請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99699完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志鴻 | zh_TW |
| dc.contributor.advisor | Chih-Hung Chen | en |
| dc.contributor.author | 黃悅容 | zh_TW |
| dc.contributor.author | Yue Rong Huang | en |
| dc.date.accessioned | 2025-09-17T16:24:52Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | [1] Chang Liu, Feng Li, Lai-Peng Ma, and Hui-Ming Cheng. Advanced materials for energy storage. Advanced Materials, 22(8):E28–E62, 2010.
[2] Ghassan Zubi, Rodolfo Dufo-López, Monica Carvalho, and Guzay Pasaoglu. The lithium-ion battery: State of the art and future perspectives.Renewable and Sustainable Energy Reviews, 89:292–308, 2018. [3] Jaephil Cho, Sookyung Jeong, and Youngsik Kim. Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 48:84–101, 2015. [4] Christian Heubner, Kristian Nikolowski, Sebastian Reuber, Michael Schneider, Mareike Wolter, and Alexander Michaelis. Recent insights into rate performance limitations of li-ion batteries. Batteries & Supercaps, 4(2):268–285, 2021. [5] Hao Du, Yadong Wang, Yuqiong Kang, Yun Zhao, Yao Tian, Xianshu Wang, Yihong Tan, Zheng Liang, John Wozny, Tao Li, et al. Side reactions/changes in lithium-ion batteries: mechanisms and strategies for creating safer and better batteries. Advanced Materials, 36(29):2401482, 2024. [6] SubrahmanyamGoriparti, ErmannoMiele, FrancescoDeAngelis, EnzoDiFabrizio, Remo Proietti Zaccaria, and Claudio Capiglia. Review on recent progress of nanos-tructured anode materials for li-ion batteries. Journal of Power Sources, 257:421443, 2014. [7] BenJagger and MauroPasta. Solid electrolyte interphases in lithium metal batteries. Joule, 7(10):2228–2244, 2023. [8] Dingchang Lin, Yayuan Liu, and Yi Cui. Reviving the lithium metal anode for highenergy batteries. Nature Nanotechnology, 12(3):194–206, 2017. [9] Dai-Huo Liu, Zhengyu Bai, Matthew Li, Aiping Yu, Dan Luo, Wenwen Liu, Lin Yang, Jun Lu, Khalil Amine, and Zhongwei Chen. Developing high safety limetal anodes for future high-energy li-metal batteries: strategies and perspectives. Chemical Society Reviews, 49(15):5407–5445, 2020. [10] Govind B Nair, H Nagabhushana, Nirupama S Dhoble, and Sanjay J Dhoble. Emerging Energy Materials. CRC Press Boca Raton, 2024. [11] Xinyue Zhang, Aoxuan Wang, Xingjiang Liu, and Jiayan Luo. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Accounts of Chemical Research, 52(11):3223–3232, 2019. [12] Diddo Diddens, Williams Agyei Appiah, Youssef Mabrouk, Andreas Heuer, Tejs Vegge, and Arghya Bhowmik. Modeling the solid electrolyte interphase: Machine learning as a game changer? Advanced Materials Interfaces, 9(8):2101734, 2022. [13] Emanuel Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society, 126(12):2047, 1979. [14] Ajaykrishna Ramasubramanian, Vitaliy Yurkiv, Tara Foroozan, Marco Ragone,Reza Shahbazian-Yassar, and Farzad Mashayek. Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. The Journal of Physical Chemistry C, 123(16):10237–10245, 2019. [15] Wenlong Cai, Yu-Xing Yao, Gao-Long Zhu, Chong Yan, Li-Li Jiang, Chuanxin He, Jia-Qi Huang, and Qiang Zhang. A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 49(12):3806–3833, 2020. [16] Xue-Qiang Zhang, Xiang Chen, Xin-Bing Cheng, Bo-Quan Li, Xin Shen, Chong Yan, Jia-Qi Huang, and Qiang Zhang. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angewandte Chemie International Edition, 57(19):5301–5305, 2018. [17] Xue-Qiang Zhang, Xin-Bing Cheng, Xiang Chen, Chong Yan, and Qiang Zhang. Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries. Advanced Functional Materials, 27(10):1605989, 2017. [18] Lei Wei, Zhaoqing Jin, Jianhao Lu, Yang Guo, Zilong Wang, Gaoping Cao, Jingyi Qiu, Anbang Wang, and Weikun Wang. In-situ construction of hybrid artificial sei with fluorinated siloxane to enable dendrite-free li metal anodes. Journal of Materiomics, 9(2):318–327, 2023. [19] Tingzheng Hou, KaraDFong, JingyangWang, andKristinAPersson. Thesolvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries. Chemical Science, 12(44):14740–14751, 2021. [20] Xiang Chen, Xue-Qiang Zhang, Hao-Ran Li, and Qiang Zhang. Cation- solvent, cation- anion, and solvent- solvent interactions with electrolyte solvation in lithium batteries. Batteries & Supercaps, 2(2):128–131, 2019. [21] Jianming Zheng, Joshua A Lochala, Alexander Kwok, Zhiqun Daniel Deng, and Jie Xiao. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advanced Science, 4(8):1700032, 2017. [22] Tingzheng Hou, Guang Yang, Nav Nidhi Rajput, Julian Self, Sang-Won Park, Jagjit Nanda, and Kristin A Persson. The influence of fec on the solvation structure and reduction reaction of lipf6/ec electrolytes and its implication for solid electrolyte interphase formation. Nano Energy, 64:103881, 2019. [23] Hao Duan, Xiaomin Wu, Tianqi Sun, Bing Liu, Jianfeng Fang, Chao Li, and Zhongquan Gao. Effects of electric field intensity and distribution on flame propagation speed of ch4/o2/n2 flames. Fuel, 158:807–815, 2015. [24] Minggao Yu, Rongyang Lou, Haitao Li, Fengchuan Wang, Jiachen Wang, and Kai Wang. Reactive force field molecular dynamics (reaxff-md) simulation of lignite combustion under an external electric field. Fuel, 358:130184, 2024. [25] Xi Zhuo Jiang and Kai Hong Luo. Reactive and electron force field molecular dynamics simulations of electric field assisted ethanol oxidation reactions. Proceedings of the Combustion Institute, 38(4):6605–6613, 2021. [26] Efstratios M Kritikos, Aditya Lele, Adri CT van Duin, and Andrea Giusti. A reactive molecular dynamics study of the effects of an electric field on n-dodecane combustion. Combustion and Flame, 244:112238, 2022. [27] Bharath Ravikumar, Mahesh Mynam, and Beena Rai. Molecular dynamics investigation of electric field altered behavior of lithium ion battery electrolytes. Journal of Molecular Liquids, 300:112252, 2020. [28] Xin Tan, Yanlei Wang, Yaqin Zhang, Meichen Wang, Feng Huo, and Hongyan He. Effect of clusters on [li] solvation and transport in mixed organic compound/ionic liquid electrolytes under external electric fields. Industrial & Engineering Chemistry Research, 59(24):11308–11316, 2020. [29]DongniZhao,YanjunZhao,PengWang,JunweiZhang,JinlongSun,LingHu,Junfei Zhou, Hui Wang, Yijie Yao, and Shiyou Li. Enhancing electric field intensity of interfacial electric double layer to improve properties of solid electrolyte interface for sodium-ion batteries. Applied Surface Science, 679:161202, 2025. [30] Julia Maibach, Fredrik Lindgren, Henrik Eriksson, Kristina Edstrom, and Maria Hahlin. Electric potential gradient at the buried interface between lithium-ion battery electrodes and the sei observed using photoelectron spectroscopy. The Journal of Physical Chemistry Letters, 7(10):1775–1780, 2016. [31] Yunyi Chen, Yongxiu Chen, Rui Wang, Xun Lv, and Yongsheng Han. Generation of a highly conductive and stable solid electrolyte interphase at lithium anode under additional electric filed. Chemical Engineering Journal, 446:137435, 2022. [32] Antonis I Vakis, Vladislav A Yastrebov, Julien Scheibert, Lucia Nicola, Daniele Dini, Clotilde Minfray, Andreas Almqvist, Marco Paggi, Seunghwan Lee, Georges Limbert, et al. Modeling and simulation in tribology across scales: An overview. Tribology International, 125:169–199, 2018. [33] Hasan Metin Aktulga, Joseph C Fogarty, Sagar A Pandit, and Ananth Y Grama. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 38(4-5):245–259, 2012. [34] Quirin Spreiter and Markus Walter. Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic fields. Journal of Computational Physics, 152(1):102–119, 1999. [35] William C Swope, Hans C Andersen, Peter H Berens, and Kent R Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, 76(1):637–649, 1982. [36]QianMao,MuyeFeng,XiZhuoJiang,YihuaRen,KaiHLuo,andAdriCTvanDuin. Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems. Progress in Energy and Combustion Science, 97:101084, 2023. [37] RB Gerber, D Shemesh, ME Varner, J Kalinowski, and B Hirshberg. Ab initio and semi-empirical molecular dynamics simulations of chemical reactions in isolated moleculesandinclusters. PhysicalChemistryChemicalPhysics, 16(21):9760–9775, 2014. [38] Adri CT Van Duin, Siddharth Dasgupta, Francois Lorant, and William A Goddard. Reaxff: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409, 2001. [39] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown, Paul S Crozier, Pieter J In’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al. Lammps-a flexible simulation tool for particlebased materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271:108171, 2022. [40] Leandro Martínez, Ricardo Andrade, Ernesto G Birgin, and José Mario Martínez.Packmol: Apackage for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13):2157–2164, 2009. [41] Alexander Stukowski. Visualization and analysis of atomistic simulation data with ovito–the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012, 2009. [42] Zhen Li, Li Wang, Xiaodong Huang, and Xiangming He. Unveiling the mystery of lif within solid electrolyte interphase in lithium batteries. Small, 20(22):2305429, 2024. [43] Solomon T Oyakhire, Huaxin Gong, Yi Cui, Zhenan Bao, and Stacey F Bent. An x-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Letters, 7(8):2540–2546, 2022. [44]ChenHou,JiuhuiHan,PanLiu,ChuchuYang,GangHuang,TakeshiFujita, Akihiko Hirata, and Mingwei Chen. Operando observations of sei film evolution by masssensitive scanning transmission electron microscopy. Advanced Energy Materials, 9(45):1902675, 2019. [45] Nicholas Weadock, Nitinun Varongchayakul, Jiayu Wan, Seongwoo Lee, Joonil Seog, andLiangbingHu. Determinationofmechanicalpropertiesoftheseiinsodium ion batteries via colloidal probe microscopy. Nano Energy, 2(5):713–719, 2013. [46] Wei-Wei Wang, YuGu, HaoYan,ShaLi, Jun-WuHe, Hong-YuXu, Qi-HuiWu,JiaWei Yan, and Bing-Wei Mao. Evaluating solid-electrolyte interphases for lithium and lithium-free anodes from nanoindentation features. Chem, 6(10):2728–2745, 2020. [47] Lorena Alzate-Vargas, Samuel M Blau, Evan Walter Clark Spotte-Smith, Srikanth Allu, Kristin A Persson, and Jean-Luc Fattebert. Insight into sei growth in li-ion batteries using molecular dynamics and accelerated chemical reactions. The Journal of Physical Chemistry C, 125(34):18588–18596, 2021. [48] Md Mahbubul Islam and Adri CT Van Duin. Reductive decomposition reactions of ethylene carbonate by explicit electron transfer from lithium: an ereaxff molecular dynamics study. The Journal of Physical Chemistry C, 120(48):27128–27134, 2016. [49] Jian Tan, John Matz, Pei Dong, Jianfeng Shen, and Mingxin Ye. A growing appreciation for the role of lif in the solid electrolyte interphase. Advanced Energy Materials, 11(16):2100046, 2021. [50] Kang Xu. Electrolytes and interphases in li-ion batteries and beyond. Chemical Reviews, 114(23):11503–11618, 2014. [51] Xiaolin Zhang, Fei Niu, Donghui Liu, Shimin Yang, Youming Yang, and Zhifang Tong. Molecular dynamics simulations of y (iii) coordination and hydration properties. RSC advances, 9(55):32085–32096, 2019. [52] AndreiTokmakoff. 