Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99672
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林克忠zh_TW
dc.contributor.advisorKeh-Chung Linen
dc.contributor.author郭智捷zh_TW
dc.contributor.authorChih-Chieh Kuoen
dc.date.accessioned2025-09-17T16:19:59Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citationREFERENCES
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47. http://dx.doi.org/10.1109/38.963459
Blum, L., & Korner-Bitensky, N. (2008). Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Physical Therapy, 88(5), 559–566. https://doi.org/10.2522/ptj.20070205
Bondoc, S., Booth, J., Budde, G., Caruso, K., DeSousa, M., Earl, B., ... & Humphreys, J. (2018). Mirror therapy and task-oriented training for people with a paretic upper extremity. The American Journal of Occupational Therapy, 72(2), 7202205080p1-7202205080p8. https://doi.org/10.5014/ajot.2018.025064
Charalambous, C. P. (2014). Interrater reliability of a modified Ashworth scale of muscle spasticity. In Classic Papers in Orthopaedics (pp. 415-417). Springer. http://dx.doi.org/10.1007/978-1-4471-5451-8_105
Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., & Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International Journal of Medical Informatics, 123, 11-22. https://doi.org/10.1016/j.ijmedinf.2018.12.001
Chuang, L. L., Lin, K. C., Hsu, A. L., Wu, C. Y., Chang, K. C., Li, Y. C., & Chen, Y. L. (2015). Reliability and validity of a vertical numerical rating scale supplemented with a faces rating scale in measuring fatigue after stroke. Health and quality of life outcomes, 13, 91. https://doi.org/10.1186/s12955-015-0290-9
Chuang, L. L., Wu, C. Y., & Lin, K. C. (2012). Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Archives of physical medicine and rehabilitation, 93(3), 532–540. https://doi.org/10.1016/j.apmr.2011.09.014
Chuang, L. L., Wu, C. Y., Lin, K. C., & Hsieh, C. J. (2014). Relative and absolute reliability of a vertical numerical pain rating scale supplemented with a faces pain scale after stroke. Physical Therapy, 94(1), 129-138. https://doi.org/10.2522/ptj.20120422
Cieza, A., Geyh, S., Chatterji, S., Kostanjsek, N., Ustün, B., & Stucki, G. (2005). ICF linking rules: an update based on lessons learned. Journal of Rehabilitation Medicine, 37(4), 212–218. https://doi.org/10.1080/16501970510040263
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Erlbaum Associates.
Cramer, S. C., Dodakian, L., Le, V., See, J., Augsburger, R., McKenzie, A., Zhou, R. J., Chiu, N. L., Heckhausen, J., Cassidy, J. M., Scacchi, W., Smith, M. T., Barrett, A. M., Knutson, J., Edwards, D., Putrino, D., Agrawal, K., Ngo, K., Roth, E. J., Tirschell, D. L., Woodbury, M. L., Zafonte, R., Zhao, W., Spilker, J., Wolf, S. L., Broderick, J. P., Janis, S., National Institutes of Health StrokeNet Telerehab, I. (2019). Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: A randomized clinical trial. JAMA Neurology, 76(9), 1079-1087. https://doi.org/10.1001/jamaneurol.2019.1604
Ding, L., Wang, X., Chen, S., Wang, H., Tian, J., Rong, J., Shao, P., Tong, S., Guo, X., & Jia, J. (2019). Camera-Based Mirror Visual Input for Priming Promotes Motor Recovery, Daily Function, and Brain Network Segregation in Subacute Stroke Patients. Neurorehabilitation and Neural Repair, 33(4), 307–318. https://doi.org/10.1177/1545968319836207
Dobkin, B. H. (2005). Rehabilitation after stroke. New England Journal of Medicine, 352(16), 1677-1684. http://dx.doi.org/10.1056/NEJMcp043511
Doumas, I., Everard, G., Dehem, S., & Lejeune, T. (2021). Serious games for upper limb rehabilitation after stroke: A meta-analysis. Journal of NeuroEngineering and Rehabilitation, 18, 100. https://doi.org/10.1186/s12984-021-00889-1
Duncan, P., Studenski, S., Richards, L., Gollub, S., Lai, S. M., Reker, D., ... & Johnson, D. (2003). Randomized clinical trial of therapeutic exercise in subacute stroke. Stroke, 34(9), 2173-2180. https://doi.org/10.1161/01.STR.0000083699.95351.F2
Duncan, P. W., Bode, R. K., Min Lai, S., Perera, S., & Glycine Antagonist in Neuroprotection Americans Investigators (2003). Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Archives of Physical Medicine and Rehabilitation, 84(7), 950–963. https://doi.org/10.1016/s0003-9993(03)00035-2
Feigin, V. L., Brainin, M., Norrving, B., Martins, S. O., Pandian, J., Lindsay, P., F Grupper, M., & Rautalin, I. (2025). World Stroke Organization: Global Stroke Fact Sheet 2025. International Journal of Stroke: Official Journal of the International Stroke Society, 20(2), 132–144. https://doi.org/10.1177/17474930241308142
Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of experimental psychology. General, 141(1), 2–18. https://doi.org/10.1037/a0024338
Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. A method for the evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13-31.
Gandhi, D. B., Sterba, A., Khatter, H., & Pandian, J. D. (2020). Mirror therapy in stroke rehabilitation: Current perspectives. Therapeutics and Clinical Risk Management, 16, 75-85. https://doi.org/10.2147/TCRM.S206883
Geller, D., Nilsen, D. M., Quinn, L., Van Lew, S., Bayona, C., & Gillen, G. (2022). Home mirror therapy: a randomized controlled pilot study comparing unimanual and bimanual mirror therapy for improved arm and hand function post-stroke. Disability and Rehabilitation, 44(22), 6766-6774. https://doi.org/10.1080/09638288.2021.1973121
Godden, D. R., & Baddeley, A. D. (1975). Context-dependent memory in two natural environments: On land and underwater. British Journal of Psychology, 66(3), 325–331. https://doi.org/10.1111/j.2044-8295.1975.tb01468.x
Gorman, C., & Gustafsson, L. (2020). The use of augmented reality for rehabilitation after stroke: A narrative review. Disability and Rehabilitation: Assistive Technology, 1-9. https://doi.org/10.1080/17483107.2020.1791264
Gustafsson, L. A., Turpin, M. J., & Dorman, C. M. (2010). Clinical utility of the Chedoke Arm and Hand Activity Inventory for stroke rehabilitation. Canadian Journal of Occupational Therapy, 77(3), 167-173. https://doi.org/10.2182/cjot.2010.77.3.6
Hiengkaew, V., Jitaree, K., & Chaiyawat, P. (2012). Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed "Up & Go" Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Archives of Physical Medicine and Rehabilitation, 93(7), 1201–1208. https://doi.org/10.1016/j.apmr.2012.01.014
Holden M. K. (2005). Virtual environments for motor rehabilitation: review. Cyberpsychology & Behavior: The Impact of the Internet, Mmultimedia and Virtual Reality on Behavior and Society, 8(3), 187–219. https://doi.org/10.1089/cpb.2005.8.187
Hsieh, Y-W., Chang, K-C., Hung, J-W., Wu, C-Y., Fu, M-H., & Chen, C-C. (2018). Effects of home-based versus clinic-based rehabilitation combining mirror therapy and task-specific training for patients with stroke: A randomized crossover trial. Archives of Physical Medicine and Rehabilitation, 99(12), 2399-2407. https://doi.org/10.1016/j.apmr.2018.03.017
Hsieh, Y-W., Wu, C-Y., Lin, K-C., Chang, Y-F., Chen, C-L., & Liu, J-S. (2009). Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke, 40(4), 1386-1391. https://doi.org/10.1161/STROKEAHA.108.530584
Kudlac, M., Sabol, J., Kaiser, K., Kane, C., & Phillips, R. S. (2019). Reliability and validity of the Berg Balance Scale in the stroke population: A systematic review. Physical & Occupational Therapy in Geriatrics, 37(3), 196-221. http://dx.doi.org/10.1080/02703181.2019.1631423
Li, Y. C., Liao, W. W., Hsieh, Y. W., Lin, K. C., & Chen, C. L. (2020). Predictors of Clinically Important Changes in Actual and Perceived Functional Arm Use of the Affected Upper Limb After Rehabilitative Therapy in Chronic Stroke. Archives of physical medicine and rehabilitation, 101(3), 442–449. https://doi.org/10.1016/j.apmr.2019.08.483
Li, Y-C., Wu, C-Y., Hsieh, Y-W., Lin, K-C., Yao, G., Chen, C-L., & Lee, Y-Y. (2019). The priming effects of mirror visual feedback on bilateral task practice: A randomized controlled study. Occupational Therapy International, 2019, 3180306. https://doi.org/10.1155/2019/3180306
Lin, K. C., Huang, P. C., Chen, Y. T., Wu, C. Y., & Huang, W. L. (2014). Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke. Neurorehabilitation and neural repair, 28(2), 153-162. https://doi.org/10.1177/1545968313508468
Lincoln, N., Jackson, J., & Adams, S. (1998). Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy, 84(8), 358-365. http://dx.doi.org/10.1016/S0031-9406(05)61454-X
Lloréns, R., Noé, E., Colomer, C., & Alcañiz, M. (2015). Effectiveness, usability, and cost-benefit of a virtual reality–based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 96(3), 418-425. E412. https://doi.org/10.1016/j.apmr.2014.10.019
Milot, M. H., Léonard, G., Corriveau, H., & Desrosiers, J. (2018). Using the Borg rating of perceived exertion scale to grade the intensity of a functional training program of the affected upper limb after a stroke: a feasibility study. Clinical Interventions in Aging, 14, 9–16. https://doi.org/10.2147/CIA.S179691
Mulder, M., Nikamp, C., Nijland, R., van Wegen, E., Prinsen, E., Vloothuis, J., Buurke, J., & Kwakkel, G. (2022). Can telerehabilitation services combined with caregiver-mediated exercises improve early supported discharge services poststroke? A study protocol for a multicentre, observer-blinded, randomized controlled trial. BMC Neurology, 22(1), 29. https://doi.org/10.1186/s12883-021-02533-w
Page, S. J., Fulk, G. D., & Boyne, P. (2012). Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Physical Therapy, 92(6), 791–798. https://doi.org/10.2522/ptj.20110009
Park, D. S., Lee, D. G., Lee, K., & Lee, G. (2017). Effects of virtual reality training using Xbox Kinect on motor function in stroke survivors: a preliminary study. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association, 26(10), 2313–2319. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.019
Platz, T., Pinkowski, C., van Wijck, F., Kim, I.-H., Di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clinical rehabilitation, 19(4), 404-411. https://doi.org/10.1191/0269215505cr832oa
Ramachandran, V. S., & Altschuler, E. L. (2009). The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain: A Journal of Neurology, 132(7), 1693-1710. https://doi.org/10.1093/brain/awp135
Rong, J., Ding, L., Xiong, L., Zhang, W., Wang, W., Deng, M., Wang, Y., Chen, Z., & Jia, J. (2021). Mirror Visual Feedback Prior to Robot-Assisted Training Facilitates Rehabilitation After Stroke: A Randomized Controlled Study. Frontiers in Neurology, 12, 683703. https://doi.org/10.3389/fneur.2021.683703
Shin, J-H., Ryu, H., & Jang, S-H. (2014). A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: A usability test and two clinical experiments. Journal of NeuroEngineering and Rehabilitation, 11, 32. https://doi.org/10.1186/1743-0003-11-32
Simpson, L. A., & Eng, J. J. (2013). Functional recovery following stroke: capturing changes in upper-extremity function. Neurorehabilitation and Neural Repair, 27(3), 240–250. https://doi.org/10.1177/1545968312461719
Stoykov, M. E., & Madhavan, S. (2015). Motor priming in neurorehabilitation. Journal of neurologic physical therapy: JNPT, 39(1), 33. https://doi.org/10.1097/NPT.0000000000000065
Taub, E., Uswatte, G., Mark, V. W., Morris, D. M., Barman, J., Bowman, M. H., Bryson, C., Delgado, A., & Bishop-McKay, S. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke, 44(5), 1383–1388. https://doi.org/10.1161/STROKEAHA.111.000559
Van der Lee, J., Beckerman, H., Knol, D., De Vet, H., & Bouter, L. (2004). Clinimetric properties of the motor activity log for assessing arm use in hemiparetic patients. Stroke, 35(6), 1410-1414. https://doi.org/10.1161/01.STR.0000126900.24964.7e
Wilson, P. H., Rogers, J. M., Vogel, K., Steenbergen, B., McGuckian, T. B., & Duckworth, J. (2021). Home-based (virtual) rehabilitation improves motor and cognitive function for stroke patients: A randomized controlled trial of the Elements (EDNA-22) system. Journal of NeuroEngineering and Rehabilitation, 18, 165. https://doi.org/10.1186/s12984-021-00956-7
World Federation of Occupational Therapists. (2025). Updated Definition of Occupational Therapy. https://wfot.org/news/2025/updated-definition-of-occupational-therapy
World Health Organization. (2001). International classification of functioning, disability, and health (ICF). Geneva: World Health Organization.
Woytowicz, E. J., Rietschel, J. C., Goodman, R. N., Conroy, S. S., Sorkin, J. D., Whitall, J., & Waller, S. M. (2017). Determining levels of upper extremity movement impairment by applying a cluster analysis to the Fugl-Meyer assessment of the upper extremity in chronic stroke. Archives of physical medicine and rehabilitation, 98(3), 456-462. https://doi.org/10.1016/j.apmr.2016.06.023
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99672-
dc.description.abstract背景:中風是全球第三大致死原因,且中風倖存者伴隨的後遺症往往造成龐大的社會經濟與照顧成本。為滿足中風患者多元的需求,複合療法被視為一種有遠景的途徑。鏡像治療(Mirror therapy, MT)目前已被廣泛運用中風病人的復健,尤其鏡像治療已被證實結合其他中風復健療法可觀察到對患者的復健發揮更大的優勢。此外,互動式體感運動遊戲(exergaming),如擴增實境(Augmented reality, AR),陸續被應用於中風復健,並有實證研究文獻支持其效益,例如可及性廣、有趣性、互動性,提升動機,誘導個案融入體感情境,主動練習等。鏡像治療與擴增實境在臨床中風復健治療的應用日益普遍,兩者相結合後具有互補可能。另外,過去中風復健練習多半限於醫院,居家練習雖為重要環節,但既有相關的實證研究有限。然中風患者在真實、自然情境的活動中依照個別需求設計療程可更滿足「以個案為中心」的理念。
目的:本研究旨在探討鏡像療法(MT)結合擴增實境(AR)在臨床與居家環境中對動作功能、平衡能力、日常功能及生活品質的影響,並於介入後即刻及三個月後進行追蹤評估。
方法:本研究為單盲、隨機分派臨床試驗,延攬並分析12位慢性中風患者隨機分派至上述兩組治療之一。治療劑量為每次 90 分鐘,每週 3到5 次,為期3週共。受試在治療前、治療後與3個月追蹤期結束後接受前測、後測與追蹤測評估,主要成效評估為傅格-梅爾評估量表(Fugl-Meyer Assessment)、與伯格平衡功能測驗(Berg Balance Scale, BBS);次要成效評估包含動作活動日誌(Motor Activity Log)與中風衝擊量表第三版(Stroke Impact Scale 3.0)。
結果:後測結果顯示,兩組在各項指標上皆有顯著的組內進步。然而,兩組在不同的面相分別展現出優勢,醫院組在 FMA-UE 的表現上顯著優於居家組(p=.04),居家組在日常生活中對上肢功能的實際使用機會顯著提升(p=.03),兩組也都保持優勢傾向到追蹤測。
結論:在臨床環境中結合鏡像治療(MT)與擴增實境(AR)的介入方式,對改善動作功能障礙及平衡能力的效果較居家介入有優勢。居家情境中的介入則有利於上肢功能性使用的改善。這些發現提示在中風復健過程中考慮練習情境的重要性。
zh_TW
dc.description.abstractBackground: Stroke is the third leading cause of death globally, often resulting in long-lasting effects that place great burdens on families, caregivers, and healthcare systems. To better satisfy the diverse needs of stroke survivors, hybrid therapeutic approaches have become popular. Mirror therapy (MT) is widely used in stroke rehabilitation, and there is growing evidence that it works even better when combined with other treatments. Exergaming technology, like augmented reality (AR), is also becoming popular because it is accessible, engaging, interactive, and helps motivate patients to participate in rehabilitation actively. As MT and AR are both being used more frequently in clinical settings, combining them could offer additional benefits. Home-based rehabilitation is important for stroke recovery, but there is limited research directly comparing home-based approaches to clinic-based treatments. Personalized rehabilitation in familiar, everyday settings might better align with patient-centered care.
Objective: This study aimed to evaluate the effects of MT combined with AR on motor function, balance, daily functioning, and quality of life among individuals with chronic stroke, in both clinic- and home-based contexts. Assessments were conducted post-intervention and at a three-month follow-up.
Methods: This single-blind, randomized controlled trial enrolled 12 individuals with chronic stroke, randomly assigned to either a clinic-based (CbMTAR) or home-based (HbMTAR) MT+AR intervention group. Both groups received training for 90 minutes per session, 3 to 5 times per week, over 3 weeks. Primary outcomes included the Fugl-Meyer Assessment of upper extremity motor function (FMA-UE) and the Berg Balance Scale (BBS). Secondary outcomes included the Motor Activity Log (MAL) and the Stroke Impact Scale 3.0 (SIS 3.0).
Results: Both groups demonstrated significant improvements across outcome measures from pretest to posttest. However, each group demonstrated advantages in different aspects; the CbMTAR group significantly outperformed the HbMTAR group in terms of FMA-UE scores (p = .04), whereas the HbMTAR group exhibited a significant increase in MAL-AOU (p = .03). Both groups tended to maintain their respective advantages up to the follow-up assessment.
Conclusions: The integration of MT and AR in a clinic-based setting demonstrated greater efficacy in enhancing motor recovery and balance, while home-based interventions were more conducive to improving functional upper limb use. These findings highlight the importance of contextual factors in optimizing stroke rehabilitation outcomes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:19:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:19:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTABLE OF CONTENTS
論文口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT v
Table of Contents viii
List of Figures xi
List of Tables xii
List of Abbreviations xiii
CHAPTER 1. INTRODUCTION 1
1-1 Background and Significance 1
1-2 Study Purpose and Hypotheses 4
CHAPTER 2. METHODS 5
2-1 Participants 5
2-2 Study Design 6
2-3 Interventions 7
2-3-1 The Mirror therapy (MT) Protocol 8
2-3-2 The Augmented Reality (AR) Protocol 9
2-3-3 Clinic- and Home-Based Practice for Stroke Rehabilitation 10
2-3-4 Transfer Packages 11
2-4 Outcome Measures 11
2-4-1 Primary Outcomes Measures: FMA and BBS 11
2-4-2 Secondary Outcomes Measures: MAL and SIS 3.0 14
2-4-3 Possible Adverse Effects 15
2-5 Data Analysis 16
CHAPTER 3. RESULT 18
3-1 Demographic 18
3-2 Primary Outcome Measures 19
3-3 Secondary Outcome Measures 20
3-4 Possible Adverse Response 21
CHAPTER 4. DISCUSSION 22
4-1 Summary of Findings 22
4-2 MT combined with AR in Stroke Rehabilitation 23
4-3 The Context-Dependent Learning: Clinic-based versus Home-based 24
4-4 Sustaining Intervention Effects Through Maintenance Strategies 25
4-5 Study Implications 27
4-6 Study Limitations 28
4-7 Conclusions 31
REFERENCES 33
APPENDICES 52
Appendix 1 Form of transfer packages 52
Appendix 2 Form of Maintenance Strategies 53

LIST OF FIGURES
Figure 1. Flow chart of this study 44
Figure 2. The mirror therapy setup consists of a mirror box (right) and a low table (left) that obscures the unaffected upper limb 45
Figure 3. (a) Impairment-oriented Unilateral Mirror Therapy in a clinic setting; (b) Task-oriented Bilateral Mirror Therapy in home 45
Figure 4. (a)AR in the clinical setting; (b)AR in the home setting 46
 
LIST OF TABLES
Table 1. Baseline characteristics of study participants 47
Table 2. Pretreatment and posttreatment scores between the two treatment groups on the primary outcome measures 48
Table 3. Pretreatment and posttreatment scores between the two treatment groups on the secondary outcome measures 49
Table 4. Proportion of Participants Achieving Performance Improvements Beyond MCID/MDC 50
Table 5. Possible adverse response 51
-
dc.language.isoen-
dc.subject互動式體感運動遊戲zh_TW
dc.subject鏡像治療zh_TW
dc.subject中風zh_TW
dc.subject居家復健zh_TW
dc.subject擴增實境zh_TW
dc.subject複合療法zh_TW
dc.subjecttelerehabilitationen
dc.subjectstrokeen
dc.subjectmirror therapyen
dc.subjectexergamingen
dc.subjectaugmented realityen
dc.subjecthome-based rehabilitationen
dc.subjecthybrid interventionen
dc.title以鏡像治療結合擴增實境於中風復健: 臨床與居家練習成效之初探對照研究zh_TW
dc.titleEfficacy of Mirror Therapy Combined with Augmented Reality in Stroke Rehabilitation: A Comparative Pilot Study of Clinic- and Home-Based Practiceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李亞芸;李怡君zh_TW
dc.contributor.oralexamcommitteeYa-Yun Lee;Yi-Chun Lien
dc.subject.keyword中風,鏡像治療,互動式體感運動遊戲,擴增實境,居家復健,複合療法,zh_TW
dc.subject.keywordstroke,mirror therapy,exergaming,augmented reality,home-based rehabilitation,hybrid intervention,telerehabilitation,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202504356-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college醫學院-
dc.contributor.author-dept職能治療學系-
dc.date.embargo-lift2025-09-18-
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
997.73 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved