Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99687
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳日騰zh_TW
dc.contributor.advisorRih-Teng Wuen
dc.contributor.author洪兆昇zh_TW
dc.contributor.authorChao-Sheng Hungen
dc.date.accessioned2025-09-17T16:22:41Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationShirley J Dyke, Dionisio Bernal, James Beck, and Carlos Ventura. Experimental phase II of the structural health monitoring benchmark problem. Proceedings of the 16th ASCE Engineering Mechanics Conference, 2003.
Hamed Fathnejat, Behrouz Ahmadi-Nedushan, Sahand Hosseininejad, Mohammad Noori, and Wael A. Altabey. A data-driven structural damage identification approach using deep convolutional-attention-recurrent neural architecture under temperature variations. Engineering Structures, 276:115311, 2023. ISSN 0141-0296. doi: https://doi.org/10.1016/j.engstruct.2022.115311. URL https://www.sciencedirect.com/science/article/pii/S0141029622013876.
Suzana Ereiz, Ivan Duvnjak, and Javier Fernando Jiménez-Alonso. Review of finite element model updating methods for structural applications. Structures, 41:684–723, 2022. ISSN 2352-0124. doi: https://doi.org/10.1016/j.istruc.2022.05.041. URL https://www.sciencedirect.com/science/article/pii/S2352012422004039.
Byung Kwan Oh, Doyoung Kim, and Hyo Seon Park. Modal response-based visual system identification and model updating methods for building structures. Computer-Aided Civil and Infrastructure Engineering, 32(1):34–56, 2017.
Khairul H Padil, Norhisham Bakhary, and Hong Hao. The use of a non-probabilistic artificial neural network to consider uncertainties in vibration-based-damage detection. Mechanical Systems and Signal Processing, 83:194–209, 2017.
Sheng-En Fang and Ricardo Perera. Damage identification by response surface based model updating using d-optimal design. Mechanical Systems and Signal Processing, 25(2):717–733, 2011.
Hamed Ebrahimian, Rodrigo Astroza, Joel P Conte, and Raymond A de Callafon. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation. Mechanical Systems and Signal Processing, 84:194–222, 2017.
Jing Jia and Ying Li. Deep learning for structural health monitoring: Data, algorithms, applications, challenges, and trends. Sensors, 23(21):8824, 2023.
Maren David Dangut, Ian K Jennions, Steve King, and Zakwan Skaf. Application of deep reinforcement learning for extremely rare failure prediction in aircraft maintenance. Mechanical Systems and Signal Processing, 171:108873, 2022.
Wihan Booyse, Daniel N Wilke, and Stephan Heyns. Deep digital twins for detection, diagnostics and prognostics. Mechanical Systems and Signal Processing, 140:106612, 2020.
P Gardner, R Fuentes, N Dervilis, C Mineo, S G Pierce, E J Cross, and K Worden. Machine learning at the interface of structural health monitoring and non-destructive evaluation. Philosophical Transactions of the Royal Society A, 378(2182):20190581, 2020.
Martin ØØ Jull, Sandro DR Amador, Anders Skafte, Jannick B Hansen, Manuel L Aenlle, Rune Brincker, et al. One-step fe model updating using local correspon-
dence and mode shape orthogonality. Shock and Vibration, 2019, 2019.
David J Ewins. Modal testing: theory, practice and application. John Wiley & Sons, 2009.
F Asma. Finite element model updating using lagrange interpolation. Mechanics & Mechanical Engineering, 23(1), 2019.
Ilaria Venanzi, Alban Kita, Nicola Cavalagli, Laura Ierimonti, and Filippo Ubertini. Earthquake-induced damage localization in an historic masonry tower through long-term dynamic monitoring and fe model calibration. Bulletin of Earthquake Engineering, 18:2247–2274, 2020.
Mohammad Rezaiee-Pajand, Alireza Entezami, and Hassan Sarmadi. A sensitivity-based finite element model updating based on unconstrained optimization problem and regularized solution methods. Structural Control and Health Monitoring, 27(5):e2481, 2020.
Amin Nozari, Iman Behmanesh, Seyedsina Yousefianmoghadam, Babak Moaveni, and Andreas Stavridis. Effects of variability in ambient vibration data on model updating and damage identification of a 10-story building. Engineering Structures, 151:540–553, 2017.
Javier Naranjo-Pérez, María Infantes, Javier Fernando Jiménez-Alonso, and Andrés Sáez. A collaborative machine learning-optimization algorithm to improve the finite element model updating of civil engineering structures. Engineering Structures, 225:111327, 2020.
Rupika P Bandara, Tommy HT Chan, and David P Thambiratnam. Structural damage detection method using frequency response functions. Structural Health Monitoring, 13(4):418–429, 2014.
Hassan Sarmadi, Abbas Karamodin, and Alireza Entezami. A new iterative model updating technique based on least squares minimal residual method using measured modal data. Applied Mathematical Modelling, 40(23):10323–10341, 2016. ISSN 0307-904X. doi: https://doi.org/10.1016/j.apm.2016.07.015. URL https://www.sciencedirect.com/science/article/pii/S0307904X16303961.
Giorgio Lacanna, Michele Betti, Maurizio Ripepe, and Gianni Bartoli. Dynamic identification as a tool to constrain numerical models for structural analysis of historical buildings. Frontiers in Built Environment, 6:40, 2020.
C Costa, D Ribeiro, P Jorge, R Silva, A Arêde, and R Calçada. Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Engineering Structures, 123:354–371, 2016.
Omid Sedehi, Costas Papadimitriou, and Lambros S. Katafygiotis. Probabilistic hierarchical Bayesian framework for time-domain model updating and robust predictions. Mechanical Systems and Signal Processing, 123:648–673, 2019. ISSN 0888-3270. doi: https://doi.org/10.1016/j.ymssp.2018.09.041. URL https://www.sciencedirect.com/science/article/pii/S0888327018306575.
Pinghe Ni, Qiang Li, Qiang Han, Kun Xu, and Xiuli Du. Substructure approach for Bayesian probabilistic model updating using response reconstruction.
Zhijun Li, Dongming Feng, Maria Q Feng, and Xiuli Xu. System identification of the suspension tower of Runyang Bridge based on ambient vibration tests. Smart Struct. Syst, 19(5):523–538, 2017.
Dan Li and Jian Zhang. Finite element model updating through derivative-free optimization algorithm. Mechanical Systems and Signal Processing, 185:109726, 2023. ISSN 0888-3270. doi: https://doi.org/10.1016/j.ymssp.2022.109726. URL https://www.sciencedirect.com/science/article/pii/S0888327022007981.
S Kamali, S Mariani, MA Hadianfard, and A Marzani. Inverse surrogate model for deterministic structural model updating based on random forest regression. Mechanical Systems and Signal Processing, 215:111416, 2024.
Yildirim Serhat Erdogan, Mustafa Gul, F Necati Catbas, and Pelin Gundes Bakir. Investigation of uncertainty changes in model outputs for finite-element model updating using structural health monitoring data. Journal of Structural Engineering, 140(11):04014078, 2014.
Giulio Mariniello, Tommaso Pastore, Costantino Menna, Paola Festa, and Domenico Asprone. Structural damage detection and localization using decision tree ensemble and vibration data. Computer-Aided Civil and Infrastructure Engineering, 36(9):1129–1149, 2021.
Chencho, Jun Li, Hong Hao, Ruhua Wang, and Ling Li. Development and application of random forest technique for element level structural damage quantification. Structural Control and Health Monitoring, 28(3):e2678, 2021.
Yang Deng, Meng Zhang, Dong-Ming Feng, and Ai-Qun Li and. Predicting fatigue damage of highway suspension bridge hangers using weigh-in-motion data and machine learning. Structure and Infrastructure Engineering, 17(2):233–248, 2021. doi:10.1080/15732479.2020.1734632. URL https://doi.org/10.1080/15732479.2020.1734632.
Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J.Inman. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration,
388:154–170, 2017. ISSN 0022-460X. doi: https://doi.org/10.1016/j.jsv.2016.10.043. URL https://www.sciencedirect.com/science/article/pii/S0022460X16306204.
Qingzhao Kong, Qingsong Xiong, Haibei Xiong, Chang He, and Cheng Yuan. Semi-supervised networks integrated with autoencoder and pseudo-labels propagation for structural condition assessment. Measurement, 214:112779, 2023.
Shengyu Jiang, Rui He, Guoming Chen, Yuan Zhu, Jiaming Shi, Kang Liu, and Yuanjiang Chang. Semi-supervised health assessment of pipeline systems based on optical fiber monitoring. Reliability Engineering & System Safety, 230:108932, 2023.
Viet-Hung Dang, Khuong Le-Nguyen, and Truong-Thang Nguyen. Semi-supervised vibration-based structural health monitoring via deep graph learning and
contrastive learning. Structures, 51:158–170, Elsevier, 2023.
Young-Jin Cha and Zilong Wang. Unsupervised novelty detection–based structural damage localization using a density peaks-based fast clustering algorithm. Structural Health Monitoring, 17(2):313–324, 2018.
Ziming Wang, Ko-ichiro Ohno, Shunsuke Nonaka, Takayuki Maeda, and Kazuya Kunitomo. Temperature distribution estimation in a dwight–lloyd sinter machine based on the combustion rate of charcoal quasi-particles. Processes, 8(4):406, 2020.
Qingsong Xiong, Cheng Yuan, Bin He, Haibei Xiong, and Qingzhao Kong. Gtrf: A general deep learning framework for tuples recognition towards supervised, semi-supervised and unsupervised paradigms. Engineering Applications of Artificial Intelligence, 124:106500, 2023.
XUYang, FANYunlei, BAOYuequan, and LI Hui. Few-shot learning for structural health diagnosis of civil infrastructure. Advanced Engineering Informatics, 62:102650, 2024.
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks, 2017. URL https://arxiv.org/abs/1703.03400.
Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning, 2017. URL https://arxiv.org/abs/1703.05175.
Lei Wang, Dukang Huang, Ke Huang, and Marco Civera. Online meta-learning approach for sensor fault diagnosis using limited data. Smart Materials and Structures, 33(8):085016, 2024.
SJ—Yang Pan. Q.: A survey on transfer learning. IEEETransactions onKnowledge and Data Engineering, 22(10):1345–1359, 2010.
P Gardner, LA Bull, N Dervilis, and K Worden. Overcoming the problem of re-pair in structural health monitoring: Metric-informed transfer learning. Journal of Sound and Vibration, 510:116245, 2021.
Qiuyue Pan, Yuequan Bao, and Hui Li. Transfer learning-based data anomaly de-tection for structural health monitoring. Structural Health Monitoring, 22(5):3077–3091, 2023.
Mona Chamangard, Gholamreza Ghodrati Amiri, Ehsan Darvishan, and Zahra Rastin. Transfer learning for cnn-based damage detection in civil structures with insufficient data. Shock and Vibration, 2022(1):3635116, 2022.
Yi-zhou Lin, Zhen-hua Nie, and Hong-wei Ma. Dynamics-based cross-domain structural damage detection through deep transfer learning. Computer-Aided Civil and Infrastructure Engineering, 37(1):24–54, 2022.
Valentina Giglioni, Jack Poole, Ilaria Venanzi, Filippo Ubertini, and Keith Wor-den. A domain adaptation approach to damage classification with an application to bridge monitoring. Mechanical Systems and Signal Processing, 209:111135, 2024.
P Gardner, LA Bull, J Gosliga, N Dervilis, and K Worden. Foundations of population-based shm, part iii: Heterogeneous populations–mapping and transfer. Mechanical Systems and Signal Processing, 149:107142, 2021.
Xiaoyou Wang and Yong Xia. Knowledge transfer for structural damage detec-tion through re-weighted adversarial domain adaptation. Mechanical Systems and Signal Processing, 172:108991, 2022.
Paul Gardner, Xuanang Liu, and KeithWorden. On the application of domain adaptation in structural health monitoring. Mechanical Systems and Signal Processing, 138:106550, 2020.
Panagiotis Martakis, Yves Reuland, Andreas Stavridis, and Eleni Chatzi. Fusing damage-sensitive features and domain adaptation towards robust damage classifi-cation in real buildings. Soil Dynamics and Earthquake Engineering, 166:107739, 2023.
Susu Xu and Hae Young Noh. Phymdan: Physics-informed knowledge transfer between buildings for seismic damage diagnosis through adversarial learning. Mechanical Systems and Signal Processing, 151:107374, 2021.
Mingyuan Zhou and Zhilu Lai. Structural damage classification under varying environmental conditions and unknown classes via open set domain adaptation. Mechanical Systems and Signal Processing, 218:111561, 2024.
Qingsong Xiong, Qingzhao Kong, Haibei Xiong, Jiawei Chen, Cheng Yuan, Xi-aoyou Wang, and Yong Xia. Zero-shot knowledge transfer for seismic damage diagnosis through multi-channel 1d cnn integrated with autoencoder-based domain adaptation. Mechanical Systems and Signal Processing, 217:111535, 2024.
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https://arxiv.org/abs/1406.2661.
Sayed Ali Khodaei and Maryam Bitaraf. Structural dynamic response synthesis: A transformer-based time-series gan approach. Results in Engineering, page 105549, 2025.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.
Vahid Mousavi, Maria Rashidi, Shayan Ghazimoghadam, Masoud Mohammadi, Bijan Samali, and Joshua Devitt. Transformer-based time-series gan for data aug- mentation in bridge digital twins. Automation in Construction, 175:106208, 2025.
Chun-Xu Qu, Yun-Tao Yang, Hong-Ming Zhang, Ting-Hua Yi, and Hong-Nan Li. Two-stage anomaly detection for imbalanced bridge data by attention mechanism optimisation and small sample augmentation. Engineering Structures, 327:119613, 2025.
Furkan Luleci, F Necati Catbas, and Onur Avci. Cyclegan for undamaged-to- damaged domain translation for structural health monitoring and damage detection. Mechanical Systems and Signal Processing, 197:110370, 2023.
Qingsong Xiong, Yong Xia, Haibei Xiong, Cheng Yuan, Jiawei Chen, and Qingzhao Kong. Re-acgan: Structural damage identification with class-imbalance reweighted acgan for data augmentation. Engineering Structures, 329:119814, 2025.
Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4):307–392, 2019. ISSN 1935-8245. doi: 10.1561/2200000056. URL http://dx.doi.org/10.1561/2200000056.
Lechen Li and Raimondo Betti. A machine learning-based data augmentation strat- egy for structural damage classification in civil infrastructure system. Journal of Civil Structural Health Monitoring, 13(6):1265–1285, 2023.
Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod- els, 2020. URL https://arxiv.org/abs/2006.11239.
Haiming Yi, Lei Hou, Yuhong Jin, Nasser A Saeed, Ali Kandil, and Hao Duan. Time series diffusion method: A denoising diffusion probabilistic model for vibra- tion signal generation. Mechanical Systems and Signal Processing, 216:111481, 2024.
Wenhao Zheng, Jun Li, and Hong Hao. Data augmentation of dynamic responses for structural health monitoring using denoising diffusion probabilistic models. Engineering Structures, 328:119685, 2025.
Alexandre Cury and Christian Crémona. Pattern recognition of structural behav- iors based on learning algorithms and symbolic data concepts. Structural Control and Health Monitoring, 19(2):161–186, 2012. doi: https://doi.org/10.1002/stc.412. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.412.
Wu Rih-Teng and Jahanshahi Mohammad R. Deep Convolutional Neural Net- work for Structural Dynamic Response Estimation and System Identification. Journal of Engineering Mechanics, 145(1):04018125, January 2019. doi: 10.1061/(ASCE)EM.1943-7889.0001556. URL https://doi.org/10.1061/(ASCE)EM.1943-7889.0001556.
Yonghui Lu, Liqun Tang, Chengbin Chen, Licheng Zhou, Zejia Liu, Yiping Liu, Zhenyu Jiang, and Bao Yang. Reconstruction of structural long-term ac- celeration response based on bilstm networks. Engineering Structures, 285: 93.
Ling-Han Song, Chen Wang, Jian-Sheng Fan, and Hong-Ming Lu. Elastic structural analysis based on graph neural network without labeled data. Computer-Aided Civil and Infrastructure Engineering, 38(10):1307–1323, 2023.
Fabio Parisi, Sergio Ruggieri, Ruggiero Lovreglio, Maria Pia Fanti, and Giuseppina Uva. On the use of mechanics-informed models to structural engineering systems: Application of graph neural networks for structural analysis. In Structures, volume 59, page 105712. Elsevier, 2024.
Yuan-Tung Chou, Po-Chih Kuo, Kuang-Yao Li, Wei-Tze Chang, Yin-Nan Huang, and Chuin-Shan Chen. Inductive graph-based long short-term memory network for the prediction of nonlinear floor responses and member forces of steel buildings subjected to orthogonal horizontal ground motions. Earthquake Engineering & Structural Dynamics, 54(2):491–507, 2025.
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message passing for quantum chemistry. In International Conference on Machine Learning, pages 1263–1272. PMLR, 2017.
Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.
Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=vSVLM2j9eie.
Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2023. URL https://arxiv.org/abs/1606.08415.
Noam Shazeer. GLU variants improve transformer, 2020. URL https://arxiv.org/abs/2002.05202.
Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and Bin Cui. Graph attention multi-layer perceptron. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD’22, page 4560–4570. ACM, August 2022. doi: 10.1145/3534678.3539121. URL http://dx.doi.org/10.1145/3534678.3539121.
Yundong Sun, Dongjie Zhu, Yansong Wang, and Zhaoshuo Tian. GTC: GNN-transformer co-contrastive learning for self-supervised heterogeneous graph representation, 2024. URL https://arxiv.org/abs/2403.15520.
Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go as deep as CNNs?, 2019. URL https://arxiv.org/abs/1904.03751.
Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction: Unified message passing model for semi-supervised classification, 2021. URL https://arxiv.org/abs/2009.03509.
Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized
graph transformer for node classification in large graphs, 2023. URL https://
arxiv.org/abs/2206.04910.
Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang. Graphmae: Self-supervised masked graph autoencoders, 2022. URL https://arxiv.org/abs/2205.10803.
Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang. Graphmae2: A decoding-enhanced masked self-supervised graph learner, 2023. URL https://arxiv.org/abs/2304.04779.
Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive learning with augmentations, 2021. URL https://arxiv.org/abs/2010.13902.
Yuxiang Wang, Xiao Yan, Chuang Hu, Fangcheng Fu, Wentao Zhang, Hao Wang, Shuo Shang, and Jiawei Jiang. Generative and contrastive paradigms are complementary for graph self-supervised learning, 2023. URL https://arxiv.org/abs/2310.15523.
Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/abs/1503.03585.
Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL https://arxiv.org/abs/2010.02502.
[92] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations, 2021. URL https://arxiv.org/abs/2011.13456.
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.
[94] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models, 2022. URL
https://arxiv.org/abs/2112.10752.
Diederik PKingma andMaxWelling. Auto-encoding variational bayes, 2022. URL https://arxiv.org/abs/1312.6114.
Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.
Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.
Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial networks. Advances in neural information processing systems, 32, 2019.
Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yun-hai Tong, and Bixiong Xu. Ts2vec: Towards universal representation of time series, 2022. URL https://arxiv.org/abs/2106.10466.
Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and Cuntai Guan. Time-series representation learning via temporal and contextual contrasting, 2021. URL https://arxiv.org/abs/2106.14112.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.org/abs/1711.05101.
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https://arxiv.org/abs/1412.6980.
Anna Bykhovskaya and Vadim Gorin. Canonical correlation analysis: review, 2024. URL https://arxiv.org/abs/2411.15625.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99687-
dc.description.abstract有限元素模型 (Finite Element Model, FEM) 作為在以振動數據為主的結構健康監測 ( Structural Health Monitoring, SHM ) 中的數位孿生核心,卻常因傳統更新後仍殘存的差異,以及高品質量測資料長期匱乏而難以發揮效能。本研究提出殘差導向之有限元素模型更新框架,利用深度神經網路顯式學習模擬與量測反應之間的固有差異,並將預測殘差嵌入全新的目標函數,再以迭代式最佳化演算法最小化該目標。在柱的勁度折減係數更新中,單參數更新之相對誤差可達 0.70 %,多參數更新之相對誤差為 0.48 %,較傳統方法降低 0.10 %,且在實務高雜訊情境下優勢更為明顯。實驗驗證顯示,本方法能準確辨識所有預設損傷情境;於 40 維參數更新中,分別較基線方法提升準確率 0.9 %、精確率 2.1 %、召回率 16.6 %、F1 分數 4.5 %、平衡準確率 7.2 %。然而,深度學習模型仰賴充足且平衡的結構反應資料,現地量測的結構反應多以健康狀態為主,損傷資料嚴重不足,限制了以殘差為主之有限元素模型更新的潛力。為緩解資料稀缺,本研究進一步提出物理導向條件式生成框架 (Structural Response Diffusion, SRD)。SRD 結合自編碼器重建結構反應、編碼結構配置與損傷狀態的圖神經網路,以及條件化潛在擴散模型,可在圖、外力與時間嵌入條件下,將高斯雜訊去噪生成全長加速度訊號。於資料稀缺且類別失衡之模擬測試中,SRD 所生成之樣本將最少樣本類別的 F1 分數在數值驗證中自 1.9% 提升至 65.4%,並於實驗驗證自 31.8% 提升至 44.8%,同時增進整體指標表現。生成訊號的 KL 散度 ( KL divergence) 低於 0.1,且在降維空間與真實資料高度重疊,驗證其分佈的高度相似性。綜合而言,兩項框架構成閉環SHM 作業流程,SRD 提供符合物理條件的合成資料以強化殘差網路訓練,經校準的 FEM 則作為精準數位孿生以支援預測與決策。此協同機制提供一個可擴展的方法以實現更可靠的基礎設施監測。zh_TW
dc.description.abstractFinite element models (FEMs) serve as the digital twins at the heart of vibration-based structural health monitoring (SHM). However, their effectiveness is hindered by inherent discrepancies that persist after conventional updating and by the chronic scarcity of high-quality response measurements. In this study, a residual‐based finite element model updating (FEMU) framework is developed in which a deep neural network explicitly learns the inherent discrepancy between simulated and measured responses. By embedding the learned residual into a new objective and minimizing it with iterative optimizers, our FEMU framework achieves a 0.70 % relative error for single-parameter updates and 0.48 % relative error for multi-parameter column stiffness reduction factor estimation. The framework reduces the relative error by 0.10% compared to conventional approaches, with the advantage widening as measurement noise grows in a real-world scenario. Experimental tests confirm that the proposed method accurately identifies all predefined damage scenarios. In a 40-parameter update, it outperforms the baseline by 0.9%, 2.1%, 16.6%, 4.5%, 7.2% in accuracy, precision, recall, F1 score, balanced accuracy, respectively. However, the full potential of our residual-based FEMU is constrained by a familiar bottleneck: deep learning (DL) models require abundant, well-balanced structural response data, whereas civil structures rarely generate large datasets, and most available vibrations correspond to healthy states, leaving damaged conditions severely underrepresented. To alleviate data scarcity, a physics-guided conditional generative framework, Structural Response Diffusion (SRD), is introduced. SRD combines an autoencoder for structural response reconstruction, a graph neural network-based encoder that encodes structural configuration and damage state, and a latent diffusion model that denoises Gaussian noise into full-length acceleration traces conditioned on graph, force, and temporal embeddings. In the simulated test under data scarcity and class imbalance, the synthetic responses augment the most underrepresented damage class, lifting its F1 score from 1.9% to 65.4% in numerical validation and from 31.8% to 44.8% in experimental validation, while improving the overall performance in both phases. Generated signals exhibit low KL divergence (< 0.1) and strong overlap with real data in the reduced space, confirming distributional similarity. Together, the two frameworks form a closed-loop SHM pipeline. SRD supplies physics-consistent data to train the residual network robustly, and the calibrated FEM provides an accurate digital twin for forecasting and decision support. This synergy provides a scalable approach to more reliable monitoring of civil infrastructure.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:22:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:22:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents viii
List of Figures xii
List of Tables xv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.2.1 Classical FEMU Paradigms 2
1.2.2 Vibration Data Scarcity in Structure Engineering 4
1.2.3 Generative Models for Data Augmentation 6
1.2.4 Research Gap 7
1.3 Research Objective and Contribution 8
1.4 Scope of the Thesis 9
Chapter 2 Dataset 11
2.1 Residual-Based FEMU Framework 11
2.1.1 Numerical Validation 11
2.1.2 Experimental Validation 13
2.2 Physics-Guided Generative Framework 14
2.2.1 Encoding Structural Systems as Graphs 14
2.2.2 Graph Generation and Structural Modeling 16
2.2.2.1 Numerical Validation 16
2.2.2.2 Experimental Validation 17
Chapter 3 Methodology 20
3.1 Residual-Based FEMU Framework 20
3.1.1 Overview 20
3.1.2 Stage 1: Structural Response Collection 23
3.1.3 Stage 2: Proposed Function Establishment 24
3.1.4 Stage 3: Structural Parameters Optimization 26
3.1.4.1 Numerical Validation Phase 1: Newton’s Method 27
3.1.4.2 Numerical Validation Phase 2 and Experimental Validation: Genetic Algorithm 28
3.2 Physics-Guided Generative Framework 29
3.2.1 Overview 29
3.2.2 HFT-AE: a Hybrid Frequency-Time Framework for Structural Response Reconstruction 32
3.2.3 Graph Encoder: Graph Representation Learning for Physics-Guided Conditional Generation 35
3.2.3.1 Graph Encoder Architecture 35
3.2.3.2 Self-Supervised Pretraining of the Graph Encoder 37
3.2.4 LDM: Structural Response Generation from Latent Space 39
3.2.4.1 Preliminaries on Diffusion Models 40
3.2.4.2 LDM Architecture 41
3.2.5 Metrics 42
3.2.5.1 Distribution Similarity 43
3.2.5.2 Dimensionality Reduction for Visualization 44
3.2.5.3 Frequency Domain Analysis 44
3.2.5.4 Discriminability 45
3.2.5.5 Predictability 45
Chapter 4 Result and Discussion 47
4.1 Residual-Based FEMU Framework 47
4.1.1 Numerical Validation Results 47
4.1.1.1 Residual Estimation 47
4.1.1.2 Model Updating Using the Proposed FEMU Framework 49
4.1.1.3 Discussion: Numerical Validation Results 51
4.1.2 Experimental Validation Results 52
4.1.2.1 Residual Estimation 52
4.1.2.2 Model Updating Using the Proposed FEMU Framework 55
4.1.2.3 Challenges in Model Updating Using Experimental Data 58
4.2 Physics-Guided Generative Framework 60
4.2.1 Data Augmentation for Damage Identification 60
4.2.2 Generation Quality Evaluation 65
4.2.2.1 Quantitative Assessment of Generated Signals 65
4.2.2.2 HFT-AE Reconstruction Performance 70
4.2.2.3 Graph Embedding Analysis 72
4.2.2.4 Key Findings 76
Chapter 5 Conclusion 77
5.1 Remarks 77
5.2 Limitation and Future Work 80
References 83
-
dc.language.isoen-
dc.subject有限元素模型更新zh_TW
dc.subject條件生成結構反應zh_TW
dc.subject潛在擴散式模型zh_TW
dc.subject結構健康監測zh_TW
dc.subject深度殘差學習zh_TW
dc.subjectDeep Residual Learningen
dc.subjectLatent Diffusion Modelen
dc.subjectStructural Health Monitoringen
dc.subjectFinite Element Model Updatingen
dc.subjectConditional Structural Response Synthesisen
dc.title以物理引導生成式 AI 發展高擬真結構模型更新與反應預測方法zh_TW
dc.titlePhysics-Guided Generative AI for High-Fidelity Structural Model Updating and Response Predictionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張國鎮;陳俊杉;張家銘;許丁友zh_TW
dc.contributor.oralexamcommitteeKuo-Chun Chang;Chuin-Shan Chen;Chia-Ming Chang;Ting-Yu Hsuen
dc.subject.keyword有限元素模型更新,深度殘差學習,條件生成結構反應,潛在擴散式模型,結構健康監測,zh_TW
dc.subject.keywordFinite Element Model Updating,Deep Residual Learning,Conditional Structural Response Synthesis,Latent Diffusion Model,Structural Health Monitoring,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202503642-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2028-12-04-
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
3.28 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved