請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99677完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭靜穎 | zh_TW |
| dc.contributor.advisor | Ching-Ying Kuo | en |
| dc.contributor.author | 吳宜臻 | zh_TW |
| dc.contributor.author | Yi-Zhen Wu | en |
| dc.date.accessioned | 2025-09-17T16:20:53Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Siegel, R.L., A.N. Giaquinto, and A. Jemal, Cancer statistics, 2024. CA Cancer J Clin, 2024. 74(1): p. 12-49.
2. 衛生福利部國民健康署, 十大癌症發生率. 2025. 3. 衛生福利部, 113年國人死因統計結果. 2025. 4. Khan, M.M., et al., Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol, 2024. 197: p. 104351. 5. Zhang, S., et al., Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther, 2024. 9(1): p. 149. 6. Colin, C., et al., Radiation induced breast cancer risk in BRCA mutation carriers from low-dose radiological exposures: a systematic review. Radioprotection, 2017. 52(4): p. 231-240. 7. Obeagu, E.I. and G.U. Obeagu, Breast cancer: A review of risk factors and diagnosis. Medicine (Baltimore), 2024. 103(3): p. e36905. 8. Arun, B., et al., BRCA-mutated breast cancer: the unmet need, challenges and therapeutic benefits of genetic testing. Br J Cancer, 2024. 131(9): p. 1400-1414. 9. Gorodetska, I., I. Kozeretska, and A. Dubrovska, BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer, 2019. 10(9): p. 2109-2127. 10. Łukasiewicz, S., et al., Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel), 2021. 13(17). 11. Baker, J., et al., Atypical ductal or lobular hyperplasia, lobular carcinoma in-situ, flat epithelial atypia, and future risk of developing breast cancer: Systematic review and meta-analysis. The Breast, 2024. 78: p. 103807. 12. Moskowitz, C.S., et al., Breast cancer after chest radiation therapy for childhood cancer. J Clin Oncol, 2014. 32(21): p. 2217-23. 13. Malhotra, G.K., et al., Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther, 2010. 10(10): p. 955-60. 14. Institute, N.C., SEER*Stat Database: Incidence - SEER Research Data, 8 Registries, Nov 2023 Sub (1975-2021), N.C. Institute, Editor. 2024. 15. Tsang, J.Y.S. and G.M. Tse, Molecular Classification of Breast Cancer. Adv Anat Pathol, 2020. 27(1). 16. Harbeck, N., et al., Breast cancer. Nature Reviews Disease Primers, 2019. 5(1): p. 66. 17. Beňačka, R., et al., Classic and New Markers in Diagnostics and Classification of Breast Cancer. Cancers, 2022. 14(21): p. 5444. 18. Singh, D.D. and D.K. Yadav, TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines, 2021. 9(8): p. 876. 19. Giuliano, A.E., S.B. Edge, and G.N. Hortobagyi, Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer. Ann Surg Oncol, 2018. 25(7): p. 1783-1785. 20. American Cancer Society. November 8, 2021; Breast Cancer Stages]. Available from: https://www.cancer.org/cancer/types/breast-cancer/understanding-a-breast-cancer-diagnosis/stages-of-breast-cancer.html. 21. Riggio, A.I., K.E. Varley, and A.L. Welm, The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer, 2021. 124(1): p. 13-26. 22. Guo, Y., et al., Different Breast Cancer Subtypes Show Different Metastatic Patterns: A Study from A Large Public Database. Asian Pac J Cancer Prev, 2020. 21(12): p. 3587-3593. 23. Chen, W., et al., Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol, 2018. 2(1): p. 4. 24. Ruiz-Garcia, H., et al., The management of elderly patients with brain metastases from breast cancer. Transl Cancer Res, 2019: p. S62-S76. 25. Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther, 2020. 5(1): p. 28. 26. Winkler, J., et al., Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun, 2020. 11(1): p. 5120. 27. Walker, M., et al., Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Scientific Reports, 2020. 10(1): p. 7696. 28. Aseervatham, J., Cytoskeletal Remodeling in Cancer. Biology (Basel), 2020. 9(11). 29. Dai, Y., et al., Anoikis resistance––protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal, 2023. 21(1): p. 190. 30. Zhang, X., K. Powell, and L. Li, Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel), 2020. 12(12). 31. Nong, S., et al., Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm, 2023. 4(2): p. e218. 32. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. JAMA, 2019. 321(3): p. 288-300. 33. Jivani, A. and R.K. Shinde, A Comprehensive Review of Taxane Treatment in Breast Cancer: Clinical Perspectives and Toxicity Profiles. Cureus, 2024. 16(4): p. e59266. 34. Kciuk, M., et al., Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells, 2023. 12(4). 35. Swain, S.M., M. Shastry, and E. Hamilton, Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov, 2023. 22(2): p. 101-126. 36. Martín, M., et al., Trastuzumab deruxtecan in breast cancer. Crit Rev Oncol Hematol, 2024. 198: p. 104355. 37. Bianchini, G., et al., Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol, 2022. 19(2): p. 91-113. 38. Cortes, J., et al., Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N Engl J Med, 2022. 387(3): p. 217-226. 39. Schmid, P., et al., Pembrolizumab for Early Triple-Negative Breast Cancer. N Engl J Med, 2020. 382(9): p. 810-821. 40. Bardia, A., et al., Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N Engl J Med, 2021. 384(16): p. 1529-1541. 41. Cairns, R.A., I.S. Harris, and T.W. Mak, Regulation of cancer cell metabolism. Nat Rev Cancer, 2011. 11(2): p. 85-95. 42. DeBerardinis, R.J. and N.S. Chandel, Fundamentals of cancer metabolism. Sci Adv, 2016. 2(5): p. e1600200. 43. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 2009. 324(5930): p. 1029. 44. Wise, D.R. and C.B. Thompson, Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci, 2010. 35(8): p. 427-33. 45. Jin, J., et al., Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med, 2023. 55(4): p. 706-715. 46. Ahmed, M.A.M. and A. Nagelkerke, Current developments in modelling the tumour microenvironment in vitro: Incorporation of biochemical and physical gradients. Organs-on-a-Chip, 2021. 3: p. 100012. 47. Rodríguez-Enríquez, S., et al., Canonical and new generation anticancer drugs also target energy metabolism. Arch Toxicol, 2014. 88(7): p. 1327-1350. 48. Pan, M., et al., Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol, 2016. 18(10): p. 1090-1101. 49. Li, M., et al., Glucose deprivation triggers DCAF1-mediated inactivation of Rheb-mTORC1 and promotes cancer cell survival. Cell Death Dis, 2024. 15(6): p. 409. 50. Chen, Z., et al., Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther, 2023. 8(1): p. 70. 51. Iommarini, L., et al., Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Front Oncol, 2017. Volume 7 - 2017. 52. Brian, M.O., Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ Oncol, 2024. 3(1): p. e000154. 53. Papandreou, I., et al., HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab, 2006. 3(3): p. 187-197. 54. Zhi, S., et al., Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol, 2024. Volume 15 - 2024. 55. Wang, M. and R.J. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature, 2016. 529(7586): p. 326-335. 56. Hetz, C., K. Zhang, and R.J. Kaufman, Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol, 2020. 21(8): p. 421-438. 57. Li, A., et al., The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol, 2020. 10. 58. Adams, C.J., et al., Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front Mol Biosci, 2019. Volume 6 - 2019. 59. Siwecka, N., et al., The Structure, Activation and Signaling of IRE1 and Its Role in Determining Cell Fate. Biomedicines, 2021. 9(2). 60. Quwaider, D., et al., RNA sequencing identifies novel regulated IRE1-dependent decay targets that affect multiple myeloma survival and proliferation. Exp Hematol Oncol, 2022. 11(1): p. 18. 61. Ron, D. and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol, 2007. 8(7): p. 519-529. 62. Jackson, R.J., C.U.T. Hellen, and T.V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 2010. 11(2): p. 113-127. 63. Pakos-Zebrucka, K., et al., The integrated stress response. EMBO reports, 2016. 17(10): p. 1374-1395. 64. Wek, R., Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress. Cold Spring Harbor Perspectives in Biology, 2018. 10: p. a032870. 65. Dey, S., et al., Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. The Journal of biological chemistry, 2010. 285(43): p. 33165-33174. 66. B'Chir, W., et al., The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res, 2013. 41(16): p. 7683-99. 67. Holcik, M. and N. Sonenberg, Translational control in stress and apoptosis. Nature Reviews Molecular Cell Biology, 2005. 6(4): p. 318-327. 68. Anda, S., R. Zach, and B. Grallert, Activation of Gcn2 in response to different stresses. PLOS ONE, 2017. 12(8): p. e0182143. 69. Harding, H.P., et al., An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress. Molecular Cell, 2003. 11(3): p. 619-633. 70. Galehdar, Z., et al., Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci, 2010. 30(50): p. 16938-48. 71. Hanahan, D., Hallmarks of Cancer: New Dimensions. Cancer Discov, 2022. 12(1): p. 31-46. 72. Marine, J.C., S.J. Dawson, and M.A. Dawson, Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer, 2020. 20(12): p. 743-756. 73. Tam, S.Y., V.W.C. Wu, and H.K.W. Law, Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond. Front Oncol, 2020. 10: p. 486. 74. Bhatia, S., et al., New Insights Into the Role of Phenotypic Plasticity and EMT in Driving Cancer Progression. Front Mol Biosci, 2020. Volume 7 - 2020. 75. Shuvalov, O., et al., Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers, 2021. 13(4): p. 762. 76. Sun, L., et al., Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer, 2018. 1870(1): p. 51-66. 77. Wang, L., S. Zhang, and X. Wang, The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol, 2021. Volume 10 - 2020. 78. Gupta, P.B., et al., Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell, 2019. 24(1): p. 65-78. 79. Ramisetty, S., et al., Leveraging Cancer Phenotypic Plasticity for Novel Treatment Strategies. J Clin Med, 2024. 13(11): p. 3337. 80. Wu, Y.Z., Y.H. Su, and C.Y. Kuo, Stressing the Regulatory Role of Long Non-Coding RNA in the Cellular Stress Response during Cancer Progression and Therapy. Biomedicines, 2022. 10(5). 81. Uszczynska-Ratajczak, B., et al., Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet, 2018. 19(9): p. 535-548. 82. Mattick, J.S., et al., Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol, 2023. 24(6): p. 430-447. 83. Liu, Y., et al., Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics, 2021. 23: p. 458-476. 84. Guh, C.Y., Y.H. Hsieh, and H.P. Chu, Functions and properties of nuclear lncRNAs-from systematically mapping the interactomes of lncRNAs. J Biomed Sci, 2020. 27(1): p. 44. 85. Statello, L., et al., Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 2021. 22(2): p. 96-118. 86. Tripathi, V., et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010. 39(6): p. 925-38. 87. Arab, K., et al., GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat Genet, 2019. 51(2): p. 217-223. 88. Hu, W.L., et al., GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol, 2018. 20(4): p. 492-502. 89. Noh, J.H., et al., Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA, 2018. 9(3): p. e1471. 90. Ma, B., et al., Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother, 2023. 162: p. 114672. 91. Ma, H., et al., LncRNA TRPM2-AS promotes endometrial carcinoma progression and angiogenesis via targeting miR-497-5p/SPP1 axis. Cell Mol Biol Lett, 2024. 29(1): p. 93. 92. Lee, S., et al., Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell, 2016. 164(1): p. 69-80. 93. Shmuel-Galia, L., et al., The lncRNA HOXA11os regulates mitochondrial function in myeloid cells to maintain intestinal homeostasis. Cell Metab, 2023. 35(8): p. 1441-1456.e9. 94. Ahmad, M., et al., Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res, 2023. 42(1): p. 173. 95. Qian, Y., L. Shi, and Z. Luo, Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front Med (Lausanne), 2020. Volume 7 - 2020. 96. Huarte, M., The emerging role of lncRNAs in cancer. Nat Med, 2015. 21(11): p. 1253-1261. 97. Yu, Z., et al., The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther, 2025. 32(3): p. 273-285. 98. Jiang, N., et al., Progress in understanding the role of lncRNA in programmed cell death. Cell Death Discov, 2021. 7(1): p. 30. 99. Yan, Z., et al., METTL3-modified lncRNA DSCAM-AS1 promotes breast cancer progression through inhibiting ferroptosis. J Bioenerg Biomembr, 2024. 56(4): p. 451-459. 100. Wang, J., et al., Novel long noncoding RNA LINC02820 augments TNF signaling pathway to remodel cytoskeleton and potentiate metastasis in esophageal squamous cell carcinoma. Cancer Gene Ther, 2023. 30(2): p. 375-387. 101. Sellitto, A., et al., Regulation of Metabolic Reprogramming by Long Non-Coding RNAs in Cancer. Cancers (Basel), 2021. 13(14). 102. Yang, J., et al., LncRNAs in tumor metabolic reprogramming and immune microenvironment remodeling. Cancer Lett, 2022. 543: p. 215798. 103. Zhang, C., et al., LncRNA CCAT1 facilitates the progression of gastric cancer via PTBP1-mediated glycolysis enhancement. J Exp Clin Cancer Res, 2023. 42(1): p. 246. 104. Zong, S., et al., LncRNA-SNHG1 promotes macrophage M2-like polarization and contributes to breast cancer growth and metastasis. Aging (Albany NY), 2021. 13(19): p. 23169-23181. 105. Yang, Q., et al., Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. J Zhejiang Univ Sci B, 2023. 24(12): p. 1123-1140. 106. Jiang, M.C., et al., Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res, 2019. 9(7): p. 1354-1366. 107. Chen, B., et al., Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther, 2022. 7(1): p. 121. 108. Özeş, A.R., et al., NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene, 2016. 35(41): p. 5350-5361. 109. Zhang, Q., et al., Hypoxia-Induced lncRNA-NEAT1 Sustains the Growth of Hepatocellular Carcinoma via Regulation of miR-199a-3p/UCK2. Front Oncol, 2020. Volume 10 - 2020. 110. Li, X., et al., Long non-coding RNA ROR confers arsenic trioxide resistance to HepG2 cells by inhibiting p53 expression. Eur J Pharmacol, 2020. 872: p. 172982. 111. Wu, C., et al., Long Noncoding RNA HITTERS Protects Oral Squamous Cell Carcinoma Cells from Endoplasmic Reticulum Stress-Induced Apoptosis via Promoting MRE11-RAD50-NBS1 Complex Formation. Adv Sci (Weinh), 2020. 7(22): p. 2002747. 112. Zhu, W., et al., Low Glucose–Induced Overexpression of HOXC-AS3 Promotes Metabolic Reprogramming of Breast Cancer. Cancer Res, 2022. 82(5): p. 805-818. 113. Xiao, Z.D., et al., Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun, 2017. 8(1): p. 783. 114. Kang, Y., et al., Energy stress-induced lncRNA HAND2-AS1 represses HIF1α-mediated energy metabolism and inhibits osteosarcoma progression. Am J Cancer Res, 2018. 8(3): p. 526-537. 115. Sang, L., et al., Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nat Metab, 2021. 3(1): p. 90-106. 116. Zhang, G., et al., Energy stress-induced linc01564 activates the serine synthesis pathway and facilitates hepatocellular carcinogenesis. Oncogene, 2021. 40(16): p. 2936-2951. 117. Go, C.K., et al., EGR-mediated control of STIM expression and function. Cell Calcium, 2019. 77: p. 58-67. 118. Hao, L., et al., The Role of Early Growth Response Family Members 1–4 in Prognostic Value of Breast Cancer. Front Genet, 2021. Volume 12 - 2021. 119. O'Donovan, K.J., et al., The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci, 1999. 22(4): p. 167-173. 120. Poirier, R., et al., Distinct functions of egr gene family members in cognitive processes. Front Neurosci, 2008. 2(1): p. 47-55. 121. Duclot, F. and M. Kabbaj, The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Frontiers in Behavioral Neuroscience, 2017. Volume 11 - 2017. 122. Revest, J.M., et al., The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry, 2010. 15(12): p. 1140-1151. 123. Liang, J., et al., The Landscape of Early Growth Response Family Members 1-4 in Hepatocellular Carcinoma: Their Biological Roles and Diagnostic Utility. Dis Markers, 2022. 2022: p. 3144742. 124. Wei, S., et al., EGR2 promotes liver cancer metastasis by enhancing IL-8 expression through transcription regulation of PDK4 in M2 macrophages. Int Immunopharmacol, 2025. 153: p. 114484. 125. Chen, C.-h., et al., EGR3 Inhibits Tumor Progression by Inducing Schwann Cell-Like Differentiation. Adv Sci, 2024. 11(34): p. 2400066. 126. Duclot, F. and M. Kabbaj, The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci, 2017. Volume 11 - 2017. 127. Havis, E. and D. Duprez EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int J Mol Sci, 2020. 21, DOI: 10.3390/ijms21051664. 128. Milbrandt, J., A Nerve Growth Factor-Induced Gene Encodes a Possible Transcriptional Regulatory Factor. Science, 1987. 238(4828): p. 797-799. 129. Lim, R.W., B.C. Varnum, and H.R. Herschman, Cloning of tetradecanoyl phorbol ester-induced 'primary response' sequences and their expression in density-arrested Swiss 3T3 cells and a TPA non-proliferative variant. Oncogene, 1987. 1(3): p. 263-70. 130. Lemaire, P., et al., Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A, 1988. 85(13): p. 4691-5. 131. Christy, B. and D. Nathans, Functional serum response elements upstream of the growth factor-inducible gene zif268. Mol Cell Biol, 1989. 9(11): p. 4889-95. 132. Cao, X.M., et al., Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol, 1990. 10(5): p. 1931-9. 133. Sukhatme, V.P., et al., A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell, 1988. 53(1): p. 37-43. 134. Zandarashvili, L., et al., Asymmetrical roles of zinc fingers in dynamic DNA-scanning process by the inducible transcription factor Egr-1. Proc Natl Acad Sci U S A, 2012. 109(26): p. E1724-E1732. 135. Topilko, P., et al., Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol Endocrinol, 1998. 12(1): p. 107-22. 136. Guo, B., et al., Expression, regulation and function of Egr1 during implantation and decidualization in mice. Cell Cycle, 2014. 13(16): p. 2626-40. 137. Miyazaki, T. and F.A. Lemonnier, Modulation of thymic selection by expression of an immediate-early gene, early growth response 1 (Egr-1). J Exp Med, 1998. 188(4): p. 715-23. 138. Xu, X., et al., Maturation and Emigration of Single-Positive Thymocytes. Clin Dev Immunol, 2013. 2013(1): p. 282870. 139. Gururajan, M., et al., Early growth response genes regulate B cell development, proliferation, and immune response. J Immunol, 2008. 181(7): p. 4590-602. 140. Trizzino, M., et al., EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. Sci Adv, 2021. 7(3). 141. Chu, Y.-b., et al., Irf1- and Egr1-activated transcription plays a key role in macrophage polarization: A multiomics sequencing study with partial validation. Int Immunopharmacol, 2021. 99: p. 108072. 142. Bhattacharyya, S., et al., Egr-1: New conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol, 2013. 229. 143. Zheng, S.K., et al., Oxidative stress-induced EGR1 upregulation promotes NR4A3-mediated nucleus pulposus cells apoptosis in intervertebral disc degeneration. Aging (Albany NY), 2024. 16(12): p. 10216-10238. 144. Peng, W.-x., et al., Egr-1 promotes hypoxia-induced autophagy to enhance chemo-resistance of hepatocellular carcinoma cells. Exp Cell Res, 2016. 340(1): p. 62-70. 145. Shan, J., E. Dudenhausen, and M.S. Kilberg, Induction of early growth response gene 1 (EGR1) by endoplasmic reticulum stress is mediated by the extracellular regulated kinase (ERK) arm of the MAPK pathways. Biochim Biophys Acta Mol Cell Res, 2019. 1866(3): p. 371-381. 146. Jeon, H.M., et al., Early growth response 1 regulates glucose deprivation-induced necrosis. Oncol Rep, 2013. 29(2): p. 669-75. 147. Eid, M.A., et al., Expression of early growth response genes in human prostate cancer. Cancer Res, 1998. 58(11): p. 2461-8. 148. Park, S.Y., et al., Expression of early growth response gene-1 in precancerous lesions of gastric cancer. Oncol Lett, 2016. 12(4): p. 2710-2715. 149. Sun, S.W., et al., Expression and clinical significance of EGR-1 and PTEN in the pituitary tumors of elderly patients. Oncol Lett, 2017. 14(2): p. 2165-2169. 150. Huang, R.P., et al., Decreased Egr-1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation. Int J Cancer, 1997. 72(1): p. 102-9. 151. Ferraro, B., et al., EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J Clin Oncol, 2005. 23(9): p. 1921-6. 152. Zhong, J.-T., et al., Correlations of the expressions of c-Jun and Egr-1 proteins with clinicopathological features and prognosis of patients with nasopharyngeal carcinoma. Cancer Biomark, 2017. 19(2): p. 213-220. 153. Wang, B., et al., The Role of the Transcription Factor EGR1 in Cancer. Front Oncol, 2021. Volume 11 - 2021. 154. Chen, H.A., et al., Angiopoietin‐like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in hepatocellular carcinoma. Hepatology, 2016. 64(5): p. 1637-1651. 155. Yadav, S., et al., ERK1/2-EGR1-SRSF10 Axis Mediated Alternative Splicing Plays a Critical Role in Head and Neck Cancer. Front Cell Dev Biol, 2021. Volume 9 - 2021. 156. Jung, E., et al., The JNK-EGR1 signaling axis promotes TNF-α-induced endothelial differentiation of human mesenchymal stem cells via VEGFR2 expression. Cell Death Differ, 2023. 30(2): p. 356-368. 157. Meng, D.-F., Abstract 5241: p38 MAPK/EGR1/PD-L1 axis promotes radiation resistance of nasopharyngeal carcinoma by enhancing immune evasion. Cancer Res, 2022. 82(12_Supplement): p. 5241-5241. 158. Kim, J., et al., Oxytocin inhibits head and neck squamous cell carcinoma cell migration by early growth response-1 upregulation. Anticancer Drugs, 2017. 28(6): p. 613-622. 159. Zhao, H.Y., et al., Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res, 2008. 68(17): p. 7035-41. 160. Wong, K.M., J. Song, and Y.H. Wong, CTCF and EGR1 suppress breast cancer cell migration through transcriptional control of Nm23-H1. Sci Rep, 2021. 11(1): p. 491. 161. Saha, S.K., et al., Prognostic role of EGR1 in breast cancer: a systematic review. BMB Rep, 2021. 54(10): p. 497-504. 162. Liu, H., et al., FRZB is Regulated by the Transcription Factor EGR1 and Inhibits the Growth and Invasion of Triple-Negative Breast Cancer Cells by Regulating the JAK/STAT3 Pathway. Clin Breast Cancer, 2022. 22(7): p. 690-698. 163. Li, D.M., et al., Active fraction of Polyrhachis vicina Rogers (AFPR) suppressed breast cancer growth and progression via regulating EGR1/lncRNA-NKILA/NF-κB axis. Biomed Pharmacother, 2020. 123: p. 109616. 164. Tarcic, G., et al., EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. Faseb j, 2012. 26(4): p. 1582-92. 165. Marks, B.A., et al., GDNF-RET signaling and EGR1 form a positive feedback loop that promotes tamoxifen resistance via cyclin D1. BMC Cancer, 2023. 23(1): p. 138. 166. Lin, Z., et al., EGR1 Promotes Erastin-induced Ferroptosis Through Activating Nrf2-HMOX1 Signaling Pathway in Breast Cancer Cells. J Cancer, 2024. 15(14): p. 4577-4590. 167. Guo, R., et al., Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review). Int J Mol Med, 2025. 56(1): p. 113. 168. Yu, J., et al., PTEN regulation by Akt–EGR1–ARF–PTEN axis. EMBO J, 2009. 28(1): p. 21-33-33. 169. Ponti, D., et al., The transcription factor EGR1 localizes to the nucleolus and is linked to suppression of ribosomal precursor synthesis. PLoS One, 2014. 9(5): p. e96037. 170. Manente, A.G., et al., Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability. PLOS ONE, 2011. 6(10): p. e25676. 171. Huang, R.-P., et al., Egr-1 inhibits apoptosis during the UV response: correlation of cell survival with Egr-1 phosphorylation. Cell Death Differ, 1998. 5(1): p. 96-106. 172. Jain, N., et al., Casein Kinase II Associates with Egr-1 and Acts as a Negative Modulator of Its DNA Binding and Transcription Activities in NIH 3T3 Cells. J Biol Chem, 1996. 271(23): p. 13530-13536. 173. Yu, J., et al., Coactivating Factors p300 and CBP Are Transcriptionally Crossregulated by Egr1 in Prostate Cells, Leading to Divergent Responses. Mol Cell, 2004. 15(1): p. 83-94. 174. Mahmood, T. and P.-C. Yang, Western blot: technique, theory, and trouble shooting. North American journal of medical sciences, 2012. 4(9): p. 429-434. 175. Luhr, M., et al., The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress. J Biol Chem, 2019. 294(20): p. 8197-8217. 176. Tajan, M., et al., A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab, 2018. 28(5): p. 721-736.e6. 177. Weinstein, J.N., et al., The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 2013. 45(10): p. 1113-20. 178. Wagle, N., et al., The Metastatic Breast Cancer Project: A national direct-to-patient initiative to accelerate genomics research. J Clin Oncol, 2016. 34(15_suppl): p. LBA1519-LBA1519. 179. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50. 180. Kan, Z., et al., Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nat Commun, 2018. 9(1): p. 1725. 181. Gagnon, K.T., et al., Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc, 2014. 9(9): p. 2045-60. 182. Wu, Y.Z., et al., Amino acid restriction induces a long non-coding RNA UBA6-AS1 to regulate GCN2-mediated integrated stress response in breast cancer. Faseb j, 2022. 36(3): p. e22201. 183. Subramanian, A., et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005. 102(43): p. 15545-15550. 184. Chen, J., et al., Alternative splicing of lncRNAs in human diseases. Am J Cancer Res, 2021. 11(3): p. 624-639. 185. Khan, M.R., R.J. Wellinger, and B. Laurent, Exploring the Alternative Splicing of Long Noncoding RNAs. Trends Genet, 2021. 37(8): p. 695-698. 186. Pakos-Zebrucka, K., et al., The integrated stress response. EMBO Rep, 2016. 17(10): p. 1374-1395. 187. Ryoo, H.D., The integrated stress response in metabolic adaptation. J Biol Chem, 2024. 300(4): p. 107151. 188. Wu, D. and J. Liang, Activating transcription factor 4: a regulator of stress response in human cancers. Front Cell Dev Biol, 2024. Volume 12 - 2024. 189. B'Chir, W., et al., The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res, 2013. 41(16): p. 7683-99. 190. Fornes, O., et al., JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res, 2020. 48(D1): p. D87-d92. 191. Balasubramanian, M.N., E.A. Butterworth, and M.S. Kilberg, Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab, 2013. 304(8): p. E789-99. 192. Hu, F., et al., Early Growth Response 1 (Egr1) Is a Transcriptional Activator of NOX4 in Oxidative Stress of Diabetic Kidney Disease. J Diabetes Res, 2018. 2018: p. 3405695. 193. Qin, H., et al., EGR1/NOX4 pathway regulates oxidative stress and further facilitates fibrosis progression in keloids responses to TGF-β1. J Dermatol Sci, 2022. 108(3): p. 138-145. 194. Naderzadeh, E., et al., Activating transcription factor 3 induces oxidative stress and genotoxicity, transcriptionally modulating metastasis-related gene expression in human papillomavirus-infected cervical cancer. Virol J, 2025. 22(1): p. 46. 195. Liu, S., et al., The Dual Roles of Activating Transcription Factor 3 (ATF3) in Inflammation, Apoptosis, Ferroptosis, and Pathogen Infection Responses. Int J Mol Sci, 2024. 25(2): p. 824. 196. Ray Chaudhuri, A. and A. Nussenzweig, The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol, 2017. 18(10): p. 610-621. 197. Wang, Y., W. Luo, and Y. Wang, PARP-1 and its associated nucleases in DNA damage response. DNA Repair (Amst), 2019. 81: p. 102651. 198. Martí, J.M., et al., The Multifactorial Role of PARP-1 in Tumor Microenvironment. Cancers, 2020. 12(3): p. 739. 199. Rodríguez-Vargas, J.M., et al., ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res, 2012. 22(7): p. 1181-98. 200. Kadam, A., et al., Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj, 2020. 1864(10): p. 129669. 201. 劉格均, 探討 EGR1 在代謝壓力下對於乳癌細胞的作用, in 國立臺灣大學醫學檢驗暨生物技術學研究所. 2021, 國立臺灣大學: 臺灣博碩士論文知識加值系統. 202. Cheng, C.T., et al., Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Res, 2016. 76(17): p. 5006-18. 203. Patel, M., et al., A novel p38 mitogen-activated protein kinase/Elk-1 transcription factor-dependent molecular mechanism underlying abnormal endothelial cell proliferation in plexogenic pulmonary arterial hypertension. J Biol Chem, 2013. 288(36): p. 25701-25716. 204. Christy, B. and D. Nathans, DNA binding site of the growth factor-inducible protein Zif268. Proceedings of the National Academy of Sciences, 1989. 86(22): p. 8737. 205. Cao, X., et al., Detection and characterization of cellular EGR-1 binding to its recognition site. Journal of Biological Chemistry, 1993. 268(23): p. 16949-57. 206. Datta, A., et al., Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers, 2021. 13(8): p. 1882. 207. Graziani, V., et al., The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends in Cell Biology, 2022. 32(3): p. 228-242. 208. Ho, D.V. and J.Y. Chan, Induction of Herpud1 expression by ER stress is regulated by Nrf1. FEBS Letters, 2015. 589(5): p. 615-620. 209. Américo-Da-Silva, L., et al., A new role for HERPUD1 and ERAD activation in osteoblast differentiation and mineralization. Faseb j, 2018. 32(9): p. 4681-4695. 210. Waldrip, Z.J., et al., DNA-PKcs kinase activity stabilizes the transcription factor Egr1 in activated immune cells. Journal of Biological Chemistry, 2021. 297(4): p. 101209. 211. Vedantham, S., et al., Aldose Reductase Drives Hyperacetylation of Egr-1 in Hyperglycemia and Consequent Upregulation of Proinflammatory and Prothrombotic Signals. Diabetes, 2014. 63(2): p. 761. 212. Gallaher, J.A., J.S. Brown, and A.R.A. Anderson, The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer. Sci Rep, 2019. 9(1): p. 2425. 213. Saavedra-García, P., et al., Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs. Proc Natl Acad Sci U S A, 2021. 118(17). 214. Jacqueline, C., et al., Cancer: A disease at the crossroads of trade-offs. Evol Appl, 2017. 10(3): p. 215-225. 215. Senft, D. and Z.E. Ronai, Adaptive Stress Responses During Tumor Metastasis and Dormancy. Trends Cancer, 2016. 2(8): p. 429-442. 216. Zuo, Y., et al., Long non-coding RNA LIP interacts with PARP-1 influencing the efficiency of base excision repair. Noncoding RNA Res, 2024. 9(3): p. 649-658. 217. Du, Z., et al., LncRNA ANRIL promotes HR repair through regulating PARP1 expression by sponging miR-7-5p in lung cancer. BMC Cancer, 2023. 23(1): p. 130. 218. Shi, X., et al., N(6)-methyladenosine-mediated upregulation of LNCAROD confers radioresistance in esophageal squamous cell carcinoma through stabilizing PARP1. Clin Transl Med, 2024. 14(10): p. e70039. 219. Saha, A., et al., Cysteine depletion sensitizes prostate cancer cells to agents that enhance DNA damage and to immune checkpoint inhibition. J Exp Clin Cancer Res, 2023. 42(1): p. 119. 220. Tran, T.Q., et al., Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes. PLoS Biol, 2017. 15(11): p. e2002810. 221. Chen, W., et al., PARP1-catalyzed PARylation of YY1 mediates endoplasmic reticulum stress in granulosa cells to determine primordial follicle activation. Cell Death Dis, 2023. 14(8): p. 524. 222. Shang, L., et al., Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A, 2011. 108(12): p. 4788-4793. 223. Ohsumi, Y., Historical landmarks of autophagy research. Cell Res, 2014. 24(1): p. 9-23. 224. Wang, C., et al., PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis, 2018. 9(11): p. 1047. 225. Rodríguez-Vargas, J.M., et al., ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res, 2012. 22(7): p. 1181-1198. 226. Rodríguez-Vargas, J.M., F.J. Oliver-Pozo, and F. Dantzer, PARP1 and Poly(ADP-ribosyl)ation Signaling during Autophagy in Response to Nutrient Deprivation. Oxid Med Cell Longev, 2019. 2019(1): p. 2641712. 227. Tong, L., R.A. Heim, and S. Wu, Nitric oxide: A regulator of eukaryotic initiation factor 2 kinases. Free Radic Biol Med, 2011. 50(12): p. 1717-1725. 228. Nofal, M., et al., mTOR Inhibition Restores Amino Acid Balance in Cells Dependent on Catabolism of Extracellular Protein. Mol Cell, 2017. 67(6): p. 936-946.e5. 229. Meng, D., et al., Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J Biol Chem, 2020. 295(10): p. 2890-2899. 230. Takahara, T., et al., Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci, 2020. 27(1): p. 87. 231. Wek, R.C., Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress. Cold Spring Harb Perspect Biol, 2018. 10(7). 232. Back, S.H., Roles of the Translation Initiation Factor eIF2α Phosphorylation in Cell Structure and Function. Cell Struct Funct, 2020. 45(1): p. 65-76. 233. Kaufman, R.J., Orchestrating the unfolded protein response in health and disease. J Clin Invest, 2002. 110(10): p. 1389-1398. 234. Rao, B., et al., The cryo-EM structure of the human ERAD retrotranslocation complex. Sci Adv, 2023. 9(41): p. eadi5656. 235. Depaoli, M.R., et al., The enigmatic ATP supply of the endoplasmic reticulum. Biol Rev Camb Philos Soc, 2019. 94(2): p. 610-628. 236. Zhao, R.Z., et al., Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med, 2019. 44(1): p. 3-15. 237. Bhattarai, K.R., et al., The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med, 2021. 53(2): p. 151-167. 238. An, X., et al., Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis, 2024. 15(8): p. 556. 239. Jaggupilli, A., et al., Metabolic stress induces GD2(+) cancer stem cell-like phenotype in triple-negative breast cancer. Br J Cancer, 2022. 126(4): p. 615-627. 240. Cassim, S., et al., Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment. Cell Cycle, 2018. 17(7): p. 903-916. 241. Tan, L., et al., Egr-1 Mediates Transcriptional Repression of COL2A1Promoter Activity by Interleukin-1β. J Biol Chem, 2003. 278(20): p. 17688-17700. 242. Feng, Y., et al., EGR1 Functions as a Potent Repressor of MEF2 Transcriptional Activity. PLoS One, 2015. 10(5): p. e0127641. 243. Ponti, D., et al., The expression of B23 and EGR1 proteins is functionally linked in tumor cells under stress conditions. BMC Cell Biol, 2015. 16(1): p. 27. 244. Song, X., et al., Filamin A suppresses the expression of ribosomal protein genes by controlling the activity of an EGR1-Sp1-GCN5/PCAF pathway in human cells. Biochim Biophys Acta Mol Cell Res, 2025. 1872(3): p. 119914. 245. Stage-Zimmermann, T., U. Schmidt, and P.A. Silver, Factors Affecting Nuclear Export of the 60S Ribosomal Subunit In Vivo. Mol Biol Cell, 2000. 11(11): p. 3777-3789. 246. Dey, S., et al., ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest, 2015. 125(7): p. 2592-608. 247. Xia, S., et al., HRC promotes anoikis resistance and metastasis by suppressing endoplasmic reticulum stress in hepatocellular carcinoma. Int J Med Sci, 2021. 18(14): p. 3112-3124. 248. Lines, C.L., et al., The integrated stress response in cancer progression: a force for plasticity and resistance. Front Oncol, 2023. Volume 13 - 2023. 249. Madden, E., et al., The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol Cell, 2019. 111(1): p. 1-17. 250. Licari, E., L. Sánchez-del-Campo, and P. Falletta, The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. Int J Biochem Cell Biol, 2021. 139: p. 106059. 251. Fan, K., et al., Targeting Nutrient Dependency in Cancer Treatment. Front Oncol, 2022. Volume 12 - 2022. 252. Zhang, Y., et al., Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Lett, 2021. 502: p. 58-70. 253. Lettieri-Barbato, D. and K. Aquilano, Pushing the Limits of Cancer Therapy: The Nutrient Game. Front Oncol, 2018. Volume 8 - 2018. 254. Ojha, R. and R.K. Amaravadi, Targeting the unfolded protein response in cancer. Pharmacol Res, 2017. 120: p. 258-266. 255. Missiaen, R., et al., GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab, 2022. 34(8): p. 1151-1167.e7. 256. Nakamura, A., et al., Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc Natl Acad Sci U S A, 2018. 115(33): p. E7776-e7785. 257. He, J., Y. Zhou, and L. Sun, Emerging mechanisms of the unfolded protein response in therapeutic resistance: from chemotherapy to Immunotherapy. Cell Commun Signal, 2024. 22(1): p. 89. 258. Kan, Z., et al., Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nat Commun, 2018. 9(1): p. 1725. 259. 雷善婷, 探討在乳癌代謝壓力反應中EGR1的轉譯後修飾對其功能之影響, in 國立臺灣大學醫學檢驗暨生物技術學系. 2023, 國立臺灣大學: 臺灣博碩士論文知識加值系統. 260. 阮鎂儒, 建立EGR1報導基因偵測系統以追蹤乳癌細胞在腫瘤內代謝壓力下的命運, in 國立臺灣大學醫學檢驗暨生物技術學研究所. 2022, 國立臺灣大學: 臺灣博碩士論文知識加值系統. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99677 | - |
| dc.description.abstract | 當腫瘤在生長過程中遭遇到壓力時,癌細胞會啟動壓力反應並透過調控轉錄路徑來調控細胞的行為,這樣的機制使得癌細胞能發展出表型可塑性(phenotypic plasticity)以因應壓力。在癌症進展過程中,癌細胞常因腫瘤微環境中營養供應不足而遭受代謝壓力。然而,目前對於癌細胞調控代謝壓力反應及代謝壓力如何影響表型可塑性的機制仍未完全釐清。本研究旨在探討乳癌細胞如何因應代謝壓力,並會聚焦於長鏈非編碼核糖核酸UBA6-AS1與轉錄因子EGR1在營養缺乏情況下所扮演的角色。
第一部分的研究主要是在探討UBA6-AS1在胺基酸缺乏下的功能。研究結果顯示,整合性壓力反應(integrated stress response)的核心路徑GCN2/ATF4會於麩醯胺酸(glutamine)和精胺酸(arginine)缺乏時上調UBA6-AS1的表現。而UBA6-AS1的上調會進一步促進PARP1的表現,進而增加細胞在代謝壓力下的存活能力。然而,UBA6-AS1的上調雖然促進了細胞的存活,卻也同時抑制了細胞的遷移能力,顯示其在代謝壓力下會調控細胞在生長與轉移之間的平衡(trade-off)。 第二部分的研究主要是在研究EGR1在葡萄糖缺乏下的表現與功能。研究結果顯示EGR1在代謝壓力之下的表現量會透過ROS/p38/Elk-1以及GCN2/ATF4兩條路徑被誘導。EGR1被上調後會抑制HERPUD1的表現,並且會部分抑制由IRE1所介導的未折疊蛋白反應(unfolded protein response)。這樣的機制能避免未折疊蛋白反應過度或延長活化,進而協助維持內質網恆定以及促進癌細胞於葡萄糖缺乏下的表型可塑性。不同的功能性試驗顯示EGR1除了能促進細胞在代謝壓力下的存活外,也會促進細胞對於失巢凋亡(anoikis resistance)的抗性,並同時抑制糖解作用與粒線體氧化磷酸化。由這些結果可以推論出在代謝壓力下EGR1能夠多面向地調控細胞的行為。 基於EGR1對代謝壓力的高度敏感性與快速反應性,本研究建立了一套以EGR1啟動子驅動Cre蛋白表現的報導系統。該系統可以在EGR1被誘發時將細胞由紅色螢光不可逆地轉換為綠色螢光,使曾經經歷代謝壓力的細胞能被追蹤其細胞命運與行為的變化,並作為一個可用來長期觀察細胞應對代謝壓力之過程及其轉移能力變化的工具。 總結來說,本研究發現乳癌細胞會分別透過UBA6-AS1以及EGR1調控代謝壓力反應並促進細胞於代謝壓力下的表型可塑性。這些結果顯示出癌細胞對不同營養缺乏所導致的代謝壓力調控具高度的特異性及複雜性,並為未來發展針對代謝壓力的乳癌治療策略提供新的標的與方向。 | zh_TW |
| dc.description.abstract | To adapt and survive from stress, cancer cells develop phenotypic plasticity through activating stress response which is mediated by diverse transcriptional programs to modulate phenotypic behaviors. During cancer progression, cancer cells are frequently exposed to metabolic stress due to insufficient nutrient supply in the tumor microenvironment. Nonetheless, the regulatory mechanism of metabolic stress response remains incompletely understood. This thesis would investigate how breast cancer cells respond to metabolic stress, which particularly focused on the role of long non-coding RNA UBA6-AS1 and transcription factor EGR1 under nutrient deprivation conditions.
In the first part of the study, the role of UBA6-AS1 was investigated during amino acid deprivation. GCN2/ATF4 signaling axis, the core component of the integrated stress response, transcriptionally upregulated UBA6-AS1 upon glutamine and arginine starvation. The upregulation of UBA6-AS1 further enhanced the expression of PARP1, which promoted cell survival under stress conditions. Although UBA6-AS1 promoted cell survival under metabolic stress, it simultaneously suppressed the migratory ability of breast cancer cells, suggesting UBA6-AS1 mediated the trade-off between survival and metastasis in response to metabolic stress. In the second part, the role of transcription factor EGR1 under glucose deprivation was examined. EGR1 was induced by both ROS/p38/Elk-1 and GCN2/ATF4 signaling pathways upon glucose deprivation. After induction, EGR1 was found to suppress HERPUD1 expression and partially inhibited IRE1-mediated unfolded protein response (UPR) signaling, which prevented prolonged or excessive UPR activation, thereby maintaining ER homeostasis and promoting phenotypic plasticity under glucose starvation. EGR1 was demonstrated to regulate phenotypic plasticity through enhancing anoikis resistance and cell survival, whereas concurrently suppressing both glycolysis and oxidative phosphorylation, implying the multifaceted regulation of EGR1 on cell behavior upon metabolic stress. Based on the rapid responsiveness and sensitivity of EGR1 on metabolic stress, an EGR1 promoter-driven Cre reporter system was developed to visualize and trace the metabolic stress-experiencing cells. This reporter system irreversibly converted cells from red to green fluorescence upon EGR1 activation, and provided a lineage-tracing strategy to monitor how metabolic stress-exposed cells behaved or metastasized over time. Collectively, these findings revealed that breast cancer cells fine-tuned stress response signaling to regulate phenotypic plasticity under metabolic stress through UBA6-AS1 and EGR1. These mechanisms highlighted the complexity and specificity of cancer cell adaptation to metabolic stress induced by the deficiency of distinct nutrient, which provided the opportunity to develop future therapeutic strategies targeting metabolic vulnerabilities in breast cancer. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:20:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:20:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv List of Abbreviations vi List of Figures xvi Chapter I. Introduction 1 I.1 Breast Cancer 1 I.1.1 Causes and Risk Factor of Breast Cancer 1 I.1.2 Classification of Breast Cancer 2 I.1.3 Staging of Breast Cancer 3 I.1.4 Breast Cancer Metastasis 3 I.1.5 Treatments for Breast Cancer 5 I.2 Metabolic Stress in Cancer 6 I.3 Stress Response 7 I.3.1 Hypoxic Stress Response 8 I.3.2 Unfolded Protein Response 8 I.3.3 Integrated Stress Response 11 I.4 Phenotypic Plasticity 12 I.5 Long non-coding RNA 12 I.5.1 Classification of lncRNAs 13 1.5.2 Function of lncRNAs 13 I.5.3 Role of lncRNAs in Cancer 15 I.5.4 The Regulation of lncRNAs on Stress Response 16 I.6 Early Growth Response Family 17 I.6.1 Introduction of EGR1 18 I.6.2 Function of EGR1 19 I.6.3 EGR1 and Stress Response 19 I.6.4 EGR1 and Cancer 20 I.6.5 Post-translational modifications of EGR1 21 Chapter II. Rationale and Purpose 23 Chapter III. Materials and Methods 24 III.1 Cell culture and reagents 24 III.2 Chemicals 24 III.3 Animal study 25 III.4 RNA isolation, cDNA synthesis, and qPCR 26 III.5 Breast cancer tissue microarray 27 III.6 SDS-PAGE and Western Blotting 27 III.7 Cell viability and proliferation assay 29 III.8 Anoikis resistance assay 29 III.9 3D spheroid formation 30 III.10 siRNA transfection 30 III.11 Lentiviral production and transduction 30 III.12 Mitochondrial function analysis 31 III.13 Transwell migration assay 31 III.14 RNA-Seq and dataset analysis 32 III.15 Subcellular fractionation 32 III.16 Polymerase chain reaction 33 III.17 Site-directed mutagenesis 34 III.18 Chromatin immunoprecipitation (ChIP)-Seq analysis 34 III.19 Immunoprecipitation 34 III.20 Transcription factor binding site prediction 35 III.21 Immunofluorescence staining and imaging 35 III.22 Competition assay 35 III.23 Seahorse Bioenergetic Analysis 36 III.24 In vitro dephosphorylation assay 36 III.25 Organoid culture 37 III.26 Statistical analysis 37 Chapter IV. Results-part I 38 IV.1 UBA6-AS1 was upregulated in tumor and may be involved in the regulation of integrated stress response 38 IV.2 UBA6-AS1 was upregulated in TNBC cells upon metabolic stress and ER stress 39 IV.3 Characterization of the localization and the transcript variant of UBA6-AS1 40 IV.4 UBA6-AS1 promoted BC cell growth under metabolic stress and ER stress 42 IV.5 GCN2/ATF4-mediated ISR was responsible for the upregulation of UBA6-AS1 upon amino acid deprivation 43 IV.6 PARP1 was identified as the downstream target of UBA6-AS1 and regulated cell survival upon amino acid deprivation 45 IV.7 Conclusion 47 Chapter V. Results-part II 48 V.1 Metabolic stress induced EGR1 expression through ROS/p38/Elk-1 axis in BC cells 48 V.2 EGR1 drove metabolic stress adaptation and breast cancer progression 50 V.3 EGR1 rendered cell metabolism more quiescent and promoted migratory ability upon glucose deprivation 51 V.4 ChIP-Seq analysis indicated that EGR1 might involve in the regulation of several metastatic processes 52 V.5 EGR1 suppressed IRE1ɑ-mediated unfolded protein response upon metabolic stress 54 V.6 EGR1 was phosphorylated at Thr-391 residue under metabolic stress 54 V.7 Establishing and validating EGR1-based fate-mapping reporter system 57 V.8 Conclusion 59 Chapter VI. Discussion 60 VI.1 Multifaceted regulation of metabolic stress response on cell behavior promotes the development of phenotypic plasticity 60 VI.2 PARP1 may be a crucial effector in metabolic stress response 60 VI.3 Context-dependent regulation of GCN2/ATF4 axis on stress response upon the deprivation of distinct amino acid 61 VI.4 Balancing energy conservation and stress resolution through EGR1 62 VI.5 EGR1 may coordinate transcription and translation networks to prevent prolonged IRE1-mediated UPR 63 VI.6 EGR1-based irreversible reporter offers a powerful approach to dissect the underlying mechanism of metabolic stress response in tumor 65 VI.7 Importance of UPR and ISR during cancer progression and treatment 65 VI.8 Targeting metabolic vulnerability for breast cancer treatment 66 Chapter VII. Figures 68 Chapter VIII. References 113 Chapter IX. Appendix 130 Appendix 1. EGR1 was induced in various breast cancer cell lines upon glucose starvation. 130 Appendix 2. EGR1 was transcriptionally upregulated upon metabolic stress. 131 Appendix 3. EGR1 was induced in nucleus and in the core region of tumor spheroid. 132 Appendix 4. EGR1 was induced by ROS/p38 axis under metabolic stress. 133 Appendix 5. EGR1 suppressed cancer cell growth under nutrient sufficient condition. 134 Appendix 6. EGR1 was induced along with tumor growth to promote progression. 136 Appendix 7. Point mutation on potential EGR1 SUMOylated sites did not affect its protein pattern and localization. 137 Appendix 8. T391A point mutation did not alter EGR1 subcellular localization but abrogated DNA binding affinity of EGR1. 138 Appendix 9. EGR1 phosphorylation was abrogated by GCN2 inhibitor under metabolic stress. 139 Appendix 10. Verification of the EGR1-based metabolic stress reporter system. 140 | - |
| dc.language.iso | en | - |
| dc.subject | 代謝壓力 | zh_TW |
| dc.subject | 整合性壓力反應 | zh_TW |
| dc.subject | 未折疊蛋白反應 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | EGR1 | zh_TW |
| dc.subject | UBA6-AS1 | zh_TW |
| dc.subject | 壓力反應 | zh_TW |
| dc.subject | unfolded protein response | en |
| dc.subject | breast cancer | en |
| dc.subject | metabolic stress | en |
| dc.subject | UBA6-AS1 | en |
| dc.subject | integrated stress response | en |
| dc.subject | EGR1 | en |
| dc.title | 探討乳癌進程中透過表型可塑性適應代謝壓力之調控機制 | zh_TW |
| dc.title | Investigating the Regulatory Mechanisms of Phenotypic Plasticity in Response to Metabolic Stress During Breast Cancer Progression | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 安康 | zh_TW |
| dc.contributor.coadvisor | David K. Ann | en |
| dc.contributor.oralexamcommittee | 楊雅倩;莊健盈;蘇剛毅;林能裕 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Chien Yang;Jian-Ying Chuang;Kang-Yi Su;Neng-Yu Lin | en |
| dc.subject.keyword | 乳癌,代謝壓力,UBA6-AS1,EGR1,壓力反應,整合性壓力反應,未折疊蛋白反應, | zh_TW |
| dc.subject.keyword | breast cancer,metabolic stress,UBA6-AS1,EGR1,integrated stress response,unfolded protein response, | en |
| dc.relation.page | 140 | - |
| dc.identifier.doi | 10.6342/NTU202503414 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 18.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