1.2:Radialdistributionfunction. https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Concepts_in_Biophysical_Chemistry_(Tokmakoff)/01%3A_Water_and_Aqueous_Solutions/01%3A_Fluids/1.02%3A_Radial_Distribution_Function, n.d. Retrieved June 30, 2025, from LibreTexts Chemistry. [53] Gaurav Kumar, Thejus R Kartha, and Bhabani S Mallik. Novelty of lithium salt solution in sulfone and dimethyl carbonate-based electrolytes for lithium-ion batteries: A classical molecular dynamics simulation study of optimal ion diffusion. The Journal of Physical Chemistry C, 122(46):26315–26325, 2018. [54] Gaojie Xu, Xuehui Shangguan, Shanmu Dong, Xinhong Zhou, and Guanglei Cui. Formulation of blended-lithium-salt electrolytes for lithium batteries. Angewandte Chemie International Edition, 59(9):3400–3415, 2020. [55] Zizhe Lu, Aleksandr Chernatynskiy, Mark J Noordhoek, Susan B Sinnott, and Simon RPhillpot. Nanoindentation of zr by molecular dynamics simulation. Journal of Nuclear Materials, 467:742–757, 2015. [56] XunXi,ZhimingFeng, ShangtongYang, ZegongNing, JiliangPan, LeimingZhang, Ziqing Yin, and Meifeng Cai. Nanoindentation-based random field model for fracture of heterogeneous rock. Rock Mechanics and Rock Engineering, 58(5):51855205, 2025. [57] Hanna Isaksson, Shijo Nagao, Marta MaŁkiewicz, Petro Julkunen, Roman Nowak, andJukkaSJurvelin. Precisionofnanoindentationprotocols for measurementofviscoelasticity in cortical and trabecular bone. Journal of Biomechanics, 43(12):24102417, 2010. [58] Md Mahbubul Islam, Vyacheslav S Bryantsev, and Adri CT Van Duin. Reaxff reactive force field simulations on the influence of teflon on electrolyte decomposition during li/swcnt anode discharge in lithium-sulfur batteries. Journal of the Electrochemical Society, 161(8):E3009, 2014. [59] Mingfu He, Rui Guo, Gustavo M Hobold, Haining Gao, and Betar M Gallant. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proceedings of the National Academy of Sciences, 117(1):73–79, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99699 | - |
| dc.description.abstract | 電池是目前生活中一個重要的儲能工具,而現今所應用的電池以鋰離子電池為大宗,為了追求未來更大電容量和續航力,需要找尋能夠替代鋰離子電池的新型電池。鋰金屬因具備高容量(3860mAh/g)及低電化學電位(-3.04Vvs. SHE),被視為下一代高能量密度電池的關鍵負極材料,然而,其商業化的目標受枝晶生長問題制約。枝晶不僅會降低電池循環壽命,更可能穿透隔膜引發短路甚至爆炸風險。此問題的核心在於電解液分解所形成的固態電解質界面(SEI)——其結構不均勻性與機械性能不足,導致鋰沉積不均且無法有效抑制枝晶的生長。外加電場能夠影響化學反應,其主要透過改變分子間的運動與相互作用,這些機制使得外加電場能夠調控反應速率與反應選擇性,影響反應產物的種類與比例。因此,外加電場作為一種外部調控手段,在提升反應效率與精確控制反應路徑方面具有重要潛力。近年來,許多分子動力學結合電場的研究,有助於從微觀層面理解這些效應與反應機制。因此,本研究希望透過分子動力學作為模擬方法在電解液系統中外加電場對離鋰子溶劑殼的影響做討論,再生成鋰金屬電池之SEI層,並且添加不同大小的電場,來觀察SEI的厚度以及測試其機械性質,希望能夠更了解外加電場和SEI之間的關係,對如何生成更加穩定的SEI有新的見解。 | zh_TW |
| dc.description.abstract | Batteries are essential energy storage devices in modern life, with lithium-ion batteries (LIBs) currently dominating commercial applications. However, to meet the growing demand for higher energy density and longer cycle life, next-generation battery systems are being actively explored. Lithium metal, owing to its exceptionally high theoretical specific capacity (3860 mAh/g) and low electrochemical potential (–3.04 V vs. SHE), is considered a promising anode material for high-energy-density batteries. Nevertheless, its commercialization is hindered by the issue of lithium dendrite growth, which not only reduces cycling stability but also poses serious safety risks due to potential short-circuiting through the separator and even thermal runaway.
At the core of this problem lies the solid electrolyte interphase (SEI), a passivation layer formed by the decomposition of electrolyte components. The inhomogeneous structure and poor mechanical integrity of the SEI often lead to uneven lithium deposition and insufficient suppression of dendrites. External electric fields have the ability to influence chemical reactions by altering molecular motion and intermolecular interactions, thereby affecting reaction rates and selectivity, as well as the distribution of products. As a result, the application of external electric fields presents a promising strategy for modulating interfacial reactions and controlling reaction pathways with greater precision. In recent years, molecular dynamics (MD) simulations combined with electric fields have provided valuable microscopic insights into these mechanisms. In this study, we employ MD simulations to investigate the influence of externally applied electric fields on the Li⁺ solvation shell in the electrolyte system. Subsequently, the formation of the SEI layer at the lithium–electrolyte interface is simulated under varying electric field strengths, with a focus on analyzing its thickness and evaluating its mechanical properties. The goal is to gain a deeper understanding of the relationship between electric field conditions and SEIcharacteristics, thereby contributing to the development of more stable and robust SEI layers for future lithium metal batteries. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:24:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:24:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 第一章 緒論1 1.1前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2鋰金屬電池 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.2.1 鋰枝晶 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2.2 固態電解質界面 (SEI) . . . . . . . . . . . . . . . . . . . . . . . .4 1.3 溶劑殼層 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.3.1 溶劑殼和 SEI 的關係 . . . . . . . . . . . . . . . . . . . . . . . .7 1.4 外加電場的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 1.4.1 外加電場對反應途徑之影響 . . . . . . . . . . . . . . . . . . . .8 1.4.2 外加電場對電解液的影響 . . . . . . . . . . . . . . . . . . . . . .10 1.4.3 電場對電池系統的影響 . . . . . . . . . . . . . . . . . . . . . . .12 1.4.3.1透過添加劑改變局部電場 . . . . . . . . . . . . . . .13 1.4.3.2外加電場對 SEI 的影響 . . . . . . . . . . . . . . . .14 第二章 研究方法16 2.1 量子力學和分子動力學的發展 . . . . . . . . . . . . . . . . . . . . .16 2.1.1 ReaxFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 2.1.2 模擬軟體 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 2.2 SEI 測量方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.2.1 SEI 的機械性質 . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.2.1.1奈米壓痕試驗 . . . . . . . . . . . . . . . . . . . . . .22 2.2.1.2實驗測量的侷限性 . . . . . . . . . . . . . . . . . . .23 2.3電解質和鋰鹽的分解反應 . . . . . . . . . . . . . . . . . . . . . . . .25 2.4徑向分佈函數 (Radial Distribution Function, RDF) . . . . . . . . . . .26 第三章 系統設置及實驗結果28 3.1 模型設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 3.1.1 電解液系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.1.2 SEI 層生成 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 3.1.3 SEI 的邊界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 3.2 外加電場對電解液溶劑殼結構之影響 . . . . . . . . . . . . . . . . .33 3.2.1 不同電場下的 RDF . . . . . . . . . . . . . . . . . . . . . . . . . .33 3.2.1.1 Li-Oc . . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.2.1.2 Li-P . . . . . . . . . . . . . . . . . . . . . . . . . . .36 3.2.2 溶劑殼狀態分佈 . . . . . . . . . . . . . . . . . . . . . . . . . . .38 3.3 外加電場對 SEI 的影響 . . . . . . . . . . . . . . . . . . . . . . . . .41 3.3.1 SEI 厚度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 3.3.2 機械性質測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 3.3.3 不同電場下 SEI 的均勻性 . . . . . . . . . . . . . . . . . . . . . .43 第四章 結論與未來展望48 4.1結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 4.2未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 4.2.1 脈衝電場 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 參考文獻 52 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | 固態電解質界面 | zh_TW |
| dc.subject | 外加電場 | zh_TW |
| dc.subject | ReaxFF | zh_TW |
| dc.subject | ReaxFF | en |
| dc.subject | External Electric Field | en |
| dc.subject | Molecular Dynamics | en |
| dc.subject | SEI | en |
| dc.title | 利用分子動力學探討外加電場對鋰金屬電池中溶劑層 和固態電解質界面的影響 | zh_TW |
| dc.title | Molecular Dynamics Investigation of the the Effects of Electric Fields on Electrolyte Solvation and Solid Electrolyte Interphase in Lithium Metal Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳國慶;陳柏端;蔡秉均 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Ching Chen;Po-Tuan Chen;Ping-Chun Tsai | en |
| dc.subject.keyword | 固態電解質界面,分子動力學,ReaxFF,外加電場, | zh_TW |
| dc.subject.keyword | SEI,Molecular Dynamics,ReaxFF,External Electric Field, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202502876 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 25.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
