請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99646完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成 | zh_TW |
| dc.contributor.advisor | Chow-Shing Shin | en |
| dc.contributor.author | 張峻榮 | zh_TW |
| dc.contributor.author | Chun-Jung Chang | en |
| dc.date.accessioned | 2025-09-17T16:15:09Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Gibson, I., Rosen, D. W., & Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (2nd ed.). Springer.
2. ISO/ASTM 52900:2015. Additive manufacturing – General principles – Terminology 3. Vallejo-Melgarejo, L. D., Reifenberger, R. G., Newell, B. A., Narváez-Tovar, C. A., & Garcia-Bravo, J. M. (2019). Characterization of 3D-printed lenses and diffraction gratings made by DLP additive manufacturing. Rapid Prototyping Journal, 25(10), 1684–1694. https://doi.org/10.1108/RPJ-03-2019-0074 4. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites PartB: Engineering,143,172–196. https://doi.org/10.1016/j.compositesb.2018.02.012 5. Andrea Zocca, Paolo Colombo, Cynthia M. Gomes, Jens Günster (2015). Additive manufacturing of ceramics: Issues, potentialities, and opportunities. Additive Manufacturing, https://doi.org/10.1111/jace.13700 6. He Y. (2020). Review of 3D Printing in Micromachines. Micromachines, https://doi.org/10.3390/mi11040357 7. Wei Gao , Yunbo Zhang, Devarajan Ramanujan , Karthik Ramani , Yong Chen ,Christopher B. Williams , Charlie C.L. Wang , Yung C. Shin , Song Zhang , Pablo D. Zavattieri (2015). The status, challenges, and future of additive manufacturing in engineering. CIRP Annals, https://doi.org/10.1016/j.cad.2015.04.001 8. Peter J. Collings (2002). Liquid Crystals: Nature's Delicate Phase of Matter. Princeton University Press. 9. Chen, B. (2011). "Recent Advances in LCD Panel Technology," Applied Physics Letters. 10. Matsumoto(2008). "Display Technology Trends and Panel Designs," Journal of Display Technology, IEEE. https://ieeexplore.ieee.org/document/4430796 11. Sun, C (2021). Nature Reviews Materials, https://doi.org/10.1038/s41578-020-00274-6 12. 石順祥、張海興等編著(2000)。物理光學與應用光學。西安:西安電子科技大學出版社。 13. OpenStax. (2022). 4.5: Diffraction Gratings. In University Physics Volume 3. LibreTexts. Retrieved from https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/04:_Diffraction/4.05:_Diffraction_Gratings 14. Lumen Learning. (n.d.). 27.4: Multiple-Slit Diffraction. Retrieved from https://courses.lumenlearning.com/physics/chapter/27-4-multiple-slit-diffraction/ 15. 高三物理. (2015). 光的繞射現象. 取自https://moodle.fg.tp.edu.tw/~tfgcoocs/blog/wp content/uploads/2015/11/%E9%AB%98%E4%B8%89%E7%89%A9%E7%90%865-3%E5%85%89%E7%9A%84%E7%B9%9E%E5%B0%84%E7%8F%BE%E8%B1%A1%E8%AA%B2%E6%9C%AC.pdf 16. Edmund Optics. (n.d.). All About Diffraction Gratings. Retrieved from https://www.edmundoptics.com/knowledge-center/application-notes/optics/all-about-diffraction-gratings/ 17. Max Born and Emil Wolf (1999). Principles of Optics Electromagnetic Theory of Propagation, Interference and Diffraction of Light Principles of Optics (7th ed.). Cambridge University Press. 18. Barden, S. C., Arns, J. A., Colburn, W. S., & Williams, J. B. (2000). Volume-phase holographic gratings and their potential for astronomical applications. Publications of the Astronomical Society of the Pacific, 112(770), 809–820. https://doi.org/10.1086/316586 19. James A. Arns(1995)Holographic transmission gratings improve spectroscopy and ultrafast laser performances. Retrieved fromhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/2404/1/Holographic-transmission-gratings-improve-spectroscopy-and-ultrafast-laser-performances/10.1117/12.207468.full 20. Masanori Kurita , Yaowu Ma (1998). Strain measurement by a diffraction grating method.NDT & E International,31(2), 77–83. https://doi.org/10.1016/S0963-8695(97)00038-8 21. 光立方Cuberay UniFormation. (2025). *UniFormation GKtwo 8K LCD光固化3D列印機 https://www.cuberay.com.tw/product/product&product_id=7 22. 光立方 Cuberay UniFormation(2025)*UniFormation LCD 模組 12K(for GKTWO) https://www.cuberay.com.tw/product/product&product_id=15/ 23. 光立方 Cuberay UniFormation. (2025). *UniFormation 大載台 10.3吋 (for GKTWO) https://www.cuberay.com.tw/product/product&product_id=18 24. 光立方 Cuberay UniFormation. (2025). *UniFormation 樹脂槽 (for GKTWO)https://www.cuberay.com.tw/product/product&product_id=22 25. 光立方 Cuberay UniFormation. (2025). *UniFormation NEFP離型膜 (for GKTWO)https://www.cuberay.com.tw/product/product&product_id=16 26. 光立方 Cuberay UniFormation. (2025). *UniFormation光固化樹脂-生物基標準樹脂https://www.cuberay.com.tw/product/product&product_id=8 27. 3DSpiderMaker. (n.d.). *Crystal General Resin (Clear) – 1 kg* [Product page]. 3DSpiderMaker. Retrieved from https://www.3dspidermaker.com/products/crystal-general-resin-clear-1kg 28. Kemet International Ltd (2025) Diamond grinding fluid. Kemet International. [online] Available at: https://www.kemet-international.com/cn/products/diamond-products/diamond-grinding-fluid. 29. 優禘科技股份有限公司(n.d.)。藍光吸收劑原理與應用。EUTEC 優禘科技。取自 https://www.eutec.com.tw/zh-TW/article/detail/21 30. 佳能股份有限公司(2008)。EOS 450D 使用說明書。取自https://tw.canon/zh_TW/support/0300093301 31. 黃順亘, 以導電性監測碳纖維複材膠合接口經濕熱老化後受機械負載破壞之應用, in 機械工程學研究所. 2024, 國立臺灣大學: 台北市. 32. PLUSOVER 儀器有限公司(n.d.)。PM2 200SA 手動式研磨/拋光機產品頁。取自 https://plusover.com.tw/product/pm2-200sa/ 33. 劉維桀,導電性樹脂之光固化增材製造, in 機械工程學研究所. 2024, 國立臺灣大學: 台北市. 34. Chitu Systems. (n.d.). CHITUBOX: Professional resin 3D printing slicer. Retrieved from https://www.chitubox.com 35. 維基百科(n.d.)。〈ImageJ.〉。取自維基百科,自由的百科全書 https://zh.wikipedia.org/zh-tw/ImageJ 36. ZwickRoell 公司(n.d.)。塑膠:依據 ISO 527-1/2 的拉伸測試。取自 https://www.zwickroell.com/tw/industries/plastics/thermoplastics-and-thermosetting-molding-materials/tensile-test-iso-527-1-2/ 37. Quora contributors. (n.d.). How do I make sure a laser is perpendicular to the diffraction grating? Quora. Retrieved from https://www.quora.com/How-do-I-make-sure-a-laser-is-perpendicular-to-the-diffraction-grating | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99646 | - |
| dc.description.abstract | 本研究基於LCD光固化積層製造技術,探討光固化列印成品因成化程度不同導致折射率的不同,產生類似於繞射光柵之效應,並評估其在應變感測應用中的可行性。列印系統使用UniFormation GKtwo 8K光固化3D列印機,其矩陣式紫外光源透過LCD面板遮罩投影圖案至光敏樹脂中,進行逐層固化,成型完成後之樣品進行研磨與拋光處理,藉以去除表面層紋與雜散光影響,顯著提升透光性與繞射品質。
實驗中採用紅光與綠光雷射照射表面處理後樣品,並觀察繞射條紋圖樣與間距變化,發現不同切層厚度(3、5、10、25、50 、100µm)對繞射條紋的清晰度與主峰距離具顯著影響。將條紋影像轉換為灰階圖去分析條紋間距,並與理論繞射間距進行比對。同時設計標準拉伸試片(依ISO 527-2規範),施加軸向張力並即時紀錄繞射圖樣之變化。 結果顯示,在拉伸過程中,繞射條紋主峰間距隨應變增加而接近線性展寬,VER試片表現出較佳的敏感性與解析度,說明列印方向與內部結構排列對繞射感測結果具有重要影響。實驗亦探討不同預載條件下的感測穩定性,驗證其在重複性與線性響應上具備應用價值。 | zh_TW |
| dc.description.abstract | This study is based on the LCD photocuring lamination manufacturing technology. It explores the effect of different refractive indices of photocuring printed products due to different curing degrees, which produces a diffraction grating effect, and evaluates its feasibility in strain sensing applications.The system employed is a UniFormation GKtwo 8K LCD resin printer, featuring a matrix UV light engine projecting sliced images through an LCD mask to selectively cure photopolymer resin layer by layer. Post-processing via mechanical polishing and diamond slurry lapping effectively removed surface striations, significantly improving transparency and diffraction performance.
Laser diffraction experiments were conducted using red and green lasers to illuminate the printed samples. Variations in printing layer thickness (3, 5, 10, 25, 50, 100 µm) led to distinct changes in fringe clarity and peak spacing. Fringe patterns were captured and analyzed using grayscale image processing techniques, with experimental spacing trends aligning closely with theoretical diffraction predictions. Standard tensile test specimens (ISO 527-2 Type V) were subjected to axial loading. Dynamic fringe spacing shifts were recorded throughout the tensile deformation. The results revealed a clear linear relationship between applied strain and diffraction fringe spacing, particularly in VER-oriented samples, which exhibited higher sensitivity and resolution. The sensing mechanism was found to be strongly influenced by the printing direction and internal microstructure. Pre-load sensitivity tests further confirmed the repeatability and stability of the optical response, suggesting feasibility for non-contact strain measurement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:15:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:15:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 i 摘要 ii Abstract iii 目次 iv 圖次 vii 表次 xiv 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3論文架構 3 第二章 文獻回顧 4 2.1積層製造成型技術(Additive Manufacturing) 4 2.2光固化成型技術(Vat Polymerization) 5 2.3 LCD光固化列印(LCD-based photopolymerization) 6 2.3.1 LCD液晶顯示器(Liquid Crystal Display) 6 2.4光的繞射 7 2.4.1繞射光柵 11 2.4.2反射式光柵 15 2.4.3穿透式光柵 17 2.5 穿透式光柵繞射試驗 18 2.6 應變光學感測光柵應用 19 第三章 實驗設備及系統架構 21 3.1列印系統架構與相關設備 21 3.1.1 GKtwo光固化3D列印機 21 3.1.2 LCD(Liquid Crystal Display)面板模組 22 3.1.3列印載台 24 3.1.4 樹脂槽 25 3.2實驗材料 26 3.2.1 UniFormation X15 光固化樹脂 26 3.2.2 Crystal Clear光固化樹脂 26 3.2.3 Kemet鑽石研磨液 27 3.2.4 EUSORB®藍光吸收劑 28 3.3實驗設備 29 3.3.1 EDSDS雷射筆 29 3.3.2 Canon EOS 450D相機 30 3.3.3萬能材料試驗機(Material Testing System, MTS) 31 3.4 其他設備 32 3.4.1超音波清洗機 32 3.4.2 PM2-200SA研磨拋光機 32 3.4.3 UP200S 超音波打碎機 33 第四章 實驗方法及流程 35 4.1實驗原理 35 4.2列印流程 35 4.2.1 CAD模型設計 36 4.2.2模型切層與設定參數 36 4.2.3列印 37 4.2.4清洗 37 4.2.5研磨拋光 38 4.3觀察列印成品繞射條紋實驗架構 39 4.4拉伸列印成品繞射實驗架構 41 4.5 ImageJ影像分析 42 第五章 實驗結果及討論 43 5.1列印層厚與繞射現象探討 43 5.1.1繞射條紋圖樣 43 5.1.2繞射條紋間距分析 47 5.1.3 最低層厚列印極限測試 57 5.1.3.1 藍光吸收劑添加 57 5.1.3.2 Uv1990吸收劑添加列印 60 5.1.4層厚與繞射條紋分布討論 61 5.2應變與繞射變化探討 63 5.2.1 10μm拉伸試片繞射條紋變化 64 5.2.2 5 μm拉伸試片繞射條紋變化 73 5.2.3影像分析誤差探討 80 5.2.4應變與條紋間距變化討論 83 第六章 結論及未來展望 88 6.1結論 88 6.2未來展望 88 參考文獻 89 附錄 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | LCD光固化成型技術 | zh_TW |
| dc.subject | 繞射 | zh_TW |
| dc.subject | 層厚影響 | zh_TW |
| dc.subject | 3D列印拉伸試驗 | zh_TW |
| dc.subject | 光學應變感測 | zh_TW |
| dc.subject | optical strain sensing | en |
| dc.subject | diffraction | en |
| dc.subject | effect of layer thickness | en |
| dc.subject | 3D printed tensile test | en |
| dc.subject | LCD-based vat photopolymerization | en |
| dc.title | 由層厚控制探討光柵結構之繞射與應變響應特性 | zh_TW |
| dc.title | Investigation of Diffraction and Strain Response Characteristics of Grating Structures Fabricated via Layer Thickness Control | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江家慶;林志郎 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chin Chiang;Chih-Lang LIN | en |
| dc.subject.keyword | LCD光固化成型技術,繞射,層厚影響,3D列印拉伸試驗,光學應變感測, | zh_TW |
| dc.subject.keyword | LCD-based vat photopolymerization,diffraction,effect of layer thickness,3D printed tensile test,optical strain sensing, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202503720 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
