Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99681
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林寶秀zh_TW
dc.contributor.advisorBau-Show Linen
dc.contributor.author傅郁軒zh_TW
dc.contributor.authorYu-Hsuan Fuen
dc.date.accessioned2025-09-17T16:21:37Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-07-22-
dc.identifier.citation丁育群、朱佳仁(2000)。高層建築耐風設計風力頻譜與風載眾之修訂研究。內政部建築研究所研究報告。
內政部(2022)。市區道路及附屬工程設計規範。內政部。
內政部建築研究所(2016)。行人風場評估技術規範草案研擬。內政部建築研究所研究報告。
內政部營建署(2017)。市區道路植栽設計準則。中華民國內政部營建署。
王福軍(2004)。計算算流體動力學分析:CFD軟體原理與應用。清華大學出版社有限公司。
朱佳仁(2006)。風工程概論。科技圖書股份有限公司。
朱紅鈞(2015)。FLUENT 15.0流場分析實戰指南。人民郵電出版社。
李偉誠、謝俊民(2011)。連棟住宅之街廓比對街谷內風環境之影響-以台南市氣象資料為例。建築學報(75),135-153。https://doi.org/10.6377/JA.201103.0009
林衍良、吳建璋(2016)。城市地貌對人行步道舒適度之影響-以台中市柳川為例。臺中市政府105年度市政發展研究論文。
林家伃、邱英浩、游振偉(2016)。植栽與建築物配置對風環境之影響。臺灣建築學會「建築學報」,第95期,87-102。https://doi.org/10.3966/101632122016030095006
邱英浩(2011)。建築配置形式對戶外空間環境風場之影響。都市與計劃,38(3),303-325。https://doi.org/https://doi.org/10.6128/CP.38.3.303
邱英浩(2012)。植栽樹冠形狀對風速衰減之影響。都市與計劃,39(1),51-69。https://doi.org/10.6128/CP.39.1.51
邱英浩、吳孟芳(2010)。不同街道尺度對環境風場之影響。都市與計劃,37(4),501-528。https://doi.org/https://doi.org/10.6128/CP.37.4.501
邱英浩、吳孟芳、譚政泓(2008)。不同街谷形式對都市風場之影響。建築與規劃學報,9(2),141-165。 https://doi.org/10.30054/JAP.200809.0004
邱英浩、陳智仁、劉天祥(2019)。街道尺度與建築配置對室內自然通風效益之影響。臺灣建築學會「建築學報」,第108期, 59-79。https://doi.org/10.3966/101632122019060108004
國家科學及技術委員會、環境部(2024)。國家氣候變遷科學報告2024現象、衝擊與調適。國家科學及技術委員會、環境部聯合出版。
郭建源、曾俊達、何明錦、黎益肇(2016)。以受風感受試驗建立高層建築行人風場評估準則之研究。建築學報(5),75-86。
鄧書麟、何坤益、陳財輝、王志斌、高銘發(2005)。台灣西海岸防風林造林策略與樹種之選介。台灣林業,31(1),62-67。
賴光邦(1984)。敷地計畫中局部氣候之控制。六和出版社。
環境保護署(1997)。環境影響評估作業準則。行政院環境保護署。https://oaout.moenv.gov.tw/laW/LawContent.aspx?id=FL016238
Blocken, B., & Carmeliet, J. (2004). Pedestrian wind environment around buildings: Literature review and practical examples. Journal of Thermal Envelope and Building Science, 28(2), 107-159. https://doi.org/https://doi.org/10.1177/1097196304044396
Brustaert, W. (1982). Evaporation into the atmosphere, theory, history and application. D. Reidel pub. Comp, Dordrecht-Boston-London.https://doi.org/10.1029/EO063i051p01223-04
Brutsaert, W. (2013). Evaporation into the atmosphere: theory, history and applications (Vol. 1). Springer Science & Business Media.
BSI, B. (1991). Code of practice for ventilation principles and designing for natural ventilation. British Standards Institute, London, 1991.
Edward, N. g. (2009). Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong. Building and Environment, 44(7), 1478-1488. https://doi.org/https://doi.org/10.1016/j.buildenv.2008.06.013
El-Bardisy, W. M., Fahmy, M., & El-Gohary, G. F. (2016). Climatic sensitive landscape design: Towards a better microclimate through plantation in public schools, Cairo, Egypt. Procedia-Social and Behavioral Sciences, 216, 206-216. https://doi.org/https://doi.org/10.1016/j.sbspro.2015.12.029
Etheridge, D. W., & Sandberg, M. (1996). Building ventilation: theory and measurement (Vol. 50). John Wiley & Sons Chichester, UK.
Franke, J., Hellsten, A., Schlunzen, K. H., & Carissimo, B. (2011). The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary. International Journal of Environment and Pollution, 44(1-4), 419-427. https://doi.org/https://doi.org/10.1504/IJEP.2011.038443
Guo, X., Gao, Z., Buccolieri, R., Zhang, M., & Shen, J. (2021). Effect of greening on pollutant dispersion and ventilation at urban street intersections. Building and Environment, 203, 108075. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108075
Harman, I. N., Barlow, J. F., & Belcher, S. E. (2004). Scalar fluxes from urban street canyons part II: model. Boundary-Layer Meteorology, 113, 387-410.
Hsieh, C.-M., Jan, F.-C., & Zhang, L. (2016). A simplified assessment of how tree allocation, wind environment, and shading affect human comfort. Urban Forestry & Urban Greening, 18, 126-137. https://doi.org/https://doi.org/10.1016/j.ufug.2016.05.006
Hu, C.-H., & Wang, F. (2005). Using a CFD approach for the study of street-level winds in a built-up area. Building and Environment, 40(5), 617-631.
Huang, Y. D., Li, M. Z., Ren, S. Q., Wang, M. J., & Cui, P. Y. . (2019). Impacts of tree-planting pattern and trunk height on the airflow and pollutant dispersion inside a street canyon. Building and Environment, 165, 106385. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106385
Hunt, J., Poulton, E., & Mumford, J. (1976). The effects of wind on people; new criteria based on wind tunnel experiments. Building and Environment, 11(1), 15-28. https://doi.org/https://doi.org/10.1016/0360-1323(76)90015-9
Isyumov, N., & Davenport, A. (1975). The ground level wind environment in built-up areas. Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures,(Heathrow 1975).
Japan, A. I. o. (2007). Guidebook for Practical Applications of CFD to Pedestrian Wind Environment around Buildings. In: Architectural Institute of Japan.
Kubota, T., Miura, M., Tominaga, Y., & Mochida, A. (2008). Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods. Building and Environment, 43(10), 1699-1708. https://doi.org/https://doi.org/10.1016/j.buildenv.2007.10.015
Launder, B. E., & Spalding, D. B. (1983). The numerical computation of turbulent flows. In Numerical prediction of flow, heat transfer, turbulence and combustion (pp. 96-116). Elsevier. https://doi.org/ https://doi.org/10.1016/B978-0-08-030937-8.50016-7
Lawson, T., & AD, P. (1977). The effects of wind on people in the vicinity of buildings.
Melaragno, M. (1982). Wind in architectural and environmental design.
Melbourne, W. (1978). Criteria for environmental wind conditions. Journal of Wind Engineering and Industrial Aerodynamics, 3(2-3), 241-249. https://doi.org/https://doi.org/10.1016/0167-6105(78)90013-2
Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T., & Ooka, R. (2002). Comparison of various k-ε models and DSM applied to flow around a high-rise building-report on AIJ cooperative project for CFD prediction of wind environment. Wind and Structures, 5(2_3_4), 227-244. https://doi.org/https://doi.org/10.12989/was.2002.5.2_3_4.227
Murakami, S., Iwasa, Y., & Morikawa, Y. (1986). Study on acceptable criteria for assessing wind environment at ground level based on residents' diaries. Journal of Wind Engineering and Industrial Aerodynamics, 24(1), 1-18. https://doi.org/https://doi.org/10.1016/0167-6105(86)90069-3
Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and buildings, 11(1-3), 103-113. https://doi.org/https://doi.org/10.1016/0378-7788(88)90026-6
Oke, T. R. (2002). Boundary layer climates. Routledge.
Penwarden, A. D. (1973). Acceptable wind speeds in towns. Building Science, 8(3), 259-267. https://doi.org/https://doi.org/10.1016/0007-3628(73)90008-X
Penwarden, A. D. (1975). Wind environment around buildings.
Rotach, M., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier, A., Feddersen, B., Gryning, S.-E., Martucci, G., & Mayer, H. (2005). BUBBLE-an urban boundary layer meteorology project. Theoretical and Applied Climatology, 81, 231-261. https://doi.org/https://doi.org/10.1007/s00704-004-0117-9
Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & fluids, 24(3), 227-238. https://doi.org/https://doi.org/10.1016/0045-7930(94)00032-T
Stoltman, J. P., Lidstone, J., & Dechano, L. M. (2007). International perspectives on natural disasters: Occurrence, mitigation, and consequences (Vol. 21). Springer Science & Business Media.
Wania, A., Bruse, M., Blond, N., & Weber, C. (2012). Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. Journal of environmental management, 94(1), 91-101. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.06.036
White, B. R. (1992). Analysis and wind-tunnel simulation of pedestrian-level winds in San Francisco. Journal of Wind Engineering and Industrial Aerodynamics, 44(1-3), 2353-2364. https://doi.org/https://doi.org/10.1016/0167-6105(92)90026-7
Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of scientific computing, 1(1), 3-51. https://doi.org/https://doi.org/10.1146/annurev.fluid.30.1.275
Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T., & Shirasawa, T. (2007). Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. Journal of Wind Engineering and Industrial Aerodynamics, 95(9-11), 1551-1578. https://doi.org/https://doi.org/10.1016/j.jweia.2007.02.023
Yuan, C., Norford, L., & Ng, E. (2017). A semi-empirical model for the effect of trees on the urban wind environment. Landscape and Urban Planning, 168, 84-93. https://doi.org/https://doi.org/10.1016/j.landurbplan.2017.09.029
Zeng, F., Simeja, D., Ren, X., Chen, Z., & Zhao, H. (2022). Influence of Urban Road Green Belts on Pedestrian-Level Wind in Height-Asymmetric Street Canyons. Atmosphere, 13(8). https://doi.org/10.3390/atmos13081285
Zhao, Q., Sailor, D. J., & Wentz, E. A. (2018). Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban Forestry & Urban Greening, 32, 81-91. https://doi.org/https://doi.org/10.1016/j.ufug.2018.03.022
Zhao, Y., Li, H., Bardhan, R., Kubilay, A., Li, Q., & Carmeliet, J. (2023). The time-evolving impact of tree size on nighttime street canyon microclimate: Wind tunnel modeling of aerodynamic effects and heat removal. Urban Climate, 49, 101528. https://doi.org/https://doi.org/10.1016/j.uclim.2023.101528
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99681-
dc.description.abstract由於土地有限且快速發展,都市區域的建築逐漸趨向高密度與垂直化。然而,都市發展速度不一,導致舊建築與新高樓並存,形成複雜的都市風環境,使風環境成為都市發展的重要議題。在都市區域中,特別關注小尺度(micro-scale)的氣候環境,而在此尺度下,都市冠層(urban canopy layer, UCL)對人類生活有最直接的影響,其表面組成受到建築密度、高度、街道寬度與走向,甚至植栽配置的影響。不當的配置可能導致通風不良、部分區域出現強風的狀態,降低行人舒適度。
因應環境變遷,街道綠化已成為調節都市微氣候、提升城市美感與生活舒適度的重要策略。然而,現行法規雖已對都市建築之風環境設計提出一定規範,在街道綠化配置方面仍缺乏明確指導原則;若配置不當,不僅無助於改善街道通風,反而可能降低行人層風場的舒適性。過去研究多各別探討街谷(street canyon)尺寸、建築排列以及植栽配置,但較少全面考慮不對稱街谷(asymmetric street canyon)中喬木配置對行人層風舒適度的影響。
本研究以計算流體力學(computational fluid dynamics, CFD)數值模擬方法作為研究工具。本研究設定三項變項,分別為兩種不對稱街谷(升階街谷與降階街谷)、兩種入風風速條件,以及六種喬木組合配置方案,評估其對行人層舒適風速面積之影響。研究結果顯示:(1) 升階街谷(step-up canyon)在低風速條件下具有較高的舒適風速面積佔比,而降階街谷(step-down canyon)則相反,在高風速條件下具有較高的舒適風速面積佔比;(2) 針對不同喬木高度分析方面,在低風速條件下,無論升階或降階街谷,喬木高度對舒適風速面積的提升效果皆有限;但在高風速條件下,升階街谷以全小喬木配置(G111)、降階街谷則以全中喬木配置(G222)能提高舒適面積佔比;(3)在喬木配置位置方面,在低風速條件下,升階與降階街谷皆以中央配置中喬木、其餘為小喬木(G121)方案具有較高的舒適風速面積;在高風速條件下,升階街谷仍以(G121)舒適佔比較高,而降階街谷則以背風面配置中喬木、其餘位置小喬木(G112)具有較高的舒適風速面積。
zh_TW
dc.description.abstractDue to limited land availability and rapid urban development, urban areas have increasingly shifted toward high-density and vertical construction. However, the pace of development varies across different districts, resulting in the coexistence of old buildings and new high-rises. This has created a complex urban wind environment, making wind conditions a critical issue in urban development. In particular, attention is focused on the micro-scale climate environment in urban areas. At this scale, the Urban Canopy Layer (UCL) has the most direct influence on human activities. Its surface structure is affected by factors such as building density, height, street width and orientation, and even vegetation configuration. Improper arrangements may lead to poor ventilation or localized strong winds, thereby reducing pedestrian-level wind comfort.
In response to climate change, street greening has become an important strategy for regulating the urban microclimate, enhancing city aesthetics, and improving wind comfort in outdoor spaces. Although current regulations provide certain guidelines for wind environment design in building development, there is still a lack of clear principles for vegetation configuration along streets. If poorly implemented, such configurations may not only fail to improve airflow but may also reduce wind comfort at the pedestrian level. While previous studies have individually investigated factors such as street canyon dimensions, building arrangements, and tree planting schemes, relatively few have comprehensively examined how tree configuration in asymmetric street canyons affects wind comfort at the pedestrian level.
This study adopts Computational Fluid Dynamics (CFD) simulation as the primary analytical method. Three independent variables were defined: two types of asymmetric street canyons—step-up canyons and step-down canyons; two inflow wind speed conditions; and six tree configuration schemes. The study evaluates the effects of these variables on the area of comfortable wind speed at pedestrian height. The results indicate the following:
(1) Under low wind speed conditions, step-up canyons exhibit a higher proportion of comfortable wind speed area, while step-down canyons perform better under high wind speed conditions.
(2) Regarding tree height configuration, under low wind conditions, the effect of tree height on wind comfort is limited for both canyon types. However, under high wind conditions, step-up canyons perform better with a configuration of all small trees (G111), while step-down canyons show improved wind comfort with all medium trees (G222).
(3) For tree placement configurations, under low wind conditions, both canyon types exhibit higher wind comfort when medium trees are planted at the center and small trees on both sides (G121). Under high wind conditions, step-up canyons still perform better with the G121 configuration, while step-down canyons achieve better wind comfort with medium trees on the leeward side and small trees elsewhere (G112).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:21:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:21:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 iii
摘要 v
Abstract vii
目次 ix
表次 xi
圖次 xiii
第一章 緒論 1
第二節 研究動機 1
第三節 研究目的 3
第四節 研究步驟與流程 4
第二章 文獻回顧 7
第五節 風工程 7
第六節 行人風場 12
第七節 實驗方法 25
第八節 小結 33
第三章 研究方法 35
第九節 研究架構與內容 35
第十節 數值模擬設定及驗證 40
第十一節 不對稱街谷、入風風速與喬木高度配置模擬方案 47
第四章 研究結果 53
第一節 不對稱街谷之風場分佈分析 53
第二節 不對稱街谷之行人舒適風速面積佔比分析 78
第三節 喬木高度對行人舒適風速面積佔比分析 80
第四節 喬木配置位置對行人舒適風速面積佔比分析 88
第五節 喬木配置組合對行人舒適風速面積佔比分析 97
第六節 各方案綜合排序與比較 108
第五章 結論與建議 111
第一節 結論 111
第二節 綜合討論 111
第三節 建議 113
參考文獻 115
-
dc.language.isozh_TW-
dc.subject行人環境風場zh_TW
dc.subject街谷zh_TW
dc.subject數值模擬zh_TW
dc.subject植栽配置zh_TW
dc.subjectPedestrian wind environmentsen
dc.subjectStreet canyonen
dc.subjectNumerical simulationen
dc.subjectLayout of treeen
dc.title不對稱街谷與喬木配置對行人風場舒適度影響之研究zh_TW
dc.titleResearch on the Impact of Asymmetric Street Canyon and Tree Arrangements on Pedestrian Wind Comforten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor謝正義zh_TW
dc.contributor.coadvisorCheng-I Hsiehen
dc.contributor.oralexamcommittee林晏州;張俊彥;歐聖榮zh_TW
dc.contributor.oralexamcommitteeYann-Jou Lin;Chun-Yen Chang;Sheng-Jung Ouen
dc.subject.keyword行人環境風場,植栽配置,數值模擬,街谷,zh_TW
dc.subject.keywordPedestrian wind environments,Layout of tree,Numerical simulation,Street canyon,en
dc.relation.page120-
dc.identifier.doi10.6342/NTU202502122-
dc.rights.note未授權-
dc.date.accepted2025-07-23-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-liftN/A-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
14.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved