請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99652完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙鍵哲 | zh_TW |
| dc.contributor.advisor | Jen-Jer Jaw | en |
| dc.contributor.author | 彭綿聿 | zh_TW |
| dc.contributor.author | Mien-Yu Peng | en |
| dc.date.accessioned | 2025-09-17T16:16:13Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 林博雄,徐仲毅,簡振和,2002。風場變形對地面降水觀測造成偏差之個案探討。大氣科學,30(3),241-257。
邱祈榮,賴彥任,陳信雄,2004。以魚眼影像進行全天光空域模式之驗證。國立臺灣大學生物資源暨農學院實驗林研究報告,18(4),273-283。 楊軒,2019。基於魚眼投影幾何之物像對應模式鏡頭率定策略研擬,國立臺灣大學土木工程學系碩士論文,臺北,臺灣。 簡振和,陳明仁,林博雄,謝棃惠,2016。降雨觀測技術改良之前期研究,經濟部水利署委辦計畫報告書。 Brown, D., 1971. Close-range camera calibration. Photogrammetric Engineering, 37(8):855-866. Brun, X., Deschaud, J.-E., and Goulette, F., 2007. On-the-way city mobile mapping using laser range scanner and fisheye camera. In MMT (Mobile Mapping Technology). Danson, F. M., Hetherington, D., Morsdorf, F., Koetz, B., and Allgower, B., 2007. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and remote sensing letters, 4(1), 157-160. El-Hakim, S. F., 1986. Real-time image meteorology with CCD cameras. Photogrammetric Engineering and Remote Sensing, 52 (11): 1757-1766. Fraser, C. S., 1982. Optimization of precision in close-range photogrammetry. Photogrammetric Engineering and Remote Sensing, 48(4): 561-570. Granshaw, S. I., 1980. Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record, 10(56): 181-207. Grimmond, C., Potter, S., Zutter, H., and Souch, C., 2001. Rapid methods to estimate sky‐view factors applied to urban areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(7), 903-913. Hill, R., 1924. A lens for whole sky photographs. Quarterly Journal of the Royal Meteorological Society, 50(211), 227-235. Hughes, C., Denny, P., Jones, E., and Glavin, M., 2010. Accuracy of fish-eye lens models. Applied Optics, 49(17), 3338-3347. Kannala, J., and Brandt, S. S., 2006. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE transactions on pattern analysis and machine intelligence, 28(8), 1335-1340. Kidd, C., and Chapman, L., 2012. Derivation of sky-view factors from lidar data. International Journal of Remote Sensing, 33(11), 3640-3652. Lillesand, T., R. Kiefer and J. Chipman, 2015. Remote sensing and image interpretation. Hoboken, N.J., Wiley, pp. 120. Miyamoto, K., 1964. Fish eye lens. Journal of the Optical Society of America, 54(8), 1060-1061. Ogundare, J., 2018. Understanding least squares estimation and geomatics data analysis, John Wiley & Sons, Inc, United States of America, pp. 543-570. Pelc-Mieczkowska, R., Janicka, J., Bednarczyk, M., and Tomaszewski, D., 2015. Comparison of selected data acquisition methods for GNSS terrain obstacles modeling. Acta Geodynamica et Geomaterialia, 12(3), 307-315. Perfetti, L., Polari, C., and Fassi, F., 2017. Fisheye photogrammetry: tests and methodologies for the survey of narrow spaces. International archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, 42(W3), 573-580. Rich, P. M., 1990. Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews, 5(1), 13-29. Scaramuzza, D., 2021. Omnidirectional camera. In Computer vision: A reference guide (pp. 900-909). Cham: Springer International Publishing. Schneider, D., Schwalbe, E., and Maas, H.-G., 2009. Validation of geometric models for fisheye lenses. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3), 259-266. Sevruk, B., and Zahlavova, L., 1994. Classification system of precipitation gauge site exposure: evaluation and application. International Journal of Climatology, 14(6), 681-689. Tommaselli, A., Garcia, T., Castanheiro, L., Campos, M., and Santos, G., 2023. Effects of hyper hemispherical field in bundle adjustment with fisheye images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 503-509. World Meteorological Organization, 2023. Guide to Instruments and Methods of Observation (WMO-No. 8). Yamashita, M., Yoshimura, M., and Nakashizuka, T., 2004. Cloud cover estimation using multitemporal hemisphere imageries. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 35(7), 826-829. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99652 | - |
| dc.description.abstract | 雨量計所處環境之遮蔽程度將影響降雨觀測的準確性,過度遮蔽恐造成量測結果偏差。為確保降雨資料具代表性,雨量計應架設於開闊場域,並定期檢視其周圍遮蔽情形。
針對雨量計周遭環境之遮蔽程度測量,本研究提出一套影像式雨量計顯露度測量方法,使用魚眼鏡頭拍攝雨量計上方之天空影像,結合基於魚眼投影幾何之嚴密物像對應模式,並依據顯露度幾何條件,定義相關參數並推導誤差改正方法,以符實務應用要求。 為驗證所提方法之可行性與應用價值,本研究設計模擬實驗與實際實驗,透過前者掌握重要影響因子,而後依據模擬實驗成果,於實際場域獲取實際觀測資料,進行顯露度解算與成果分析。 實驗成果顯示,經由本研究研擬之顯露度測量程序,配合各階段之率定演算法與誤差分析及處理機制,解算所需參數同時控管其品質,最終可提供誤差1度以內之仰角測量品質,滿足雨量計顯露度測量之精度需求。 | zh_TW |
| dc.description.abstract | The operation of rain gauges is influenced by environmental shielding, where excessive obstruction may lead to precipitation measurement biases. To ensure the representativeness of measurement results, rain gauges should be installed in open areas and their surrounding conditions should be regularly monitored.
In response to this practical need, this study proposes an image-based method for exposure measurement of rain gauges. By capturing upward-looking sky images using a fisheye lens, and applying an object-image correspondence based on rigorous fisheye projection geometry, relevant parameters are defined according to the geometric conditions of exposure. Additionally, an error correction method is derived to account for potential measurement deviations. To verify the feasibility and practical applicability of the proposed method, this study designed simulation and field experiments. The simulation experiments were conducted to identify key influencing factors in exposure measurement, while the field experiments acquired real observation data based on the simulation results, followed by parameter computation and analysis. Experimental results indicate that the proposed exposure measurement procedure, combined with calibration algorithms and error correction mechanisms at various stages, can effectively derive the required parameters and control their quality. The final outcomes demonstrate that the measurement method can achieve elevation angle error within 1 degree, thereby fulfilling the accuracy requirements for rain gauge exposure measurement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:16:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:16:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與流程 3 1.3 論文架構 3 第二章 文獻回顧 5 2.1 顯露度測量方法 5 2.1.1 雷射掃描 5 2.1.2 半球面體倒影投射法 6 2.1.3 影像數化法 7 2.2 魚眼鏡頭介紹 9 2.2.1 魚眼鏡頭之光學特性 9 2.2.2 魚眼鏡頭之投影幾何 11 2.3 本研究主要目標 13 第三章 研究方法 15 3.1 基於魚眼鏡頭投影幾何之嚴密物像對應模式 16 3.2 顯露度幾何 21 3.3 魚眼鏡頭率定演算法 25 3.4 誤差改正與控制方法 30 3.4.1 相機光軸傾斜誤差改正 31 3.4.1.1 室內率定求像平面相對擺放平面之傾斜 32 3.4.1.2 外業量測求擺放平面相對地平面之傾斜 34 3.4.2 相機擺放偏心誤差控制 35 第四章 實驗及成果分析 38 4.1 實驗項目與配置 38 4.1.1 獲取觀測資料 39 4.1.2 建置實際實驗場域 42 4.1.2.1 室內率定場 42 4.1.2.2 外業雨量計顯露度測量場景 52 4.2 模擬實驗 54 4.2.1 影響因子分析 55 4.2.2 起算原點不同之仰角差異量 59 4.2.3 相機光軸傾斜模擬 64 4.2.4 相機擺放偏心模擬 66 4.3 實際實驗 69 4.3.1 魚眼鏡頭參數率定 69 4.3.2 像平面至擺放平面姿態率定 78 4.3.2.1 像空間坐標系至物空間坐標系之旋轉矩陣 78 4.3.2.2 物空間坐標系至擺放平面坐標系之旋轉矩陣 81 4.3.2.3 垂距與偏心誤差率定 85 4.3.3 傾斜測量工具驗證 86 4.3.4 實測參數之誤差傳播分析 88 4.3.5 室內率定場顯露度驗證 91 4.3.6 外業雨量計顯露度測量 98 第五章 結論與建議 112 5.1 結論 112 5.1.1 模擬實驗 112 5.1.2 實際實驗 113 5.2 雨量計顯露度測量策略研擬 116 5.3 建議 117 參考文獻 119 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 顯露度測量 | zh_TW |
| dc.subject | 雨量計 | zh_TW |
| dc.subject | 物像對應模式 | zh_TW |
| dc.subject | 魚眼鏡頭 | zh_TW |
| dc.subject | 誤差改正 | zh_TW |
| dc.subject | Rain gauge | en |
| dc.subject | Exposure measurement | en |
| dc.subject | Error correction | en |
| dc.subject | Object-image correspondence | en |
| dc.subject | Fisheye lens | en |
| dc.title | 應用魚眼物像對應模式於雨量計顯露度測量 | zh_TW |
| dc.title | Applying the Fisheye Object-Image Correspondence in the Rain Gauge Exposure Measurement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡展榮;邱式鴻;莊子毅 | zh_TW |
| dc.contributor.oralexamcommittee | Jaan-Rong Tsay;Shih-Hong Chio;Tzu-Yi Chuang | en |
| dc.subject.keyword | 雨量計,顯露度測量,魚眼鏡頭,物像對應模式,誤差改正, | zh_TW |
| dc.subject.keyword | Rain gauge,Exposure measurement,Fisheye lens,Object-image correspondence,Error correction, | en |
| dc.relation.page | 121 | - |
| dc.identifier.doi | 10.6342/NTU202502326 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-09-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
