請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭輔仁 | zh_TW |
| dc.contributor.advisor | Fu-Ren Xiao | en |
| dc.contributor.author | 劉羽軒 | zh_TW |
| dc.contributor.author | Yu-Syuan Liu | en |
| dc.date.accessioned | 2025-09-17T16:23:46Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Churpek, M. M., Adhikari, R., & Edelson, D. P. (2016). The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation, 102, 1-5.
[2] Keim-Malpass, J., & Moorman, L. P. (2021). Nursing and precision predictive analytics monitoring in the acute and intensive care setting: An emerging role for responding to COVID-19 and beyond. International journal of nursing studies advances, 3, 100019. [3] Young, L. B., Chan, P. S., Lu, X., Nallamothu, B. K., Sasson, C., & Cram, P. M. (2011). Impact of telemedicine intensive care unit coverage on patient outcomes: a systematic review and meta-analysis. Archives of internal medicine, 171(6), 498-506. [4] Gerry, S., Bonnici, T., Birks, J., Kirtley, S., Virdee, P. S., Watkinson, P. J., & Collins, G. S. (2020). Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology. bmj, 369. [5] Weenk, M., van Goor, H., Frietman, B., Engelen, L. J., van Laarhoven, C. J., Smit, J., ... & van de Belt, T. H. (2017). Continuous monitoring of vital signs using wearable devices on the general ward: pilot study. JMIR mHealth and uHealth, 5(7), e7208. [6] Muralitharan, S., Nelson, W., Di, S., McGillion, M., Devereaux, P. J., Barr, N. G., & Petch, J. (2021). Machine learning–based early warning systems for clinical deterioration: systematic scoping review. Journal of medical Internet research, 23(2), e25187. [7] Morid, M. A., Sheng, O. R. L., & Dunbar, J. (2023). Time series prediction using deep learning methods in healthcare. ACM Transactions on Management Information Systems, 14(1), 1-29. [8] Lauritsen, S. M., Kalør, M. E., Kongsgaard, E. L., Lauritsen, K. M., Jørgensen, M. J., Lange, J., & Thiesson, B. (2020). Early detection of sepsis utilizing deep learning on electronic health record event sequences. Artificial Intelligence in Medicine, 104, 101820. [9] Gu, X., Liu, Y., Mohsin, Z., Bedford, J., Thakur, A., Watkinson, P., ... & Clifton, D. (2025, February). Are Time Series Foundation Models Ready for Vital Sign Forecasting in Healthcare?. In Proceedings of the 4th Machine Learning for Health Symposium (Proceedings of Machine Learning Research (Vol. 259, pp. 401-419). [10] Tyler, J., Choi, S. W., & Tewari, M. (2020). Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: a new paradigm for clinical medicine. Current opinion in systems biology, 20, 17-25. [11] Pasha, M. F., Shaikh, A., Adil, M., & Singh, M. (2023). Time series forecasting using LSTM and ARIMA: An analysis of combinations. International Journal of Advanced Computer Science and Applications (IJACSA), 14(1), 276–283. [12] Shah, D., & Thaker, M. (2024). A review of time series forecasting methods. International journal of research and analytical reviews, 11(749), 10-1729. [13] Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., ... & Januschowski, T. (2022). Deep learning for time series forecasting: Tutorial and literature survey. ACM Computing Surveys, 55(6), 1-36. [14] Deng, Y., Liu, S., Wang, Z., Wang, Y., Jiang, Y., & Liu, B. (2022). Explainable time-series deep learning models for the prediction of mortality, prolonged length of stay and 30-day readmission in intensive care patients. Frontiers in Medicine, 9, 933037. [15] Weerakody, P. B., Wong, K. W., Wang, G., & Ela, W. (2021). A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing, 441, 161-178. [16] Qian, L., Yang, Y., Du, W., Wang, J., Dobsoni, R., & Ibrahim, Z. (2024). Beyond Random Missingness: Clinically Rethinking for Healthcare Time Series Imputation. arXiv preprint arXiv:2405.17508. [17] Cissoko, M. B. H., Castelain, V., & Lachiche, N. (2025). Multi-Way adaptive Time Aware LSTM for irregularly collected sequential ICU data. Expert Systems with Applications, 261, 125548. [18] Tipirneni, S., & Reddy, C. K. (2022). Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series. ACM Transactions on Knowledge Discovery from Data (TKDD), 16(6), 1-17. [19] Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024, August). Foundation models for time series analysis: A tutorial and survey. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining (pp. 6555-6565). [20] Rama Krishna Kottapalli, S., Hubli, K., Chandrashekhara, S., Jain, G., Hubli, S., Botla, G., & Doddaiah, R. (2025). Foundation Models for Time Series: A Survey. arXiv e-prints, arXiv-2504. [21] Das, A., Kong, W., Sen, R., & Zhou, Y. (2024, July). A decoder-only foundation model for time-series forecasting. In Forty-first International Conference on Machine Learning. [22] Hasegawa, A., Daub, C., Carninci, P., Hayashizaki, Y., & Lassmann, T. (2014). MOIRAI: a compact workflow system for CAGE analysis. BMC bioinformatics, 15, 1-7. [23] Liu, X., Liu, J., Woo, G., Aksu, T., Liang, Y., Zimmermann, R., ... & Sahoo, D. (2024). Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts. arXiv preprint arXiv:2410.10469. [24] Shi, X., Wang, S., Nie, Y., Li, D., Ye, Z., Wen, Q., & Jin, M. (2024). Time-moe: Billion-scale time series foundation models with mixture of experts. arXiv preprint arXiv:2409.16040. [25] Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024, August). Foundation models for time series analysis: A tutorial and survey. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining (pp. 6555-6565). [26] Ye, J., Zhang, W., Yi, K., Yu, Y., Li, Z., Li, J., & Tsung, F. (2024). A survey of time series foundation models: Generalizing time series representation with large language model. arXiv preprint arXiv:2405.02358. [27] Rama Krishna Kottapalli, S., Hubli, K., Chandrashekhara, S., Jain, G., Hubli, S., Botla, G., & Doddaiah, R. (2025). Foundation Models for Time Series: A Survey. arXiv e-prints, arXiv-2504. [28] Żukowska, N., Goswami, M., Wiliński, M., Potosnak, W., & Dubrawski, A. (2024). Towards Long-Context Time Series Foundation Models. arXiv preprint arXiv:2409.13530. [29] Zhuang, W., Chen, C., & Lyu, L. (2023). When foundation model meets federated learning: Motivations, challenges, and future directions. arXiv preprint arXiv:2306.15546. [30] Li, X., Peng, L., Wang, Y. P., & Zhang, W. (2025). Open challenges and opportunities in federated foundation models towards biomedical healthcare. BioData Mining, 18(1), 2. [31] Welch, J., Dean, J., & Hartin, J. (2022). Using NEWS2: an essential component of reliable clinical assessment. Clinical Medicine, 22(6), 509-513. [32] Zaidi, H., Bader-El-Den, M., & McNicholas, J. (2019). Using the National Early Warning Score (NEWS/NEWS 2) in different Intensive Care Units (ICUs) to predict the discharge location of patients. BMC Public Health, 19(1), 1231. [33] Price, C., Prytherch, D., Kostakis, I., & Briggs, J. (2023). Evaluating the performance of the National Early Warning Score in different diagnostic groups. Resuscitation, 193, 110032. [34] Kim, S. H., Choi, H. S., Jin, E. S., Choi, H., Lee, H., Lee, S. H., ... & Kim, Y. (2021). Predicting severe outcomes using national early warning score (NEWS) in patients identified by a rapid response system: a retrospective cohort study. Scientific reports, 11(1), 18021. [35] Guan, G., Lee, C. M. Y., Begg, S., Crombie, A., & Mnatzaganian, G. (2022). The use of early warning system scores in prehospital and emergency department settings to predict clinical deterioration: A systematic review and meta-analysis. PLoS One, 17(3), e0265559. [36] Lauritsen, S. M., Kristensen, M., Olsen, M. V., Larsen, M. S., Lauritsen, K. M., Jørgensen, M. J., ... & Thiesson, B. (2020). Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nature communications, 11(1), 3852. [37] Hyland, S. L., Faltys, M., Hüser, M., Lyu, X., Gumbsch, T., Esteban, C., ... & Merz, T. M. (2019). Machine learning for early prediction of circulatory failure in the intensive care unit. arXiv preprint arXiv:1904.07990. [38] Ribeiro, J. K., dos Santos, H. D., Barletta, F., da Silva, M. C., Vieira, R., Morales, H. M., & da Costa Rocha, C. (2020, July). A machine learning early warning system: multicenter validation in Brazilian hospitals. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 321-326). IEEE. [39] Weenk, M., Bredie, S. J., Koeneman, M., Hesselink, G., van Goor, H., & van de Belt, T. H. (2020). Continuous monitoring of vital signs in the general ward using wearable devices: randomized controlled trial. Journal of medical Internet research, 22(6), e15471. [40] Leenen, J. P., Rasing, H. J., van Dijk, J. D., Kalkman, C. J., Schoonhoven, L., & Patijn, G. A. (2022). Feasibility of wireless continuous monitoring of vital signs without using alarms on a general surgical ward: A mixed methods study. PLoS One, 17(3), e0265435. [41] Reichl, J. J., Leifke, M., Wehrli, S., Kunz, D., Geissmann, L., Broisch, S., ... & Eckstein, J. (2024). Pilot study for the development of an automatically generated and wearable-based early warning system for the detection of deterioration of hospitalized patients of an acute care hospital. Archives of Public Health, 82(1), 179. [42] Itelman, E., Shlomai, G., Leibowitz, A., Weinstein, S., Yakir, M., Tamir, I., ... & Segal, G. (2022). Assessing the usability of a novel wearable remote patient monitoring device for the early detection of in-hospital patient deterioration: observational study. JMIR Formative Research, 6(6), e36066. [43] Breteler, M. J., Huizinga, E., van Loon, K., Leenen, L. P., Dohmen, D. A., Kalkman, C. J., & Blokhuis, T. J. (2018). Reliability of wireless monitoring using a wearable patch sensor in high-risk surgical patients at a step-down unit in the Netherlands: a clinical validation study. BMJ open, 8(2), e020162. [44] Joshi, M., Ashrafian, H., Aufegger, L., Khan, S., Arora, S., Cooke, G., & Darzi, A. (2019). Wearable sensors to improve detection of patient deterioration. Expert review of medical devices, 16(2), 145-154. [45] Chyon, F. A., Suman, M. N. H., Fahim, M. R. I., & Ahmmed, M. S. (2022). Time series analysis and predicting COVID-19 affected patients by ARIMA model using machine learning. Journal of virological methods, 301, 114433. [46] Safi, S. K., & Sanusi, O. I. (2021). A hybrid of artificial neural network, exponential smoothing, and ARIMA models for COVID-19 time series forecasting. Model Assisted Statistics and Applications, 16(1), 25-35. [47] Pelagatti, M., & Maranzano, P. (2021). Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19. Health Policy, 125(9), 1188-1199. [48] Chan, M. C., Pai, K. C., Su, S. A., Wang, M. S., Wu, C. L., & Chao, W. C. (2022). Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan. BMC Medical Informatics and Decision Making, 22(1), 75. [49] Li, X., Wu, R., Zhao, W., Shi, R., Zhu, Y., Wang, Z., ... & Wang, D. (2023). Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury. Scientific Reports, 13(1), 5223. [50] Khayyat, M., Laabidi, K., Almalki, N., & Al-Zahrani, M. (2021). Time Series Facebook Prophet Model and Python for COVID-19 Outbreak Prediction. Computers, Materials & Continua, 67(3). [51] Das, A., Kong, W., Sen, R., & Zhou, Y. (2024, July). A decoder-only foundation model for time-series forecasting. In Forty-first International Conference on Machine Learning. [52] Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815. [53] Rasul, K., Ashok, A., Williams, A. R., Ghonia, H., Bhagwatkar, R., Khorasani, A., ... & Rish, I. (2023). Lag-llama: Towards foundation models for probabilistic time series forecasting. arXiv preprint arXiv:2310.08278. [54] Weenk, M., van Goor, H., Frietman, B., Engelen, L. J., van Laarhoven, C. J., Smit, J., ... & van de Belt, T. H. (2017). Continuous monitoring of vital signs using wearable devices on the general ward: pilot study. JMIR mHealth and uHealth, 5(7), e7208. [55] Weenk, M., Koeneman, M., van de Belt, T. H., Engelen, L. J., van Goor, H., & Bredie, S. J. (2019). Wireless and continuous monitoring of vital signs in patients at the general ward. Resuscitation, 136, 47-53. [56] Angelucci, A., Greco, M., Cecconi, M., & Aliverti, A. (2025). Wearable devices for patient monitoring in the intensive care unit. Intensive Care Medicine Experimental, 13(1), 26. [57] Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G., & Galstyan, A. (2019). Multitask learning and benchmarking with clinical time series data. Scientific data, 6(1), 96. [58] Purushotham, S., Meng, C., Che, Z., & Liu, Y. (2018). Benchmarking deep learning models on large healthcare datasets. Journal of biomedical informatics, 83, 112-134. [59] Gu, X., Liu, Y., Mohsin, Z., Bedford, J., Thakur, A., Watkinson, P., ... & Clifton, D. (2025, February). Are Time Series Foundation Models Ready for Vital Sign Forecasting in Healthcare?. In Proceedings of the 4th Machine Learning for Health Symposium (Proceedings of Machine Learning Research (Vol. 259, pp. 401-419). [60] Janssen, K. J., Donders, A. R. T., Harrell Jr, F. E., Vergouwe, Y., Chen, Q., Grobbee, D. E., & Moons, K. G. (2010). Missing covariate data in medical research: to impute is better than to ignore. Journal of clinical epidemiology, 63(7), 721-727. [61] Angelucci, A., Greco, M., Cecconi, M., & Aliverti, A. (2025). Wearable devices for patient monitoring in the intensive care unit. Intensive Care Medicine Experimental, 13(1), 26. [62] Namazi, A., Modiri, E., Blesić, S., Knežević, O. M., & Mirkov, D. M. (2025). Comparative Analysis of Machine Learning Techniques for Heart Rate Prediction Employing Wearable Sensor Data. Sports, 13(3), 87. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99693 | - |
| dc.description.abstract | 本研究評估穿戴式智慧醫療裝置與時間序列預測模型於臨床生理監測中之實際應用與效能。基於目前普通病房面臨監測密度不足與人力缺乏之挑戰,我們希望透過智慧醫材結合時間序列模型強化早期預警能力,以減輕臨床醫護負荷。我們選用傳統統計模型、機器學習模型與近期發展之基礎模型,針對病人生命徵象數值進行回歸預測與預警趨勢分類任務之訓練與分析。本研究資料涵蓋台大醫院加護病房與普通病房,並包含四類異質性資料:加護病房生命監測器、加護病房穿戴式智慧醫療裝置、普通病房穿戴式智慧醫療裝置與台大醫院病歷系統紀錄。本研究對異質性資料採統一前處理流程,標準化時間格式、處理缺失與間斷資料,並建構滑動視窗架構,模擬連續監測情境下之預測任務。資料比對結果顯示,穿戴式裝置於心率指標表現出良好之趨勢一致性,在與加護病房監測器及病歷紀錄比對中皆具一定相關性,顯示其監測數據具備進一步進行時間序列分析之潛力。研究結果顯示,裝置種類與資料環境顯著影響模型表現,於回歸任務中,基礎模型在高頻資料中具備優勢,惟低頻或樣本數較小之資料,則顯示傳統模型表現亦不失穩定。另外,趨勢分類任務則因受限於臨床資料不平衡與指標設計,就上升趨勢辨識面臨重大挑戰。儘管如此,其初步結果已顯示智慧醫療裝置結合時間序列模型已具備臨床應用的潛力,為臨床於未來應用上,提供導入架構與即時模組的選項,實現高頻生命徵象監測之臨床應用。 | zh_TW |
| dc.description.abstract | This study evaluates the practical application and predictive performance of wearable devices integrated with time-series forecasting models for clinical vital sign monitoring. In response to the current challenges of insufficient monitoring density and limited clinical manpower in general wards, we aim to enhance early warning capabilities through the combination of smart medical devices and time-series models, reducing the workload of healthcare professionals. We utilized traditional statistical models, machine learning models, and recently developed time-series foundation models to perform both regression tasks and trend classification of patients’ vital sign trajectories. The dataset was collected from the intensive care unit (ICU) and general ward of National Taiwan University Hospital, comprising four heterogeneous data sources: ICU physiological monitor data, ICU wearable device data, general ward wearable device data, and structured vital sign records from electronic medical records. To handle the heterogeneity across datasets, we implemented a standardized preprocessing pipeline that included time format unification, handling of missing and discontinuous data, and a sliding window framework to simulate continuous monitoring conditions. Validation results showed that wearable devices, particularly in capturing heart rate, exhibited consistent trend alignment and a certain degree of correlation with both ICU monitors and EMR records, indicating their potential suitability for downstream time-series analysis. The results indicate that both device type and data environment significantly impact model performance. In regression tasks, foundation models exhibited superior performance on high-frequency data, whereas traditional statistical models also presented stable results in low-frequency or small-sample contexts. For the classification of NEWS (National Early Warning Score) trends, particularly for detecting elevated trends, challenges arose due to imbalanced clinical data and the discrete nature of the scoring system. Nonetheless, preliminary findings suggest that integrating wearable devices with time-series models holds clinical potential and may serve as the foundation for future implementations of real-time early warning systems for high-frequency vital sign monitoring. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:23:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:23:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT IV CONTENTS VI LIST OF ABBREVIATIONS VIII LIST OF FIGURES IX LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 1.1 Current Challenges in the Clinical Environment 1 1.2 Recent Development of Smart Medical Devices 2 1.3 Time-Series Models 4 1.4 Experiment Objective 6 CHAPTER 2 LITERATURE REVIEW 9 2.1 The Evolution of Time-Series Forecasting Tasks 9 2.2 Applications and Limitations of Time Series Forecasting in Healthcare 11 2.3 The Emergence and Development of Time Series Foundation Models (TSFMs) 14 2.4 Utilization and Challenges of TSFMs in Clinical Settings 17 2.5 National Early Warning System Introduction and Early Prediction 19 2.6 Clinical Applications of Wearable Devices in General Wards 23 2.7 Integration of NEWS Systems and Wearable Devices 24 2.8 Models Introduction 26 CHAPTER 3 METHODOLOGY 38 3.1 Device and Dataset 38 3.2 Data Preprocessing 45 3.3 Experimental Design 49 3.4 Device and Model Performance Evaluation Metrics 60 CHAPTER 4 RESULT 66 4.1 Device Accuracy Analysis 66 4.2 ICU Monitor Data (Model Performance Result) 75 4.3 ICU Wearable Device Data (Model Performance Result) 82 4.4 General Ward Wearable Device Data (Model Performance Result) 90 CHAPTER 5 DISCUSSION 103 5.1 Practical Evaluation of Wearable Device Measurements 103 5.2 Analysis of the Model’s Applicability in Practice 104 5.3 Challenges in Trend Classification 109 5.4 Integration Potential with Clinical Decision Support Systems (NEWS) 111 CHAPTER 6 LIMITATION 113 6.1 Data and Sample Limitations 113 6.2 Device and Deployment Limitations 114 6.3 Model and Task Limitations 115 CHAPTER 7 CONCLUSION 117 CONFLICTS OF INTEREST 120 REFERENCE 121 APPENDIX 1 EXPERIMENT CHARTS 128 APPENDIX 2 IRB COMMITTEE CONSENT 171 | - |
| dc.language.iso | en | - |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 自動預測 | zh_TW |
| dc.subject | 基礎模型(深度學習) | zh_TW |
| dc.subject | 生命徵象 | zh_TW |
| dc.subject | 住院病人 | zh_TW |
| dc.subject | Vital Signs | en |
| dc.subject | Time Series | en |
| dc.subject | Automatic Prediction | en |
| dc.subject | Inpatients | en |
| dc.subject | Foundation Model (Deep Learning) | en |
| dc.title | 以時間序列模型預測住院病人的生命徵象:模型間之比較分析 | zh_TW |
| dc.title | Predicting Vital Signs in Inpatients Using Time Series Models: A Comparative Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖俊智;陳湧仁 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Chih Liao;Yung-Jen Chen | en |
| dc.subject.keyword | 時間序列,自動預測,基礎模型(深度學習),生命徵象,住院病人, | zh_TW |
| dc.subject.keyword | Time Series,Automatic Prediction,Foundation Model (Deep Learning),Vital Signs,Inpatients, | en |
| dc.relation.page | 173 | - |
| dc.identifier.doi | 10.6342/NTU202504221 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫療器材與醫學影像研究所 | - |
| dc.date.embargo-lift | 2030-08-06 | - |
| 顯示於系所單位: | 醫療器材與醫學影像研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 71.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
