請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99671完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林克忠 | zh_TW |
| dc.contributor.advisor | Keh-chung Lin | en |
| dc.contributor.author | 林家蓉 | zh_TW |
| dc.contributor.author | Chia-Jung Lin | en |
| dc.date.accessioned | 2025-09-17T16:19:45Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Armat, M. R., Mortazavi, H., Akbari, H., Emami Zeydi, A., & Sarani, A. (2022). Using mirror therapy to optimize the efficacy of balance programs for older adults with poststroke balance impairment. Rehabilitation Nursing, 47(6), 202-209. https://doi.org/10.1097/rnj.0000000000000389
Bai, Z., Zhang, J., Zhang, Z., Shu, T., & Niu, W. (2019). Comparison between movement-based and task-based mirror therapies on improving upper limb functions in patients with stroke: a pilot randomized controlled trial. Frontiers in Neurology, 10, 288. https://doi.org/10.3389/fneur.2019.00288 Barreca, S. R., Stratford, P. W., Lambert, C. L., Masters, L. M., & Streiner, D. L. (2005). Test-retest reliability, validity, and sensitivity of the Chedoke arm and hand activity inventory: a new measure of upper-limb function for survivors of stroke. Archives of Physical Medicine and Rehabilitation, 86(8), 1616-1622. https://doi.org/10.1016/j.apmr.2005.03.017 Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377-381. Cantero-Téllez, R., Naughton, N., Algar, L., & Valdes, K. (2019). Outcome measurement of hand function following mirror therapy for stroke rehabilitation: a systematic review. Journal of Hand Therapy, 32(2), 277-291.e271. https://doi.org/10.1016/j.jht.2018.01.009 Chang, H., Song, Y., & Cen, X. (2022). Effectiveness of augmented reality for lower limb rehabilitation: a systematic review. Applied Bionics and Biomechanics, 2022, 4047845. https://doi.org/10.1155/2022/4047845 Cho, S., Ku, J., Cho, Y. K., Kim, I. Y., Kang, Y. J., Jang, D. P., & Kim, S. I. (2014). Development of virtual reality proprioceptive rehabilitation system for stroke patients. Computer Methods and Programs in Biomedicine, 113(1), 258-265. https://doi.org/10.1016/j.cmpb.2013.09.006 Collaborators, G. S. (2021). Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurology, 20(10), 795-820. https://doi.org/10.1016/s1474-4422(21)00252-0 Colomer, C., Noé, E., & Llorens, R. (2016). Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial. European Journal of Physical and Rehabilitation Medicine, 52(3), 271-278. da Silva, E. S. M., Ocamoto, G. N., Santos-Maia, G. L. D., de Fátima Carreira Moreira Padovez, R., Trevisan, C., de Noronha, M. A., Pereira, N. D., Borstad, A., & Russo, T. L. (2020). The effect of priming on outcomes of task-oriented training for the upper extremity in chronic stroke: a systematic review and meta-analysis. Neurorehabilitation and Neural Repair, 34(6), 479-504. https://doi.org/10.1177/1545968320912760 Dawson, J., Liu, C. Y., Francisco, G. E., Cramer, S. C., Wolf, S. L., Dixit, A., Alexander, J., Ali, R., Brown, B. L., Feng, W., DeMark, L., Hochberg, L. R., Kautz, S. A., Majid, A., O'Dell, M. W., Pierce, D., Prudente, C. N., Redgrave, J., Turner, D. L., & Kimberley, T. J. (2021). Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet, 397(10284), 1545-1553. https://doi.org/10.1016/s0140-6736(21)00475-x Ding, L., Wang, X., Chen, S., Wang, H., Tian, J., Rong, J., Shao, P., Tong, S., Guo, X., & Jia, J. (2019). Camera-based mirror visual input for priming promotes motor recovery, daily function, and brain network segregation in subacute stroke patients. Neurorehabilitation and Neural Repair, 33(4), 307-318. https://doi.org/10.1177/1545968319836207 Dobkin, B. H. (2004). Strategies for stroke rehabilitation. Lancet Neurol, 3(9), 528-536. https://doi.org/10.1016/s1474-4422(04)00851-8 Fregni, F., Boggio, P. S., Mansur, C. G., Wagner, T., Ferreira, M. J., Lima, M. C., Rigonatti, S. P., Marcolin, M. A., Freedman, S. D., Nitsche, M. A., & Pascual-Leone, A. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. NeuroReport, 16(14), 1551-1555. https://doi.org/10.1097/01.wnr.0000177010.44602.5e Gandhi, D. B., Sterba, A., Khatter, H., & Pandian, J. D. (2020). Mirror therapy in stroke rehabilitation: current perspectives. Therapeutics and Clinical Risk Management, 16, 75-85. https://doi.org/10.2147/tcrm.S206883 Garry, M. I., Loftus, A., & Summers, J. J. (2005). Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Experimental Brain Research, 163(1), 118-122. https://doi.org/10.1007/s00221-005-2226-9 Geller, D., Nilsen, D. M., Quinn, L., Van Lew, S., Bayona, C., & Gillen, G. (2022). Home mirror therapy: a randomized controlled pilot study comparing unimanual and bimanual mirror therapy for improved arm and hand function post-stroke. Disability and Rehabilitation, 44(22), 6766-6774. https://doi.org/10.1080/09638288.2021.1973121 Geller, D., Winterbottom, L., Goldberg, C., Nilsen, D. M., Mahoney, D., & Gillen, G. (2023). Exercise for adults with stroke to improve ADL and/or functional mobility performance (2012-2019). American Journal of Occupational Therapy, 77(Suppl 1). https://doi.org/10.5014/ajot.2023.77S10004 Gorman, C., & Gustafsson, L. (2022). The use of augmented reality for rehabilitation after stroke: a narrative review. Disability and Rehabilitation: Assistive Technology, 17(4), 409-417. https://doi.org/10.1080/17483107.2020.1791264 Graziano, M. S., & Gross, C. G. (1995). The representation of extrapersonal space: a possible role for bimodal, visual-tactile neurons. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1021–1034). The MIT Press. Hadoush, H., Mano, H., Sunagawa, T., Nakanishi, K., & Ochi, M. (2013). Optimization of mirror therapy to excite ipsilateral primary motor cortex. NeuroRehabilitation, 32(3), 617-624. doi: 10.3233/nre-130884 Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(Pt 3), 490-499. https://doi.org/10.1093/brain/awh369 Khokale, R., G, S. M., Ahmed, S., Maheen, S., Fawad, M., Bandaru, P., Zerin, A., Nazir, Z., Khawaja, I., Sharif, I., Abdin, Z. U., & Akbar, A. (2023). Virtual and augmented reality in post-stroke rehabilitation: a narrative review. Cureus, 15(4), e37559. https://doi.org/10.7759/cureus.37559 Kim, K., Lee, S., Kim, D., Lee, K., & Kim, Y. (2016). Effects of mirror therapy combined with motor tasks on upper extremity function and activities daily living of stroke patients. Journal of Physical Therapy Science, 28(2), 483-487. https://doi.org/10.1589/jpts.28.483 Kwakkel, G., Wagenaar, R. C., Twisk, J. W., Lankhorst, G. J., & Koetsier, J. C. (1999). Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet, 354(9174), 191-196. https://doi.org/10.1016/s0140-6736(98)09477-x Lee, J. I., Park, J., Koo, J., Son, M., Hwang, J. H., Lee, J. Y., & Chang, W. H. (2022). Effects of the home-based exercise program with an augmented reality system on balance in patients with stroke: a randomized controlled trial. Disability and Rehabilitation, 1-8. https://doi.org/10.1080/09638288.2022.2074154 Lee, M., Pyun, S. B., Chung, J., Kim, J., Eun, S. D., & Yoon, B. (2016). A further step to develop patient-friendly implementation strategies for virtual reality-based rehabilitation in patients with acute stroke. Physical Therapy, 96(10), 1554-1564. https://doi.org/10.2522/ptj.20150271 Leong, S. C., Tang, Y. M., Toh, F. M., & Fong, K. N. K. (2022). Examining the effectiveness of virtual, augmented, and mixed reality (VAMR) therapy for upper limb recovery and activities of daily living in stroke patients: a systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 19(1), 93. https://doi.org/10.1186/s12984-022-01071-x Li, Y. C., Wu, C. Y., Hsieh, Y. W., Lin, K. C., Yao, G., Chen, C. L., & Lee, Y. Y. (2019). The priming effects of mirror visual feedback on bilateral task practice: a randomized controlled study. Occupational Therapy International, 2019, 3180306. https://doi.org/10.1155/2019/3180306 Li, Y. C., Lin, K. C., Chen, C. L., Yao, G., Chang, Y. J., Lee, Y. Y., Liu, C. T., & Chen, W. S. (2023). Three ways to improve arm function in the chronic phase after stroke by robotic priming combined with mirror therapy, arm training and movement-oriented therapy. Archives of Physical Medicine and Rehabilitation, 104(8), 1195-1202. doi: 10.1016/j.apmr.2023.02.015 Lim, K. B., Lee, H. J., Yoo, J., Yun, H. J., & Hwang, H. J. (2016). Efficacy of mirror therapy containing functional tasks in poststroke patients. Annals of Rehabilitation Medicine, 40(4), 629-636. https://doi.org/10.5535/arm.2016.40.4.629 Lin, K. C., Fu, T., Wu, C. Y., Wang, Y. H., Liu, J. S., Hsieh, C. J., & Lin, S. F. (2010). Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabilitation and Neural Repair, 24(5), 486-492. https://doi.org/10.1177/1545968309356295 Lloréns, R., Noé, E., Colomer, C., & Alcañiz, M. (2015). Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 96(3), 418-425.e412. https://doi.org/10.1016/j.apmr.2014.10.019 Maeshima, S., Ueyoshi, A., Osawa, A., Ishida, K., Kunimoto, K., Shimamoto, Y., Matsumoto, T., & Yoshida, M. (2003). Mobility and muscle strength contralateral to hemiplegia from stroke: benefit from self-training with family support. American Journal of Physical Medicine & Rehabilitation, 82(6), 456-462. Mekbib, D. B., Han, J., Zhang, L., Fang, S., Jiang, H., Zhu, J., Roe, A. W., & Xu, D. (2020). Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials. Brain Injury, 34(4), 456-465. https://doi.org/10.1080/02699052.2020.1725126 Michielsen, M. E., Smits, M., Ribbers, G. M., Stam, H. J., van der Geest, J. N., Bussmann, J. B., & Selles, R. W. (2011). The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke. Journal of Neurology, Neurosurgery and Psychiatry, 82(4), 393-398. https://doi.org/10.1136/jnnp.2009.194134 Morkisch, N., Thieme, H., & Dohle, C. (2019). How to perform mirror therapy after stroke? evidence from a meta-analysis. Restorative Neurology and Neuroscience, 37(5), 421-435. https://doi.org/10.3233/rnn-190935 Owolabi, M. O., Thrift, A. G., Mahal, A., Ishida, M., Martins, S., Johnson, W. D., Pandian, J., Abd-Allah, F., Yaria, J., Phan, H. T., Roth, G., Gall, S. L., Beare, R., Phan, T. G., Mikulik, R., Akinyemi, R. O., Norrving, B., Brainin, M., & Feigin, V. L. (2022). Primary stroke prevention worldwide: translating evidence into action. Lancet Public Health, 7(1), e74-e85. https://doi.org/10.1016/s2468-2667(21)00230-9 Pérez-Cruzado, D., Merchán-Baeza, J. A., González-Sánchez, M., & Cuesta-Vargas, A. I. (2017). Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Australian Occupational Therapy Journal, 64(2), 91-112. https://doi.org/10.1111/1440-1630.12342 Page, S. J., Fulk, G. D., & Boyne, P. (2012). Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Physical Therapy, 92(6), 791-798. https://doi.org/10.2522/ptj.20110009 Park, D. S., Lee, D. G., Lee, K., & Lee, G. (2017). Effects of virtual reality training using Xbox Kinect on motor function in stroke survivors: a preliminary study. Journal of Stroke and Cerebrovascular Diseases, 26(10), 2313-2319. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.019 Park, M., Ko, M. H., Oh, S. W., Lee, J. Y., Ham, Y., Yi, H., Choi, Y., Ha, D., & Shin, J. H. (2019). Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study. Journal of NeuroEngineering and Rehabilitation, 16(1), 122. https://doi.org/10.1186/s12984-019-0595-8. Phan, H. L., Le, T. H., Lim, J. M., Hwang, C. H., & Koo, K.-i. (2022). Effectiveness of augmented reality in stroke rehabilitation: a meta-analysis. Applied Sciences, 12(4), 1848. Ramachandran, V. S., & Altschuler, E. L. (2009). The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain, 132(Pt 7), 1693-1710. https://doi.org/10.1093/brain/awp135 Ramachandran, V.S., Rogers-Ramachandran, D., & Cobb, C. (1995). Touching the phantom limb. Nature, 377(6549), 489–490. Rendos, N. K., Zajac-Cox, L., Thomas, R., Sato, S., Eicholtz, S., & Kesar, T. M. (2021). Verbal feedback enhances motor learning during post-stroke gait retraining. Topics in Stroke Rehabilitation, 28(5), 362-377. https://doi.org/10.1080/10749357.2020.1818480 Rong, J., Ding, L., Xiong, L., Zhang, W., Wang, W., Deng, M., Wang, Y., Chen, Z., & Jia, J. (2021). Mirror visual feedback prior to robot-assisted training facilitates rehabilitation after stroke: a randomized controlled study. Frontiers in Neurology, 12, 683703. https://doi.org/10.3389/fneur.2021.683703 Rothgangel, A. S., Braun, S. M., Beurskens, A. J., Seitz, R. J., & Wade, D. T. (2011). The clinical aspects of mirror therapy in rehabilitation: a systematic review of the literature. International Journal of Rehabilitation Research, 34(1), 1-13. https://doi.org/10.1097/MRR.0b013e3283441e98 Saleh, S., Adamovich, S. V., & Tunik, E. (2014). Mirrored feedback in chronic stroke: recruitment and effective connectivity of ipsilesional sensorimotor networks. Neurorehabilitation and Neural Repair, 28(4), 344-354. https://doi.org/10.1177/1545968313513074 Schaefer, M., Flor, H., Heinze, H. J., & Rotte, M. (2006). Dynamic modulation of the primary somatosensory cortex during seeing and feeling a touched hand. Neuroimage, 29(2), 587-592. https://doi.org/10.1016/j.neuroimage.2005.07.016 Selles, R. W., Michielsen, M. E., Bussmann, J. B., Stam, H. J., Hurkmans, H. L., Heijnen, I., de Groot, D., & Ribbers, G. M. (2014). Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training. Neurorehabilitation and Neural Repair, 28(7), 652-659. https://doi.org/10.1177/1545968314521005 Serino, A., Farnè, A., Rinaldesi, M. L., Haggard, P., & Làdavas, E. (2007). Can vision of the body ameliorate impaired somatosensory function? Neuropsychologia, 45(5), 1101-1107. https://doi.org/10.1016/j.neuropsychologia.2006.09.013 Shinoura, N., Suzuki, Y., Watanabe, Y., Yamada, R., Tabei, Y., Saito, K., & Yagi, K. (2008). Mirror therapy activates outside of cerebellum and ipsilateral M1. NeuroRehabilitation, 23(3), 245-252. https://content.iospress.com/articles/neurorehabilitation/nre00413 Sim, T. Y., & Kwon, J. S. (2022). Comparing the effectiveness of bimanual and unimanual mirror therapy in unilateral neglect after stroke: a pilot study. NeuroRehabilitation, 50(1), 133-141. https://doi.org/10.3233/nre-210233 Stinear, C. M., Barber, P. A., Coxon, J. P., Fleming, M. K., & Byblow, W. D. (2008). Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain, 131(Pt 5), 1381-1390. https://doi.org/10.1093/brain/awn051 Tai, R. Y., Zhu, J. D., Cheng, C. H., Tseng, Y. J., Chen, C. C., & Hsieh, Y. W. (2020). Cortical neural activity evoked by bilateral and unilateral mirror therapy after stroke. Clinical Neurophysiology, 131(10), 2333-2340. https://doi.org/10.1016/j.clinph.2020.06.030 Tamura, S., Miyata, K., Kobayashi, S., Takeda, R., & Iwamoto, H. (2022). The minimal clinically important difference in Berg Balance Scale scores among patients with early subacute stroke: a multicenter, retrospective, observational study. Topics in Stroke Rehabilitation, 29(6), 423-429. https://doi.org/10.1080/10749357.2021.1943800 Tan, X., Ding, Z., Guo, C., & Sun, P. (2023). Re-evaluation of mirror visual feedback therapy for a systematic evaluation/meta-analysis of physical function re-education after stroke. American Journal of Physical Medicine & Rehabilitation, 102(3), 229-234. https://doi.org/10.1097/phm.0000000000002078 Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., Behrens, J., Borgetto, B., & Dohle, C. (2018). Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews, 7(7), Cd008449. https://doi.org/10.1002/14651858.CD008449.pub3 van Vliet, P. M., & Wulf, G. (2006). Extrinsic feedback for motor learning after stroke: what is the evidence? Disability and Rehabilitation, 28(13-14), 831-840. https://doi.org/10.1080/09638280500534937 Vinolo Gil, M. J., Gonzalez-Medina, G., Lucena-Anton, D., Perez-Cabezas, V., Ruiz-Molinero, M. D. C., & Martín-Valero, R. (2021). Augmented reality in physical therapy: systematic review and meta-analysis. JMIR Serious Games, 9(4), e30985. https://doi.org/10.2196/30985 Winstein, C. J. (1991). Knowledge of results and motor learning--implications for physical therapy. Physical Therapy, 71(2), 140-149. https://doi.org/10.1093/ptj/71.2.140 Wu, S. Y., Li, Y. C., Chen, Y. W., Chen, C. L., Pan, H. C., Lin, K. C., & Lau, H. Y. (2024). Construct validity, responsiveness, minimal detectable change, and minimal clinically important difference of the stroke self-efficacy questionnaire in individuals receiving stroke rehabilitation. Disability and Rehabilitation, 1-9. https://doi.org/10.1080/09638288.2024.2324122 Yang, Z. Q., Du, D., Wei, X. Y., & Tong, R. K. (2022). Augmented reality for stroke rehabilitation during COVID-19. Journal of NeuroEngineering and Rehabilitation, 19(1), 136. https://doi.org/10.1186/s12984-022-01100-9 Yao, M., Chen, J., Jing, J., Sheng, H., Tan, X., & Jin, J. (2017). Defining the rehabilitation adherence curve and adherence phases of stroke patients: an observational study. Patient Preference and Adherence, 11, 1435-1441. https://doi.org/10.2147/ppa.S139854 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99671 | - |
| dc.description.abstract | 背景:中風是導致長期失能的重大疾病,亟需有效介入以改善中風後之失能。近年許多研究採納鏡像治療提升復健成效,並可藉其誘導作用,結合其他方案,形成複合療法,可望增益治療成效。藉助輔助科技之快速進展,中風復健援用擴增實境等互動式運動遊戲,提供豐富情境、即時回饋與互動性,可提升使用者參與動機,近年來應用互動性科技之中風復健文獻不斷累積,研究發現顯示擴增實境可望改善中風患者之動作損傷與失能。鏡像治可透過單一療法與複合療法,通過視覺鏡像回饋提升雙側大腦動作皮質活性,從而提高偏癱側上肢的感覺運動功能;而擴增實境遊戲則通過互動遊戲增強動作練習,提升動作控制、軀體平衡及認知功能,兩者具互補結合潛力。據此,本研究探討鏡像治療前導擴增實境遊戲之中風複合療法改善上肢動作、感覺、平衡缺損,提升日常生活照護功能與中風後生活品質之成效,對比複合療法與擴增實境相較於常規復健治療之成效。
方法:本研究為單盲三臂平行隨機控制試驗,共計延攬36位第一次單側腦中風個案參與研究,隨機分派至鏡像治療前導擴增實境組(實驗組)、擴增實境組(對照組)或常規治療組(控制組)。三組受試接受每次90分鐘,每週三次,為期六週的治療介入。實驗組之受試者接受40分鐘的鏡像治療,接著接受40分鐘擴增實境練習,最後進行10分鐘功能練習。對照組則是進行80分鐘之擴增實境練習後,進行10分鐘功能練習。控制組則接受80分鐘的常規治療,之後進行10分鐘之功能練習。每位受試者共計接受三次的評估:前測、後測與追蹤測。主要療效評估工具為傅格梅爾上肢評量及伯格氏平衡量表。根據國際健康功能與身心障礙分類系統之架構,納入修訂版諾丁漢感覺評估量表、柯氏上臂與手部活動評量表與中風衝擊量表第三版作為次要療效指標。另外,將在每次治療前後進行不良反應監測(視覺類比疼痛與疲憊量表以及施力程度自覺量表)。 結果:經過為期六週的治療之後,三組受試者在傅格梅爾上肢評量、伯格氏平衡量表、柯氏上臂與手部活動評量表與中風衝擊量表第三版顯示統計學上的顯著改善。在主要療效評量的組間比較上,鏡像治療前導擴增實境組在傅格梅爾上肢評量上顯著優於控制組(p = 0.043),而擴增實境組則在伯格氏平衡量表上成效達到大的效果量,且顯著優於其他兩組(p = 0.004)。次要療效評量的組間比較上,鏡像治療前導擴增實境組別在觸覺、本體覺以及辨物覺皆有顯著前後測改變,且在觸覺的組間比較上顯著優於其他兩組(p = 0.027);擴增實境組則在觸覺、本體覺及辨物覺呈現治療後的顯著改善。其他感覺分項雖未達組間顯著差異,但呈現中度以上之效果量,且這些效益大多有延續至三個月追蹤測的趨勢。本研究並無發現任何不良反應。 結論:研究結果發現,鏡像治療前導擴增實境療法與擴增實境療法皆有助於提升中至重度動作損傷中風患者之感覺動作功能、平衡功能表現,促進雙側上肢任務表現與生活品質。此外,兩種療法各有其裨益,鏡像治療前導擴增實境之療法在上肢動作損傷之改善與雙側上肢動作表現、以及觸覺功能的改善優於單一療法;而擴增實境對於平衡功能之改善具優勢。本研究支持鏡像治療前導擴增實境之療法及擴增實境療法的效益,研究結果顯示臨床使用時,應考量患者之優先目標選擇適切的療法,實施精準復健。囿限於有限的樣本數,本研究發現需要謹慎解讀,並依據統計檢定力分析,推估後續研究所需樣本數,進行更進一步的驗證。 | zh_TW |
| dc.description.abstract | Background: Mirror therapy (MT) and augmented reality (AR) are gaining popularity in stroke rehabilitation. MT utilizes mirror visual feedback to promote bilateral brain coupling and increase primary motor cortex excitability. AR offers an interactive context of practice for promoting motor and cognitive recovery. MT and AR may complement each other for hybrid interventions in stroke rehabilitation. The aims of this study were to investigate the differential benefits of AR compared to conventional therapy (CT) and to evaluate the efficacy of MT-primed intervention versus AR alone for individuals with stroke.
Method: Thirty-six stroke survivors were randomly assigned to the MT-primed AR group (MT+AR), the AR group (AR), or the CT group. Each treatment session was 90 minutes, 3 times a week, for 6 weeks. All assessments were administered before, immediately after, and 3 months after treatment. Primary outcome measures were Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and the Berg Balance Scale (BBS. Secondary outcome measures were the revised Nottingham Sensory Assessment (rNSA), Chedoke Arm and Hand Activity Inventory (CAHAI), and Stroke Impact Scale Version 3.0 (SIS). Adverse events were monitored before and after each session. Results: After six weeks of treatment, three groups demonstrated significant improvements in the FMA-UE, BBS, CAHAI, and SIS. In the between-group comparisons, MT+AR demonstrated a significant advantage in the FMA-UE (p = 0.043). On the other hand, AR showed greater improvements in the BBS (p = 0.004). Regarding secondary outcome measures, MT + AR exhibited significant changes in rNSA, with a notable advantage in tactile sensation in between-group comparisons (p = 0.027). Despite no significant between-group difference in other assessments, the effect sizes were generally moderate or higher. Most of these changes were retained through the three-month follow-up. No adverse effects were observed. Conclusion: Both MT+AR and AR effectively enhanced sensorimotor functions, balance, task performance, functional independence, and life quality in patients with stroke with moderate to severe motor impairments. Each therapy demonstrated its strength: MT+AR was more beneficial for improving upper limb motor function and sensory function, while AR excelled in balance and functional mobility. Clinical therapists should consider stroke survivors’ goals and select appropriate intervention protocols. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:19:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:19:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ....................................................................................... II
中文摘要 ..................................................................................................... III ABSTRACT ................................................................................................. V 目次 ........................................................................................................... VII 表次 ............................................................................................................. IX 圖次 .............................................................................................................. X LIST OF ABBREVIATIONS ..................................................................... XI CHAPTER 1. INTRODUCTION ................................................................. 1 1.1 Background and Significance ............................................................................. 1 1.2 Study Purpose and Hypotheses........................................................................... 5 CHAPTER 2. METHODS ............................................................................ 6 2.1 Participants ......................................................................................................... 6 2.2 Study Design and Procedures ............................................................................. 6 2.3 Interventions ....................................................................................................... 7 2.3.1 MT protocol ............................................................................ 8 2.3.2 AR Protocol ............................................................................ 9 2.3.3 CT Protocol ............................................................................ 9 2.4 Outcome Measures ........................................................................................... 10 2.4.1 Primary outcome measures .................................................. 10 2.4.2 Secondary outcome measures .............................................. 10 2.5 Statistical Analysis ........................................................................................... 11 CHAPTER 3. RESULT .............................................................................. 13 VIII 3.1 Demographic .................................................................................................... 13 3.2 Primary Outcome Measures ............................................................................. 13 3.3 Secondary Outcome Measures ......................................................................... 14 3.4 Possible Adverse Responses ............................................................................. 15 CHAPTER 4. DISCUSSION ...................................................................... 17 4.1 Summary of Findings ....................................................................................... 17 4.2 MT-primed AR in Stroke Rehabilitation .......................................................... 17 4.3 Effects of the AR Intervention ......................................................................... 21 4.4 Recommendations for Further Study of AR Practice ....................................... 24 4.5 Maintenance Programs for Outcome Retention ............................................... 25 4.6 Study Implications ............................................................................................ 26 4.7 Study Limitations ............................................................................................. 26 4.8 Conclusion ........................................................................................................ 27 REFERENCES ............................................................................................ 29 TABLES ...................................................................................................... 40 FIGURES .................................................................................................... 46 APPENDICES ............................................................................................. 52 Appendix 1 Behavioral contract for home practice ................................................ 52 Appendix 2 Recording sheets of three home practices........................................... 53 Appendix 3 Recording sheets of six functional practices at home ......................... 54 | - |
| dc.language.iso | en | - |
| dc.subject | 中風 | zh_TW |
| dc.subject | 復健 | zh_TW |
| dc.subject | 鏡像治療 | zh_TW |
| dc.subject | 擴增實境 | zh_TW |
| dc.subject | 複合療法 | zh_TW |
| dc.subject | Combinatory regimen | en |
| dc.subject | Stroke | en |
| dc.subject | Mirror Therapy | en |
| dc.subject | Augmented Reality | en |
| dc.subject | Gamification | en |
| dc.title | 鏡像治療前導擴增實境於中風復健之隨機控制試驗 | zh_TW |
| dc.title | Effects of Mirror Therapy Preceding Augmented Reality in Stroke Rehabilitation: A Randomized Controlled Trial | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝妤葳;李怡君 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-wei Hsieh;Yi-chun Li | en |
| dc.subject.keyword | 中風,復健,鏡像治療,擴增實境,複合療法, | zh_TW |
| dc.subject.keyword | Stroke,Mirror Therapy,Augmented Reality,Gamification,Combinatory regimen, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202403585 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 職能治療學系 | - |
| dc.date.embargo-lift | 2025-09-18 | - |
| 顯示於系所單位: | 職能治療學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
