Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99648
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌zh_TW
dc.contributor.advisorChing-Pin Tungen
dc.contributor.author魏涓名zh_TW
dc.contributor.authorChuan-Ming Weien
dc.date.accessioned2025-09-17T16:15:30Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationAlliance for Water Stewardship. (2019). AWS International Water Stewardship Standard, Version 2.0. In. North Berwick, Scotland: Alliance for Water Stewardship.
Arpke, A., & Hutzler, N. (2005). Operational life-cycle assessment and life-cycle cost analysis for water use in multioccupant buildings. Journal of Architectural Engineering, 11(3), 99-109.
Arpke, A., & Hutzler, N. (2006). Domestic water use in the United States: A life‐cycle approach. Journal of Industrial Ecology, 10(1‐2), 169-184.
Asadi, S., Nazari-Heris, M., Nasab, S. R., Torabi, H., & Sharifironizi, M. (2020). An updated review on net-zero energy and water buildings: Design and operation. Food-energy-water nexus resilience and sustainable development: Decision-making methods, planning, and trade-off analysis, 267-290.
Benjamin, H. (2019). First LEED Zero Water building uses multiple strategies to get to zero. Retrieved 2025-07-25 from https://www.usgbc.org/articles/first-leed-zero-water-building-uses-multiple-strategies-get-zero
BREEAM. (2016). WAT 01 - Water consumption. https://kb.breeam.com/wp-content/plugins/breeamkb-pdf/pdf/?c=4442
Burek, P., Satoh, Y., Fischer, G., Kahil, M. T., Scherzer, A., Tramberend, S., Nava, L., Wada, Y., Eisner, S., & Flörke, M. (2016). Water futures and solution-fast track initiative.
Carbon Disclosure Project. (2023). CDP Water Security 2023 Reporting Guidance. CDP.
Cheng, C. l., Kawamura, S., & Chang, W.-C. (2024). Research on a zero water consumption operation model and feasibility for office buildings. Water Policy, 26(10), 1002-1019.
Crawford, R. H., & Pullen, S. (2011). Life cycle water analysis of a residential building and its occupants. Building Research & Information, 39(6), 589-602.
European Central Bank. (2025, 2025, May 23). The European economy is not drought-proof. The ECB Blog. https://www.ecb.europa.eu/press/blog/date/2025/html/ecb.blog20250523~d39e3a7933.en.html
GBCA. (2019). Potable Water Calculator Guide – NZv1.0. Green Building Council of Australia (GBCA).
Hasik, V., Anderson, N. E., Collinge, W. O., Thiel, C. L., Khanna, V., Wirick, J., Piacentini, R., Landis, A. E., & Bilec, M. M. (2017). Evaluating the Life Cycle Environmental Benefits and Trade-Offs of Water Reuse Systems for Net-Zero Buildings. Environmental Science & Technology, 51(3), 1110-1119. https://doi.org/10.1021/acs.est.6b03879
IBEC. (2014). CASBEE for New Construction – Technical Manual 2014 Edition. Institute for Building Environment and Energy Conservation (IBEC).
Intergovernmental Panel on Climate Change (Ed.). (2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/https://doi.org/10.1017/9781009325844.
International Living Future Institute. (2025). Living Building Challenge 4.1 Program Manual.
International Organization for Standardization. (2006a). ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. In. International Organization for Standardization.: International Organization for Standardization.
International Organization for Standardization. (2006b). ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines. In. International Organization for Standardization(ISO),: International Organization for Standardization(ISO),.
International Organization for Standardization. (2014). ISO 14046:2014: Environmental management — Water footprint — Principles, requirements and guidelines. In. Geneva, Switzerland: ISO.
Joustra, C., & Yeh, D. (2014). Decision support modeling for net-zero water buildings. Proceedings of the Winter Simulation Conference 2014,
Joustra, C. M., & Yeh, D. H. (2015). Framework for net-zero and net-positive building water cycle management. Building Research & Information, 43(1), 121-132.
Mannan, M., & Al-Ghamdi, S. G. (2020). Environmental impact of water-use in buildings: Latest developments from a life-cycle assessment perspective. Journal of environmental management, 261, Article 110198. https://doi.org/10.1016/j.jenvman.2020.110198
Mannan, M., & Al-Ghamdi, S. G. (2020). Environmental impact of water-use in buildings: Latest developments from a life-cycle assessment perspective. Journal of environmental management, 261, 110198.
Naserisafavi, N., Yaghoubi, E., & Sharma, A. K. (2022). Alternative water supply systems to achieve the net zero water use goal in high-density mixed-use buildings. Sustainable cities and society, 76, 103414.
Proença, L. C., & Ghisi, E. (2010). Water end-uses in Brazilian office buildings. Resources, Conservation and Recycling, 54(8), 489-500.
Robinson, D., & Adeyeye, K. (2013). Assessment methodologies for water efficiency in buildings. Water efficiency in buildings: Theory and practice, 113-128.
Stephan, A., & Crawford, R. H. (2014). A comprehensive life cycle water analysis framework for residential buildings. Building Research & Information, 42(6), 685-695.
U.S. Department of Energy. (2025). Low or Zero Water Building Strategies. U.S. Department of Energy. https://www.energy.gov/femp/low-or-zero-water-building-strategies
U.S. Environmental Protection Agency. (2025). Basics of Green Infrastructure. https://www.epa.gov/green-infrastructure/about-green-infrastructure
U.S. Green Building Council. (2020). LEED Zero program guide (Last updated January 2020 ed.). U.S. Green Building Council. https://www.usgbc.org/resources/leed-zero-program-guide
U.S. Green Building Council. (2025). LEED v4.1 Building Design and Construction Beta Guide.
UN-Water. (2021). Progress on the level of water stress: Global status and acceleration needs for SDG indicator 6.4. 2, 2021. Food & Agriculture Org.
UNESCO. (2024). The United Nations World Water Development Report 2024: Water for prosperity and peace. S. a. C. O. U. United Nations Educational. https://unesdoc.unesco.org/ark:/48223/pf0000388948
United Nations. (2015). Goal 6: Ensure access to water and sanitation for all. Retrieved July 25, 2025 from https://sdgs.un.org/goals/goal6
Wanjiru, E., & Xia, X. (2017). Optimal energy-water management in urban residential buildings through grey water recycling. Sustainable cities and society, 32, 654-668.
Willis, R. M., Stewart, R. A., Giurco, D. P., Talebpour, M. R., & Mousavinejad, A. (2013). End use water consumption in households: impact of socio-demographic factors and efficient devices. Journal of Cleaner Production, 60, 107-115.
內政部建築研究所。(2022)。建築物室內給水設備設計技術規範。內政部建築研究所。
內政部建築研究所。(2023)。綠建築評估手冊-基本型2023年版。內政部建築研究所。
台灣自來水股份有限公司。(2021)。用戶用水設備申裝作業要點(110年2月版)。
經濟部水利署。(2022)。用水計畫書件內容及格式。經濟部主管法規。取自 https://law.moea.gov.tw/LawContent.aspx?id=GL000307
經濟部水利署。(2023)。用水回收率行業基準區間。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99648-
dc.description.abstract在永續發展的趨勢下,水資源被重新定義為建築營運系統中需主動管理的核心要素。多項國際倡議與標準如CDP水安全問卷、ISO 14046水足跡、國際永續水管理標準AWS與Living Building Challenge皆強調企業與場域需識別水相關風險、強化治理並實踐水資源自給與循環。作為企業用水管理的基本單元,建築不僅是資源的使用者,更應被納入自然水循環的系統中。淨零水建築(Net-Zero Water Building, NZWB)正是在此思維下提出,其目標為最小化總用水量、最大化替代水源使用、最小化廢水排放並將水體回歸原水源,追求營運期間對外部水體的依賴最小化。然現行建築用水評估方式多採靜態推估與設備效率概念為主,無法描繪多水源系統的互動邏輯、儲存調配、處理延遲與使用時序變異等關鍵環節,限制其於淨零水策略設計與管理上的應用潛力。
本研究提出一套具指南性質的建築用水動態系統模型建構架構,透過四個步驟進行系統化建構流程:定義模型目標與邊界、建立模組間之框架與互動邏輯、依功能拆解建構水源、儲水、用水、水處理再利用與排出、回歸水等五大模組,並設計淨零水評估指標作為績效量化依據。於模組層級,明確定義各模組之單元角色、輸入輸出變數、調度邏輯與參數設置方式,建構高度模組化且可擴充之模型架構。為驗證模型之可行性與應用潛力,本研究以臺灣北部某高科技廠區為案例,導入實際用水數據進行每日模擬,並透過敏感度分析辨識具關鍵影響力之參數。同時,依據四大策略方向(設備水回收再利用效率、節約用水、外部替代水源、回歸水)設計共39組策略組合,分析其對水資源收支與淨零水表現之影響。本研究所建構之模型與策略分析機制,提供一套系統化比較多元淨零水實施路徑的方法,能協助決策者規劃更具彈性與前瞻性的水資源管理策略。
zh_TW
dc.description.abstractWater has been redefined as a core element of building operation systems under the growing emphasis on sustainability. Global frameworks such as the CDP Water Questionnaire, ISO 14046, AWS Standard, and the Living Building Challenge urge organizations to manage water-related risks, strengthen governance, and pursue self-sufficiency and circularity. As the fundamental unit of corporate water use, buildings should no longer be regarded solely as consumers of resources, but rather as integral components of the natural water cycle. The concept of Net-Zero Water Buildings (NZWB) has emerged under this paradigm, aiming to minimize total water consumption, maximize the use of alternative water sources, and reduce wastewater discharge while returning water to its original source. However, existing building water assessment methods are predominantly static and equipment-centric, limiting their capacity to capture the complexities of real-world operations, including multi-source interactions, storage regulation, treatment delays, and temporal variations in demand. These limitations restrict their applicability in designing and managing net-zero water strategies.
To address this gap, this study develops a guideline-oriented framework for constructing a dynamic system model of water management in building contexts. The model is established through four methodological steps: (1) defining the modeling objectives and boundaries, (2) structuring the model framework through module identification and flow interconnections, (3) developing five core modules—Water Source, Water Storage, Water Demand, Treatment/Reuse/Outflow, and Return Water, and (4) constructing a Net Zero Water Achievement Index (NZWAI) as a system-level performance indicator. Each module explicitly defines unit functions, input/output variables, dispatching logic, and parameter configurations to ensure modularity and extensibility. To validate the feasibility and applicability of the model, a case study of a high-tech industrial park in northern Taiwan was conducted using daily water data simulation. Sensitivity analysis was employed to identify key influencing parameters. In addition, 39 strategy combinations were developed under four main strategic directions: improving equipment-level reuse efficiency, reducing water demand, utilizing external alternative water sources, and increasing return water. The model and its strategy analysis mechanism offer a systematic approach to comparing diverse NZWB implementation pathways, supporting more flexible and forward-looking water resource planning and decision-making.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:15:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:15:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents序言 I
摘要 II
ABSTRACT III
目次 V
圖次 VII
表次 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻回顧 6
2.1 淨零水 6
2.1.1 LEED Zero Water認證與案例 7
2.1.2 淨零水建築相關研究 9
2.2 現有建築用水評估方法 11
2.2.1 臺灣現有建築用水評估方法 11
2.2.2 國際建築用水評估機制 13
第三章 研究方法 16
3.1 定義模型目標與邊界 16
3.1.1 模型目標的設定 16
3.1.2 模型邊界的界定 17
3.2 建立模型框架 22
3.2.1 模組辨識與分類原則 22
3.2.2 模組間邏輯關係的建置 31
3.3 建構模型模組 35
3.3.1 水源模組 36
3.3.2 儲水模組 38
3.3.3 用水模組 41
3.3.4 水處理再利用與流出模組 48
3.3.5 回歸水模組 54
3.4 建築淨零水評估指標 58
3.4.1 淨零水達成指標(Net Zero Water Achievement Index, NZWAI) 58
3.4.2 LEED 淨零水達成指標(LEED NZWAI) 59
3.4.3 全廠回收率 (Overall Factory Recycling Rate, R1) 60
3.4.4 全廠回收率-不含冷卻水塔內循環量(Overall Factory Recycling Rate excluding Cooling Tower Recycling , R2) 61
第四章 應用案例研析 62
4.1 應用案例設計 62
4.1.1 案例背景說明 63
4.1.2 案例的模型目標 64
4.1.3 案例的模型邊界 65
4.1.4 案例的模型框架 69
4.1.5 案例的綠色基礎設施設計 74
4.1.6 案例的模型模組 75
4.2 案例淨零水分析 90
4.2.1 基線情境 90
4.2.2 敏感度分析 94
4.3 淨零水策略組合分析 97
4.3.1 淨零水策略組合說明 97
4.3.2 淨零水策略組合分析結果 103
第五章 結論與建議 111
5.1 結論 111
5.2 建議 114
第六章 參考文獻 117
附錄A 淨零水策略組合39組模擬結果 120
-
dc.language.isozh_TW-
dc.subject動態系統zh_TW
dc.subject淨零水建築zh_TW
dc.subject策略組合分析zh_TW
dc.subject模組化建構zh_TW
dc.subject水管理zh_TW
dc.subjectWater Managementen
dc.subjectModular Frameweorken
dc.subjectStrategy Combination Analysisen
dc.subjectSystem Dynamicsen
dc.subjectNet-Zero Water Buildingen
dc.title建築淨零用水之系統動態模型建構與案例實證研究zh_TW
dc.titleDeveloping a System Dynamics Model for Net-Zero Water Buildings: Framework, Application, and Insightsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江莉琦;李明旭zh_TW
dc.contributor.oralexamcommitteeLi-chi Chiang;Ming-Hsu Lien
dc.subject.keyword淨零水建築,動態系統,水管理,模組化建構,策略組合分析,zh_TW
dc.subject.keywordNet-Zero Water Building,System Dynamics,Water Management,Modular Frameweork,Strategy Combination Analysis,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202504040-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2030-08-05-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved