Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99692
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡孟勳zh_TW
dc.contributor.advisorMeng-Shiun Tsaien
dc.contributor.author陳泓霖zh_TW
dc.contributor.authorHung-Lin Chenen
dc.date.accessioned2025-09-17T16:23:35Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] T. V. Hook, "Real-time shaded NC milling display," SIGGRAPH Comput. Graph., vol. 20, no. 4, pp. 15–20, 1986.
[2] M. Inui, M. Kaneda, and R. Kakio, "Fast Simulation of Sculptured Surface Milling with 3-Axis NC Machine," in Machining Impossible Shapes: IFIP TC5 WG5.3 International Conference on Sculptured Surface Machining (SSM98) November 9–11, 1998 Chrysler Technology Center, Michigan, USA, G. J. Olling, B. K. Choi, and R. B. Jerard Eds. Boston, MA: Springer US, 1999, pp. 97-108.
[3] Y. Boz, H. Erdim, and I. Lazoglu, "A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece engagement calculations in three- and five-axis virtual milling," The International Journal of Advanced Manufacturing Technology, vol. 81, no. 5, pp. 811-823, 2015.
[4] Y. Huang and J. H. Oliver, "Integrated simulation, error assessment, and tool path correction for five-axis NC milling," Journal of Manufacturing Systems, vol. 14, no. 5, pp. 331-344, 1995.
[5] X. Gong and H.-Y. Feng, "Cutter-workpiece engagement determination for general milling using triangle mesh modeling," Journal of Computational Design and Engineering, vol. 3, no. 2, pp. 151-160, 2016.
[6] M. Inui, M. Kobayashi, and N. Umezu, Cutter Engagement Feature Extraction Using Triple-Dexel Representation Workpiece Model and GPU Parallel Processing Function. 2018, pp. 189-193.
[7] H. Erdim and A. Sullivan, "Cutter Workpiece Engagement Calculations for Five-axis Milling Using Composite Adaptively Sampled Distance Fields," Procedia CIRP, vol. 8, pp. 438-443, 2013.
[8] Z. Nie and H.-Y. Feng, "Efficient Voxel-Based Workpiece Update and Cutter-Workpiece Engagement Determination in Multi-Axis Milling," Journal of Manufacturing Science and Engineering, vol. 146, no. 6, 2024.
[9] D. Yip-Hoi and X. Huang, "Cutter/Workpiece Engagement Feature Extraction from Solid Models for End Milling," Journal of Manufacturing Science and Engineering, vol. 128, no. 1, pp. 249-260, 2004.
[10] Y. Boz, H. Erdim, and I. Lazoglu, "Modeling Cutting Forces for 5-Axis Machining of Sculptured Surfaces," 2010.
[11] E. Ozturk and E. Budak, "Modeling of 5-axis milling processes," Machining Science and Technology - MACH SCI TECHNOL, vol. 11, pp. 287-311, 2007.
[12] P. Lee and Y. Altintaş, "Prediction of ball-end milling forces from orthogonal cutting data," International Journal of Machine Tools and Manufacture, vol. 36, no. 9, pp. 1059-1072, 1996.
[13] L. Yu, Y. Wang, and Y. Jin, "Envelope surface formed by cutting edge under runout error in five-axis flank milling," The International Journal of Advanced Manufacturing Technology, vol. 69, no. 1, pp. 543-553, 2013.
[14] S. Engin and Y. Altintas, "Mechanics and dynamics of general milling cutters.: Part I: helical end mills," International Journal of Machine Tools and Manufacture, vol. 41, no. 15, pp. 2195-2212, 2001.
[15] W. Li, L. Wang, G. Yu, and D. Wang, "Time-varying dynamics updating method for chatter prediction in thin-walled part milling process," Mechanical Systems and Signal Processing, vol. 159, p. 107840, 2021.
[16] O. Tuysuz and Y. Altintas, "Frequency Domain Updating of Thin-Walled Workpiece Dynamics Using Reduced Order Substructuring Method in Machining," Journal of Manufacturing Science and Engineering, vol. 139, no. 7, 2017.
[17] O. Tuysuz and Y. Altintas, "Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods," Journal of Manufacturing Science and Engineering, vol. 140, no. 1, 2017.
[18] M. Lin, C. Wang, T. Yue, G. Guo, W. Guan, and B. Shen, "Deformation prediction in flank milling of thin-walled parts based on cutter-workpiece engagement," Journal of Manufacturing Processes, vol. 115, pp. 375-386, 2024.
[19] K. Kaneko, J. Shimizu, and K. Shirase, "A Voxel-Based End Milling Simulation Method to Analyze the Elastic Deformation of a Workpiece," Journal of Manufacturing Science and Engineering, vol. 145, no. 1, 2022.
[20] C. Yue, Z. Chen, S. Y. Liang, H. Gao, and X. Liu, "Modeling machining errors for thin-walled parts according to chip thickness," The International Journal of Advanced Manufacturing Technology, vol. 103, no. 1, pp. 91-100, 2019.
[21] T. L. Schmitz and A. Honeycutt, "Analytical solutions for fixed-free beam dynamics in thin rib machining," Journal of Manufacturing Processes, vol. 30, pp. 41-50, 2017.
[22] Z.-L. Li and L.-M. Zhu, "Compensation of deformation errors in five-axis flank milling of thin-walled parts via tool path optimization," Precision Engineering, vol. 55, pp. 77-87, 2019.
[23] S. Ratchev, S. Liu, W. Huang, and A. A. Becker, "An advanced FEA based force induced error compensation strategy in milling," International Journal of Machine Tools and Manufacture, vol. 46, no. 5, pp. 542-551, 2006.
[24] W. Chen, J. Xue, D. Tang, H. Chen, and S. Qu, "Deformation prediction and error compensation in multilayer milling processes for thin-walled parts," International Journal of Machine Tools and Manufacture, vol. 49, no. 11, pp. 859-864, 2009.
[25] N. Zander et al., "FCMLab: A finite cell research toolbox for MATLAB," Advances in Engineering Software, vol. 74, pp. 49-63, 2014.
[26] J. Parvizian, A. Düster, and E. Rank, "Finite cell method," Computational Mechanics, vol. 41, 2007.
[27] A. Düster, J. Parvizian, Z. Yang, and E. Rank, "The finite cell method for three-dimensional problems of solid mechanics," Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 45, pp. 3768-3782, 2008.
[28] S. Duczek, F. Duvigneau, and U. Gabbert, "The finite cell method for tetrahedral meshes," Finite Elements in Analysis and Design, vol. 121, pp. 18-32, 2016.
[29] J. Wang, L. Quan, and K. Tang, "A prediction method based on the voxel model and the finite cell method for cutting force-induced deformation in the five-axis milling process," Computer Methods in Applied Mechanics and Engineering, vol. 367, p. 113110, 2020.
[30] Z.-J. Hong, "<基於八元樹法之五軸切削力及切削彎矩估測>," 2022.
[31] C.-M. Ou, "<整合刀具動態與切削體素模型於五軸加工與顫振預測之技術開發>," 2024.
[32] 謝恩平 and E.-P. Hsieh, "應用八元樹法於銑削力預估之五軸虛擬工具機系統." [Online]. Available: http://140.116.207.99/handle/987654321/227749
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99692-
dc.description.abstract本研究首先復刻並驗證既有的體素模型與有限單元法(Finite Cell Method, FCM)的整合框架,過程中發現切削力與形變計算存在不匹配的現象。為解決此問題,本研究進一步提出改良之迭代耦合策略,以有效處理薄壁零件銑削加工中「切削力–形變耦合」的預測難題。
研究方法方面,首先利用STL模型建立八元樹結構的體素模型,透過三階段碰撞檢測(AABB、Plane–AABB 與 SAT)有效地完成工件的幾何離散化;接著以有限單元法於嵌入域內計算工件的剛性,並利用積分子網格細化邊界,確保模型計算的精度。同時,本研究採用局部剛性更新策略,僅針對受材料移除影響的積分網格進行重組,以降低計算成本。在切削力的計算方面,採用七參數通用模型描述刀具輪廓與螺旋刃,並配合切削範圍表格快速判定刀具與工件之間的接觸區域,透過切屑厚度的計算進一步推導切向、徑向及軸向分力。
此外,針對傳統「先力後變形」方法所產生的計算不一致與震盪現象,本研究引入Aitken–放鬆混合迭代演算法,每一插補點同步更新切削力與局部剛度矩陣,直至Dice係數與位移場誤差皆達收斂標準為止。
模擬驗證結果顯示,在相同負載條件下,本模型對最大節點位移的預測誤差約為 6.6%,與 SolidWorks® 有限元素分析的結果具有良好的一致性。此外,針對壁厚、切深及切寬等參數進行的模擬實驗,其觀察到的變形趨勢皆符合理論預期,進一步驗證了本模型的有效性與合理性。最後,透過與實際加工實驗之比較,亦確認了本研究所提出模型的可靠性,證明其具有實務應用價值,而非僅止於理論推演。
綜合上述,本研究建立的「體素FCM 耦合形變分析系統」可作為薄壁零件加工參數優化與靜態形變預測的基礎。未來研究將進一步拓展至多尺度網格,並將所提出的迭代耦合框架延伸至動態形變與顫振分析,探索切削加工的動態特性,以實現完整動態加工模擬的終極目標。
zh_TW
dc.description.abstractThis study first replicates and verifies an existing coupled framework integrating the voxel-based modeling approach with the Finite Cell Method (FCM). During this process, discrepancies between cutting force and deformation calculations were identified. To address this issue, an improved iterative coupling strategy is proposed to effectively handle the "cutting force-deformation coupling" problem encountered in milling thin-walled parts.
Regarding the methodology, an octree-based voxel model is initially generated from an STL file, and a three-stage collision detection (AABB, Plane–AABB, and SAT) is implemented to efficiently discretize the workpiece geometry. Subsequently, the FCM is applied within the embedded domain to compute the stiffness of the workpiece, while integral sub-cell refinement at boundaries ensures computational accuracy. Additionally, this study employs a partial stiffness matrix updating approach, reassembling the integral mesh only in regions affected by material removal, significantly reducing computational cost. To calculate the cutting forces, a generalized seven-parameter model describing tool profiles and helical cutting edges is adopted, coupled with a rapid determination method of the Cutter-Workpiece Engagement (CWE) based on a pre-constructed engagement table. The tangential, radial, and axial cutting forces are then computed through the undeformed chip thickness.
Furthermore, addressing the inconsistencies and oscillations in traditional "force-before-deformation" methods, an Aitken relaxation-based iterative algorithm is introduced. At each interpolation point, cutting forces and local stiffness matrices are updated simultaneously until both the Dice coefficient and displacement field errors meet convergence criteria.
Simulation results indicate that under identical loading conditions, the proposed model's maximum node displacement predictions exhibit a 6.6% error compared with SolidWorks® finite element analysis, demonstrating good agreement. Additional parametric studies on varying wall thicknesses, depths of cut, and widths of cut yielded deformation trends consistent with theoretical expectations, further validating the model's effectiveness and accuracy. Finally, through comparisons with actual machining experiments, the reliability of the developed model is confirmed, proving its practical applicability beyond theoretical validation.
In summary, the established "Voxel-FCM coupled deformation analysis system" in this study can serve as a foundational tool for optimizing machining parameters and predicting static deformation in thin-walled components. Future research will extend this approach to multi-scale meshes and dynamic deformation and chatter analyses, exploring dynamic characteristics in milling processes, with the ultimate goal of achieving comprehensive dynamic machining simulations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:23:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:23:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
誌謝 II
摘要 III
Abstract V
目次 VII
圖次 IX
表次 XII
第 1 章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.3 論文簡介 5
第 2 章 實體建模 6
2.1 適應性八元樹體素簡介 6
2.2 STL檔轉體素 9
第 3 章 有限單元法 16
3.1 有限單元法簡介 16
3.1.1 解網格 16
3.1.2 積分網格 19
3.2 局部更新剛性矩陣法 21
第 4 章 切削力模擬 23
4.1 路徑處理 23
4.1.1 刀尖點線性插補 23
4.1.2 刀尖點圓弧插補 24
4.1.3 刀軸向量線性插補 25
4.2 一般化刀具 26
4.3 體素與刀具干涉判斷 32
4.3.1 快速碰撞檢查 32
4.3.2 隱函數判斷 33
4.4 切削範圍陣列 34
4.4.1 體素橫跨角初始化 34
4.4.2 建立切削範圍表格 35
4.5 切削力學模型 37
第 5 章 薄壁加工形變預測流程 43
第 6 章 實驗與模擬驗證 52
6.1.1 與商用軟體比較 52
6.1.2 與剛性模型比較 54
6.1.3 各工況趨勢比較 56
6.1.4 與實驗比較 61
第 7 章 結論與未來工作 67
7.1 結論 67
7.2 未來工作 68
參考文獻 69
-
dc.language.isozh_TW-
dc.subject薄壁加工zh_TW
dc.subject切削力學zh_TW
dc.subject體素法zh_TW
dc.subject有限單元法zh_TW
dc.subjectCutting mechanicsen
dc.subjectVoxel methoden
dc.subjectThin-walled machiningen
dc.subjectFinite Cell Methoden
dc.title整合體素法與有限單元法於薄壁加工之形變分析zh_TW
dc.titleAn Integrated Voxel and Finite Cell Method for Deformation Analysis in Thin-Walled Machiningen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭志鈞;劉崇慶zh_TW
dc.contributor.oralexamcommitteeChih-Chun Cheng;Chung-Ching Liuen
dc.subject.keyword薄壁加工,切削力學,體素法,有限單元法,zh_TW
dc.subject.keywordThin-walled machining,Cutting mechanics,Voxel method,Finite Cell Method,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202503305-
dc.rights.note未授權-
dc.date.accepted2025-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved