Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳士元zh_TW
dc.contributor.advisorShih-Yuan Chenen
dc.contributor.author吳聖偉zh_TW
dc.contributor.authorSheng-Wei Wuen
dc.date.accessioned2025-09-17T16:19:12Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation[1] J. N. Yasin, S. A. S. Mohamed, M.-H. Haghbayan, J. Heikkonen, H. Tenhunen, and J. Plosila, “Unmanned aerial vehicles (UAVs): Collision avoidance systems and approaches,” IEEE Access, vol. 8, pp. 105139–105155, 2020.
[2] D. Zhang, R. Watson, G. Dobie, C. MacLeod, and G. Pierce, “Autonomous ultrasonic inspection using unmanned aerial vehicle,” 2018 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, Kobe, Japan, Oct. 2018.
[3] M. Vrba et al., “On onboard LiDAR-based flying object detection,” IEEE Transactions on Robotics, vol. 41, pp. 593–611, 2025.
[4] E. Çintaş, B. Özyer, and E. Şimşek, “Vision-based moving UAV tracking by another UAV on low-cost hardware and a new ground control station,” IEEE Access, vol. 8, pp. 194601–194611, 2020.
[5] N. Gageik, P. Benz, and S. Montenegro, “Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors,” IEEE Access, vol. 3, pp. 599–609, 2015.
[6] A. N. Wilson, A. Kumar, A. Jha, and L. R. Cenkeramaddi, “Embedded sensors, communication technologies, computing platforms and machine learning for UAVs: A review,” IEEE Sensors Journal, vol. 22, no. 3, pp. 1807–1826, Feb. 2022.
[7] M. C. Tan, M. Li, Q. H. Abbasi, and M. A. Imran, “A wideband beamforming antenna array for 802.11ac and 4.9 GHz in modern transportation market,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 2659–2670, Mar. 2020.
[8] S. Kumar, A. Sharma, S. Kalra, and M. Kumar, “Communication quality-conscious synthesis of 3-D coverage using switched multibeam multi-sector array antenna for V2I application,” IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1631–1642, Feb. 2022.
[9] S. Ogurtsov, D. Caratelli, and Z. Song, “EIRP enhancement of multi-facet phased antenna arrays for full-azimuth radio coverage,” 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), pp. 731–732, Singapore, Dec. 2021.
[10] S. Kumar, S. Jain, and A. Sharma, “A BER-conscious synthesis of switched-beam antenna to maximize reliable coverage in WSN applications,” IEEE Sensors Journal, vol. 22, no. 4, pp. 3785–3795, Feb. 2022.
[11] D. Pozar and D. Schaubert, “Scan blindness in infinite phased arrays of printed dipoles,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 6, pp. 602–610, Jun. 1984.
[12] N. J. G. Fonseca, “Design and implementation of a closed cylindrical BFN-fed circular array antenna for multiple-beam coverage in azimuth,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 2, pp. 863–869, Feb. 2012.
[13] H. Xu, J. Cui, J. Duan, B. Zhang, and Y. Tian, “Versatile conical conformal array antenna based on implementation of independent and endfire radiation for UAV applications,” IEEE Access, vol. 7, pp. 31207–31217, 2019.
[14] A. Chepala, Y. Ding, and V. F. Fusco, “Multimode circular antenna array for spatially encoded data transmission,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3863–3868, Jun. 2019.
[15] X. Ding, Y.-F. Cheng, X.-S. Yang, B.-Z. Wang, and D. E. Anagnostou, “A flush-mounted quasi-full-space beam-scanning cylindrical phased array,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 7, pp. 4883–4888, Jul. 2019.
[16] Q. Jia, H. Xu, M. F. Xiong, B. Zhang, and J. Duan, “Omnidirectional solid angle beam-switching flexible array antenna in millimeter wave for 5G micro base station applications,” IEEE Access, vol. 7, pp. 157027–157036, 2019.
[17] L. Zhang, Q. Wu, and T. A. Denidni, “Electronically radiation pattern steerable antennas using active frequency selective surfaces,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 12, pp. 6000–6007, Dec. 2013.
[18] Bin Liang, B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Cylindrical slot FSS configuration for beam-switching applications,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 166–173, Jan. 2015.
[19] C. Gu et al., “3-D coverage beam-scanning antenna using feed array and active frequency-selective surface,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 11, pp. 5862–5870, Nov. 2017.
[20] A. Kesavan, M. Mantash, J. Zaid, and T. A. Denidni, “A dual-plane beam-sweeping millimeter-wave antenna using reconfigurable frequency selective surfaces,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 10, pp. 1832–1836, Oct. 2018.
[21] V. Najafy and B. Abbasi Arand, “A novel dual-band beam scanning antenna based on slot active frequency-selective surfaces [antenna applications corner],” IEEE Antennas and Propagation Magazine, vol. 63, no. 3, pp. 94–143, Jun. 2021.
[22] R. Schlub, Junwei Lu, and T. Ohira, “Seven-element ground skirt monopole ESPAR antenna design from a genetic algorithm and the finite element method,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 11, pp. 3033–3039, Nov. 2003.
[23] R. Schlub and D. V. Thiel, “Switched parasitic antenna on a finite ground plane with conductive sleeve,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1343–1347, May 2004.
[24] T. Zhang, S.-Y. Yao, and Y. Wang, “Design of radiation-pattern-reconfigurable antenna with four beams,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 183–186, 2015.
[25] J. Hu, Y. Li, and Z. Zhang, “Vertically polarized 360° azimuth scanning array,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 5, pp. 898–902, May 2022.
[26] Z. Cao, J. Hu, Y. Li, K. Wei, Z. Zhang, and M. F. Iskander, “Vertically polarized compact reconfigurable 360° azimuth scanning array for aviation applications,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 7, pp. 6138–6143, Jul. 2023.
[27] L. Ge, K. M. Luk, and S. Chen, “360° beam-steering reconfigurable wideband substrate integrated waveguide horn antenna,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5005–5011, Dec. 2016.
[28] Y. Yang and X. Zhu, “A wideband reconfigurable antenna with 360° beam steering for 802.11ac WLAN applications,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 600–608, Feb. 2018.
[29] S. V. S. Nair and M. J. Ammann, “Reconfigurable antenna with elevation and azimuth beam switching,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 367–370, 2010.
[30] L. Zhang, S. Gao, Q. Luo, P. R. Young, and Q. Li, “Planar ultrathin small beam-switching antenna,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5054–5063, Dec. 2016.
[31] M. S. Alam, Y. Wang, N. Nguyen-Trong, and A. Abbosh, “Compact circular reconfigurable antenna for high directivity and 360° beam scanning,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 8, pp. 1492–1496, Aug. 2018.
[32] A. Zandamela, N. Marchetti, M. J. Ammann, and A. Narbudowicz, “Pattern and polarization diversity multisector annular antenna for IoT applications,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 9, pp. 7241–7249, Sep. 2023.
[33] Y. Zhang, Z. Han, S. Tang, S. Shen, C.-Y. Chiu, and R. Murch, “A highly pattern-reconfigurable planar antenna with 360° single- and multi-beam steering,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 8, pp. 6490–6504, Aug. 2022.
[34] Y. Zhang et al., “A low-profile microstrip vertically polarized endfire antenna with 360° beam-scanning and high beam-shaping capability,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 7691–7702, Sep. 2022.
[35] K.-S. Kim, J.-S. Yoo, J.-W. Kim, S. Kim, J.-W. Yu, and H. L. Lee, “All-around beam switched antenna with dual polarization for drone communications,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4930–4934, Jun. 2020.
[36] Y. Wen, P.-Y. Qin, G.-M. Wei, and R. W. Ziolkowski, “Circular array of endfire Yagi-Uda monopoles with a full 360° azimuthal beam scanning,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 7, pp. 6042-6047, July 2022.
[37] Z. Duan, C.-X. Zhu, F. Wang, and W. Geyi, “A circularly polarized heterogeneous antenna array for wide elevation angle scanning and full azimuthal coverage,” IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 5, pp. 965–969, May 2023.
[38] K.-L. Wong, Y.-R. Chen, and W.-Y. Li, “Eight-planar-monopole MIMO circular array generating eight uncorrelated waves for 6G upper mid-band 8 × 8 MIMO access points,” IEEE Access, vol. 11, pp. 68018–68030, 2023.
[39] M. Kumar, S. Kumar, and A. Sharma, “An analytical framework of multisector rectenna array design for angular misalignment tolerant RF power transfer systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 4, pp. 1835–1847, Apr. 2023.
[40] M. S. Alam and A. Abbosh, “Planar pattern reconfigurable antenna with eight switchable beams for WiMax and WLAN applications,” IET Microwaves, Antennas & Propagation, vol. 10, no. 10, pp. 1030–1035, Jul. 2016.
[41] M. Kahar and M. K. Mandal, “A wideband tightly coupled slot antenna for 360° full azimuthal beam steering applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3538–3542, Jun. 2021.
[42] A. C. K. Mak, C. R. Rowell, and R. D. Murch, “Low cost reconfigurable Landstorfer planar antenna array,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 3051–3061, Oct. 2009.
[43] M. Kumar, S. Kumar, and A. Sharma, “A planar orbicular rectenna array system with 3-D uniform coverage for wireless powering of IoT nodes,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 3, pp. 1366–1373, Mar. 2023.
[44] M.-I. Lai, T.-Y. Wu, J.-C. Hsieh, C.-H. Wang, and S.-K. Jeng, “Compact switched-beam antenna employing a four-element slot antenna array for digital home applications,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 9, pp. 2929–2936, Sep. 2008.
[45] H. Fan, X. Liang, J. Geng, R. Jin, and X. Zhou, “Switched multibeam circular array with a reconfigurable network,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 3228–3233, Jul. 2016.
[46] P.-Y. Wang et al., “Beam switching antenna based on a reconfigurable cascaded feeding network,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 627–635, Feb. 2018.
[47] P. Sanchez-Olivares, P. Sanchez-Dancausa, J. L. Masa-Campos, M. Iglesias-Menendez-de-la-Vega, and E. Garcia-Marin, “Circular conformal array antenna with omnidirectional and beamsteering capabilities for 5G communications in the 3.5-GHz range [wireless corner],” IEEE Antennas and Propagation Magazine, vol. 61, no. 4, pp. 97–108, Aug. 2019.
[48] L. Josefsson and P. Persson, Conformal Array Antenna Theory and Design, 1st ed. Wiley, 2006.
[49] S.-W. Wu, Z.-H. Fu, C.-S. Shen, K.-Y. Lin, and S.-Y. Chen, “A beam-switching planar antenna module with 360° in-plane coverage for drone collision avoidance radar,” IEICE Transactions on Communications, vol. E108-B, no. 5, pp. 610–621, May 2025.
[50] D. M. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.
[51] S.-W. Wu, K.-Y. Lin, and S.-Y. Chen, “Modified binomial power distribution beamformer for switched-beam circular array,” 14th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, Copenhagen, Denmark, Mar. 2020.
[52] C.-S. Shen, “Switched-beam circular antenna array for unmanned aerial vehicle radar application,” M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, 2021.
[53] N. Kaneda, W. R. Deal, Yongxi Qian, R. Waterhouse, and T. Itoh, “A broadband planar quasi-Yagi antenna,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 8, pp. 1158–1160, Aug. 2002.
[54] D. Jaisson, “Fast design of a printed dipole antenna with an integrated balun,” IEE Proceedings - Microwaves, Antennas and Propagation, vol. 153, no. 4, p. 389, 2006.
[55] G.-L. Tan, R. E. Mihailovich, J. B. Hacker, J. F. DeNatale, and G. M. Rebeiz, “Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 1, pp. 297–304, Jan. 2003.
[56] M. Jankiraman, FMCW radar design, Artech, 2018.
[57] V. Semkin et al., “Analyzing radar cross section signatures of diverse drone models at mmWave frequencies,” IEEE Access, vol. 8, pp. 48958–48969, 2020.
[58] Infineon. Silicon Germanium Transceiver EVAL BGT24LTR11 BOARD. [Online]. Available: https://www.infineon.com/cms/en/product/evaluation-boards/eval-bgt24ltr11-board/
[59] DiTom Microwave Inc. Circulator D3C1826K. [Online]. Available: https://ditom.com/product/d3c1826k/
[60] C.-C. Chen, “Research on millimeter-wave asymmetric high power T/R switches and 24 GHz configurable single-pole-quadruple-throw switch,” M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, 2022.
[61] L. Jiao et al., “Design methodology for six-port equal/unequal quadrature and rat-race couplers with balanced and unbalanced ports terminated by arbitrary resistances,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1249–1262, Mar. 2018.
[62] J. Shelton, “Multiple-line directional couplers,” 1958 IRE International Convention Record, pp. 254–262, New York, NY, USA, 1957.
[63] I. Sakagami, T. Wuren, M. Fujii, and M. Tahara, “Compact multi-way power dividers similar to the Bagley polygon,” 2007 IEEE/MTT-S International Microwave Symposium (IMS), pp. 419–422, Honolulu, HI, USA, Jun. 2007.
[64] E. J. Wilkinson, “An N-way hybrid power divider,” IEEE Transactions on Microwave Theory and Techniques, vol. 8, no. 1, pp. 116–118, Jan. 1960.
[65] C.-S. Lin, S.-F. Chang, C.-C. Chang, and Y.-H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1862–1868, Sep. 2007.
[66] Leung Chiu and Quan Xue, “Investigation of a wideband 90° hybrid coupler with an arbitrary coupling level,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 1022–1029, Apr. 2010.
[67] Y.-G. Kim, S.-Y. Song, and K. W. Kim, “A compact wideband ring coupler utilizing a pair of transitions for phase inversion,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 1, pp. 25–27, Jan. 2011.
[68] R. Jeanty and S.-Y. Chen, “A compact broadband phase-inverter-based two section forward coupler for sub-6-GHz band,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), pp. 965–966, Atlanta, GA, USA, Jul. 2019.
[69] T. T. Mo, Q. Xue, and C. H. Chan, “A broadband compact microstrip rat-race hybrid using a novel CPW inverter,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 1, pp. 161–167, Jan. 2007.
[70] F. Lin, Q.-X. Chu, Z. Gong, and Z. Lin, “Compact broadband Gysel power divider with arbitrary power-dividing ratio using microstrip/slotline phase inverter,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1226–1234, May 2012.
[71] J. H. Kim, D. W. Woo, G. Y. Jo, and W. S. Park, “Microstrip phase inverter using slotted ground,” 2010 IEEE Antennas and Propagation Society International Symposium (APS), pp. 1-4, Toronto, ON, Canada, Jul. 2010.
[72] Z. Xu-chun, L. Chang-hong, and X. Jun-wei, “Microstrip phase inverter using interdigital strip lines and defected ground,” 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1–3, Shenzhen, China, May 2012.
[73] L. Zhen-heng, Z. Xu-chun, and W. Tong-yang, “A novel dual-frequency phase inverter,” 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–2, Nanjing, China, Oct. 2016.
[74] S.-W. Wu, I. Huang, R. Jeanty, Z.-H. Fu, K.-Y. Lin, and S.-Y. Chen, “A miniaturized microstrip-based phase inverter as a phase delay component at 24 GHz,” 2024 International Symposium on Antennas and Propagation (ISAP), pp. 1–2, Incheon, Korea, Nov. 2024.
[75] R. Jeanty and S.-Y. Chen, “Parasitic phase contribution of a double-sided parallel stripline phase inverter,” 2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), pp. 1–2, Reunion Island, France, Sept. 2019.
[76] H.-J. Yang, “Sparsely-sampled microwave and millimeter-wave holographic imaging using compressed sensing,” M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, 2022.
[77] S.-W. Wu, K.-H. Mao, R. Jeanty, Z.-H. Fu, K.-Y. Lin, and S.-Y. Chen, “A fixed-frequency beam scanning circularly polarized leaky-wave antenna based on half-mode substrate integrated waveguide,” 2025 19th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, Stockholm, Sweden, Mar. 2025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99668-
dc.description.abstract本論文提出一種應用於無人機防撞雷達之波束可切換之平面圓形天線模組架構,並介紹其兩款不同覆蓋角度範圍之原型設計。首先是一款提供完整360°同平面覆蓋的波束切換平面天線模組,該模組整合了新型的雙模式單刀多擲開關、新型的圓形波束形成網路、一位元相移器,以及類八木天線。
我們所提出之雙模式開關能將輸入功率導向單一輸出端口(單開模式,類似傳統單刀多擲開關),或同時等量導向兩個相鄰的輸出端口(雙開模式),有效地將可用的波束數量加倍。圓形波束形成網路由多個子矩陣以圓形排列而成,相鄰的子矩陣共用其邊緣元件。每個子矩陣作為一個功率分配器,其邊緣元件以三路功率分配器取代。這些邊緣元件能有效地將功率從開關分配至相鄰的子矩陣以及下一級的邊緣元件,實現場型相似、增益相近且平順的波束切換。
為了驗證設計,我們製作並測試一款工作在5.8 GHz具12個可切換波束的天線模組原型。實測結果與模擬結果相吻合,並展現出12個一致的輻射場型,其旁波瓣位準皆低於−13 dB,且兩種開關模式下的增益差異小於1 dB。此外,每個波束都具有30°的半功率波束寬,確保水平方向上的全覆蓋,且相鄰波束間重疊極小。
其次是一款工作於24 GHz具備7個可切換波束以達到前向180°水平覆蓋之天線模組,並與市售之調頻連續波雷達模組整合。我們的天線模組包含一顆雙模式開關晶片、半平面覆蓋之平面圓形波束形成器、9個反射式相移器,以及9個改良的類八木天線。整個防撞雷達系統整合了前述之前向半平面覆蓋之波束切換天線模組、24-GHz雷達收發模組、微控制器,以及具中頻訊號放大器的電源控制電路。
實驗結果顯示,該天線模組原型得以在水平面上透過7個波束實現前向180°半平面的場型覆蓋能力,且每個波束場型高度相似,皆具有小於0.2 dB的增益差異、27°的半功率波束寬、以及−9 dB的旁波瓣位準。此外,透過天線模組中的反射式相移器可實現連續的相位調整,可進一步實現切換波束之間小範圍的波束掃描,以達到更準確的障礙物定位。
zh_TW
dc.description.abstractIn this dissertation, we proposed a configuration for a planar and circular antenna module for collision avoidance radars to be deployed on drones or unmanned aerial vehicles (UAVs) and presented two different prototype module designs. First, a beam-switching antenna module offering complete 360° horizontal coverage is introduced. This module integrates a novel dual-mode single-pole-multiple-throw (SPMT) switch, a novel circular beamforming network (CBFN), one-bit phase shifters, and quasi-Yagi antennas.
The dual-mode switch is capable of routing input power either to a single output port as a traditional SPMT switch (single-ON mode) or equally to two adjacent output ports (dual-ON mode), effectively doubling the number of available beam directions. The CBFN is formed by arranging modified sub-matrices (MSMs) in a circular layout, where adjacent MSMs share edge components (ECs). Each MSM functions as a binomial power divider, with the ECs replaced by three-way power dividers. These ECs enable efficient power distribution from the switch to adjacent MSMs and to downstream ECs, facilitating seamless beam transitions.
For verification, a 12-beam beam-switching prototype module operating at 5.8 GHz was fabricated and tested. The measured results closely align with simulations, demonstrating 12 consistent beam patterns with sidelobe levels (SLLs) below −13 dB and gain variations under 1 dB between the two switch modes. Each beam exhibits a 30° half-power beamwidth (HPBW), ensuring full in-plane coverage with minimal overlap between adjacent beams.
Second, a 24-GHz 7-beam beam-switching prototype module with forward-looking 180° in-plane coverage is presented. Its integration with a commercially available 24-GHz radar module is also presented. The antenna module is composed of a dual-mode switch chip with circulator function, a circular beamformer for half-plane coverage, reflection-type phase shifters (RTPSs), and metamaterial (MTM)-loaded quasi-Yagi antennas. Besides, a power supply module and a control circuitry, including an IF signal amplifier, were also designed and integrated with a microcontroller to realize the beam-switching function.
The experimental results show that the antenna module is capable of achieving forward-looking 180° in-plane coverage with seven beams exhibiting similar beam patterns, less than 0.2 dB gain variation, 27° HPBW, and −9 dB SLL. On top of that, with the aid of the RTPSs, this prototype module can achieve continuous beam scanning between adjacent beam patterns, rendering it possible to achieve a more accurate localization of obstacles.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:19:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:19:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ii
誌謝 iii
中文摘要 v
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Contribution 4
1.3 Chapter Outline 6
Chapter 2 Beam-Switching Planar and Circular Antenna Module with 360° In-Plane Coverage 7
2.1 Literature Review of 360° Coverage Designs 7
2.2 Background Theory 11
2.2.1 Beamforming of Circular Array with Cophasal Excitation 11
2.2.2 Phase Mode Theory with Directional Antenna Elements 12
2.3 System Block Diagram 15
2.4 Reconfigurable Beamformer 16
2.4.1 Dual-Mode SPMT Switch 16
2.4.2 Circular Beamforming Network 21
2.5 Radiation Pattern Analysis of Circular Array Fed by Reconfigurable Beamformer 30
2.5.1 Choice of MSM Stage Number, q 32
2.5.2 Choice of Element Feeding Radius, r 33
2.5.3 (Option) Choice of Beam Number, X 34
2.5.4 Discussion and Conclusion of the Pattern Analysis 36
Chapter 3 Prototype Verification of 5.8-GHz Beam-Switching Planar and Circular Antenna Module with Full 360° In-Plane Coverage 37
3.1 Dual-Mode SP6T Switch 38
3.2 Circular Beamforming Network 41
3.2.1 CBFN Constructed by One-Stage MSMs 41
3.2.2 CBFN Constructed by Two-Stage MSMs 45
3.2.3 Summary of the Proposed CBFNs 50
3.3 One-Bit Phase Shifter 53
3.4 Antenna Element 58
3.5 Fully Integrated, Beam-Switching Planar Antenna Module for 360° In-Plane Coverage 60
3.6 Comparison and Conclusion 68
3.6.1 Comparison with State-of-the-Art Designs 68
3.6.2 Summary 70
Chapter 4 24-GHz Forward-Looking Beam-Switching Planar Antenna Module with Half-Plane Coverage 71
4.1 System Block Diagram 71
4.2 Link Budget Consideration 72
4.3 Building Components of the Proposed Forward-Looking Beam-Switching Planar Antenna Module with Half-Plane Coverage 76
4.3.1 Quasi-Circulator and Dual-Mode SP4T Switch IC 78
4.3.2 Modified M6N1 CBFN 84
4.3.2.1 Three-Way Power Divider 84
4.3.2.2 Two-Way Power Combiner 89
4.3.2.3 Integration of the Modified M6N1 CBFN 91
4.3.3 Phase Shifting Section 95
4.3.3.1 Reflection-Type Phase Shifter 96
4.3.3.2 Phase Inverter 98
4.3.4 Antenna Element and Circular Array 104
4.4 Module Integration and Verification 108
4.4.1 Power Supply and Beam-Switching Control Circuit 108
4.4.2 Verification of the Proposed Forward-Looking Beam-Switching Antenna Module 112
Chapter 5 Conclusion and Future Work 120
5.1 Conclusion 120
5.2 Future Work 121
Appendix A Measured Results of the RTPS 124
Appendix B Power Supply and Beam-Switching Control Circuit 126
Appendix C Physical Dimensions of the Antenna Module Fixture 130
Appendix D Measured Noise Figures of the 24-GHz Antenna Module 134
References 138
-
dc.language.isoen-
dc.subject圓形波束形成器zh_TW
dc.subject防撞雷達zh_TW
dc.subject單刀多擲切換開關zh_TW
dc.subject波束切換天線模組zh_TW
dc.subjectbeam-switching antenna modulesen
dc.subjectcollision avoidance radarsen
dc.subjectsingle-pole-multiple-throw switchesen
dc.subjectcircular beamformersen
dc.title應用於無人機防撞雷達之具360°同平面覆蓋及前向180°半平面覆蓋之波束切換平面天線模組zh_TW
dc.titleBeam-Switching Planar Antenna Modules with 360° In-Plane Coverage and Forward-Looking 180° Half-Plane Coverage for Drone Collision Avoidance Radaren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor林坤佑zh_TW
dc.contributor.coadvisorKun-You Linen
dc.contributor.oralexamcommittee曾昭雄;馬自莊;廖文照;陳念偉;陳晏笙zh_TW
dc.contributor.oralexamcommitteeChao-Hsiung Tseng;Tzyh-Ghuang Ma;Wen-Jiao Liao;Nan-Wei Chen;Yen-Sheng Chenen
dc.subject.keyword波束切換天線模組,圓形波束形成器,單刀多擲切換開關,防撞雷達,zh_TW
dc.subject.keywordbeam-switching antenna modules,circular beamformers,single-pole-multiple-throw switches,collision avoidance radars,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202503073-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-30
21.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved