomography. J Biomed Opt. 2009; 14(3): p. 034010. 38. Besl, Paul J., and Neil D. McKay, Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures. 1992 Apr; Orlando, FL. Bellingham (WA): SPIE; p. 586–606. 39. Burt, Peter J., and Edward H. Adelson, The Laplacian pyramid as a compact image code. IEEE Transactions on Communications. 1983; 31(4): p. 532–540. 40. Pajares, Gonzalo, and Jesus Manuel De La Cruz, A wavelet-based image fusion tutorial. Pattern Recognit. 2004; 37(9): p. 1855–1872. 41. Choi, Myungjin, Rae Young Kim, and Moon-Gyu Kim, The curvelet transform for image fusion. Int Soc Photogramm Remote Sens. 2004; 35(88): p. 59–64. 42. Thorlabs Inc. Large Platform Goniometer Dimensions [Internet]. Newton (NJ): Thorlabs. Available from: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=860. 43. Liu, Gangjun, et al., Extended axial imaging range, widefield swept source optical coherence tomography angiography. J Biophotonics. 2017; 10(11): p. 1464–1472. 44. Tsai, Meng-Tsan, et al., Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt. Express. 2008; 16(20): p. 15847–15862. 45. Park, Kyung-Jin, et al., OCT assessment of non-cavitated occlusal carious lesions by variation of incidence angle of probe light and refractive index matching. J Dent. 2017; 62: p. 31–35. 46. Golde, Jonas, et al., Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography. J. Biomed Opt. 2018; 23(7): 071203. 47. Li HY. Development of Multi-view Optical Coherence Tomography (OCT) and Image Registration Algorithm for Tooth Imaging [Master’s thesis]. Taipei: Graduate Institute of Photonics and Optoelectronics, National Taiwan University; 2022. 48. Huang KL. Integrated Development of Refractive Distortion Correction Algorithm and Long-range Optical Coherence Tomography in Ophthalmic Applications [Master’s thesis]. Taipei: Graduate Institute of Photonics and Optoelectronics, National Taiwan University; 2025. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99700 | - |
| dc.description.abstract | 牙科診斷中,醫師常依賴各種影像技術協助病變判斷與治療規劃。隨著臨床數位化的發展,光學同調斷層掃描術(Optical coherence tomography, OCT)因具備高速、非接觸、非破壞等特性,逐漸被應用於牙齒組織的高解析度三維成像。相較於電腦斷層掃描(Computer tomography, CT),OCT不僅無輻射風險,亦能觀測CT難以辨識的牙釉質早期脫礦病變。然而,由於牙齒組織的高散射性質,易導致病變下方影像資訊缺失,產生陰影效應(Shadowing effect);同時,未考慮光學之折射率差異也可能造成光路偏移與幾何畸變,影響成像精度與診斷判讀。
本研究聚焦於整合一套折射畸變修正暨多視向影像配準之自動化影像處理流程,以提升OCT成像品質與臨床應用可靠性。系統部分,以實驗室自行建構之掃頻式光學同調斷層掃描術系統(Swept-source OCT, SS-OCT)搭配光學時脈頻率倍增模組(Optical clock frequency doubling circuit module, OCFD)與雙軸旋轉平台,實現多視像牙齒影像擷取。演算法設計上,首先透過影像梯度提取牙齒表面輪廓,並進行光路反向追蹤與幾何補償,修正因折射率差異造成的深度扭曲與結構誤差;接著,根據輪廓建立三維表面模型之點雲,作為多視角影像配準基準,採用最近點迭代法(Iterative closest point, ICP)對齊各視角影像,以消除視角遮蔽造成的資訊缺失,並強化結構連續性與幾何一致性。 最終透過自製瓊脂糖凝膠樣本與牙齒切片進行比對,確認修正後影像的結構準確性與厚度一致性。實驗結果顯示,本方法能顯著提升影像品質與診斷可靠度,展現結合折射率修正與多視向OCT影像的整合方法於高精度口內影像應用的潛力。 | zh_TW |
| dc.description.abstract | In dental diagnostics, clinicians often rely on various imaging techniques to evaluate lesions and develop treatment plans. With the advancement of clinical digitization, Optical Coherence Tomography (OCT) has gained prominence for its high-resolution, non-contact, and non-destructive three-dimensional imaging capabilities of dental tissues. Compared to Computed Tomography (CT), OCT offers the advantages of being radiation-free and capable of detecting early enamel demineralization that is often indiscernible on CT. However, the highly scattering nature of dental tissues frequently leads to information loss beneath lesions, manifesting as shadowing effects. Additionally, neglecting refractive index differences can result in optical path deviations and geometric distortions, thereby compromising imaging accuracy and diagnostic interpretation.
This study proposes an integrated and automated image processing framework that combines refractive distortion correction with multi-view image fusion to enhance OCT image quality and clinical reliability. On the hardware side, we employ a self-developed swept-source OCT (SS-OCT) system equipped with an optical clock frequency doubling circuit module (OCFD) and a dual-axis rotational stage to acquire multi-angle dental images. The algorithmic approach begins with gradient-based tooth surface boundary extraction, followed by reverse ray tracing and geometric compensation to correct depth distortions and structural inaccuracies resulting from refractive index mismatches. A three-dimensional surface point cloud model is then constructed from the detected contours, serving as the reference for multi-view image registration using the Iterative Closest Point (ICP) algorithm. This process mitigates data loss caused by angular occlusion and enhances both structural continuity and geometric coherence. Validation experiments using custom agarose gel phantoms and dental slices demonstrate the structural accuracy and thickness consistency of the corrected images. The results confirm that the proposed method significantly improves image quality and diagnostic reliability, underscoring its potential for high-precision intraoral imaging through the integration of refractive correction and multi-view OCT fusion. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:25:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:25:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 xi 表次 xv Chapter 1 緒論 1 1.1 研究背景 1 1.2 口內成像診斷技術介紹 2 1.2.1 放射線攝影術(Radiography) 2 1.2.2 磁振造影(Magnetic resonance imaging) 3 1.2.3 定量光激發螢光術(Quantitative light-induced fluorescence) 4 1.2.4 數位口內掃描儀(Intraoral scanner) 5 1.2.5 光學同調斷層掃描術(Optical coherence tomography) 5 1.3 牙齒組織結構與適用掃描波段 6 1.3.1 組織結構 6 1.3.2 光學特性與成像 8 1.4 影像畸變 9 1.4.1 幾何畸變 9 1.4.2 光學畸變 10 1.5 研究動機 12 1.6 論文範疇 13 Chapter 2 光學同調斷層掃描術 14 2.1 光學同調斷層掃描術簡介 14 2.2 光學同調斷層掃描術成像原理與發展 15 2.2.1 低同調干涉成像原理 15 2.2.2 各式光學同調斷層掃描術 19 2.3 光學同調斷層掃描術之系統特性 21 2.3.1 軸向解析度(Axial resolution) 21 2.3.2 橫向解析度與景深(Lateral resolution and depth of field) 22 2.3.3 成像範圍(Field of view, FOV) 23 2.3.4 靈敏度與靈敏度滾降(Sensitivity and sensitivity roll-off) 23 2.4 影像品質評估指標 24 2.4.1 訊噪比(Signal-to-noise ratio, SNR) 24 2.4.2 對比雜訊比(Contrast-to-noise ratio, CNR) 25 Chapter 3 折射畸變修正暨多視向影像配準演算法 26 3.1 演算法架構設計 26 3.2 影像前處理 27 3.2.1 影像尺寸調整(Image resizing) 27 3.2.2 偽影偵測 27 3.3 界面偵測(Interface detection) 29 3.3.1 感興趣區域選取(Region of interest selection, ROI) 29 3.3.2 基於梯度的邊界偵測 30 3.4 折射畸變理論與修正演算法 31 3.4.1 折射模型與理論推導 31 3.4.2 基於折射模型的立體像素重建(Ray-based voxel mapping) 33 3.5 多視向影像配準與拼接 34 3.5.1 迭代最近點演算法(Iterative closest point, ICP) 34 3.5.2 影像配準實作 36 3.5.3 拼接影像之融合方法 38 Chapter 4 實驗架構與方法 40 4.1 光學同調斷層掃瞄術之系統架構 40 4.1.1 多視向影像之取像裝置設計 41 4.1.2 光學時脈頻率倍增模組(Optical clock frequency doubling circuit module) 42 4.2 光學同調斷層掃瞄術系統特性 44 4.3 牙齒樣本收集 46 4.4 折射畸變修正暨多視向影像配準演算法驗證實驗 47 4.1.3 瓊脂糖凝膠驗證 47 4.1.4 牙齒切片厚度量測 48 Chapter 5 實驗結果與討論 49 5.1 折射畸變修正暨多視向影像配準演算法驗證 49 5.1.1 瓊脂糖凝膠驗證 49 5.1.2 牙齒切片厚度量測 50 5.2 光學時脈頻率倍增模組對影像深度影響 51 5.3 牙齒樣本影像結果 52 5.3.1 折射畸變修正結果 52 5.3.2 多視向影像配準結果 53 5.3.3 不同病灶之牙齒樣本影像結果 55 5.4 演算法效能分析 60 Chapter 6 結論與未來展望 62 6.1結論 62 6.2未來展望 62 參考文獻 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光學同調斷層掃描術 | - |
| dc.subject | 口內成像 | - |
| dc.subject | 多視向影像配準 | - |
| dc.subject | 折射畸變修正 | - |
| dc.subject | 影像融合 | - |
| dc.subject | 牙齒影像 | - |
| dc.subject | optical coherence tomography | - |
| dc.subject | intraoral imaging | - |
| dc.subject | refractive distortion correction | - |
| dc.subject | multi-view image registration | - |
| dc.subject | image fusion | - |
| dc.subject | iterative closest point (ICP) | - |
| dc.title | 折射畸變修正與多視向影像配準於光學同調斷層掃描術之演算法開發 | zh_TW |
| dc.title | Development of Refractive Distortion Correction (RDC) and Multi-view Image Registration Algorithms in Optical Coherence Tomography (OCT) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王姻麟;蔡睿哲;李正匡;王義閔 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Lin Wang;Jui-Che Tsai;Cheng-Kuang Lee;Yi-Min Wang | en |
| dc.subject.keyword | 光學同調斷層掃描術,口內成像多視向影像配準折射畸變修正影像融合牙齒影像 | zh_TW |
| dc.subject.keyword | optical coherence tomography,intraoral imagingrefractive distortion correctionmulti-view image registrationimage fusioniterative closest point (ICP) | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202503772 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
