請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99643完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘 | zh_TW |
| dc.contributor.advisor | Kuan-Ming Li | en |
| dc.contributor.author | 葉和豐 | zh_TW |
| dc.contributor.author | He-Fong Ye | en |
| dc.date.accessioned | 2025-09-17T16:14:37Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | [1] PlayNitride Inc., “MicroLED 技術,” PlayNitride 錼創科技. [Online]. Available: http// www.playnitride.com/microledtechnology/. Accessed: Mar. 26, 2025.
[2] S. H. Park, T. J. Kim, H. E. Lee, et al., “Universal selective transfer printing via micro‑vacuum force,” Nature Communications, vol. 14, Art. no. 7744, 2023, doi: 10.1038/s41467-023-43342-8. [3] B. J. Lee and D. Y. Khang, “Non-deterministic Transfer-Printing of LED Chips with Controllable Pitch Using Stretchable Elastomeric Stamps,” Extreme Mechanics Letters, vol. 45, May 2021, doi: 10.1016/j.eml.2021.101287. [4] Inoue, Kensuke, et al. “Analysis of Micro LED Chip After Laser Transfer,” Proceedings of the 2022 International Conference on Electronics Packaging (ICEP), 2022, doi:10.23919/ICEP55381.2022.9795392. [5] Liu, Qi, et al. “A Non-Delay Error Compensation Method for Dual-Driving Gantry-Type Machine Tool,” Processes, vol. 8, no. 7, 2020, p. 748, doi:10.3390/pr8070748. [6] 馮聖傑,“龍門結構探討與控制策略”,碩士論文,國立臺灣大學工學院機械工程學系,2024。 [7] B. Xie, L. Lei, Y. Yao and Y. Li, “Advanced Synchronous Control of Dual Parallel Motion Systems,” IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1270-1281, Feb. 2023, doi: 10.1109/TIE.2022.3158018. [8] C. Li, B. Yao and Q. Wang, “Modeling and Synchronization Control of a Dual Drive Industrial Gantry Stage,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6, pp. 2940-2951, Dec. 2018, doi: 10.1109/TMECH.2018.2874876. [9] P. Pöhlmann, C. Peukert, M. Merx, J. Müller, and S. Ihlenfeldt, “Compliant joints for the improvement of the dynamic behaviour of a gantry stage with direct drives,” Journal of Machine Engineering, vol. 20, no. 3, pp. 17-29, Sep. 2020, doi: 10.36897/jme/127103. [10] C. Zhang, X. Yu, H. Pan, H. Gao and J. J. Rodríguez-Andina, "Integrated Control of Linear Motors for Coordination and Synchronization," in IEEE Transactions on Transportation Electrification, vol. 10, no. 2, pp. 2806-2816, June 2024, doi: 10.1109/TTE.2023.3296959. [11] 林博倫,“龍門定位平台系統建模與控制”,碩士論文,國立中正大學工學院機械工程學系,2024。 [12] Y. Koren, “Cross-coupled biaxial computer control for manufacturing systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 102, no. 4, pp. 265-272, Dec. 1980, doi: 10.1115/1.3139587. [13] Bosch Rexroth, Gantry Controller User Manual, Version 1.1, Dec. 2020. [14] H. Zhang, “Understand Power Supply Loop Stability and Loop Compensation – Part 1: Basic Concepts and Tools,” Analog Devices Technical Article, Jan. 27, 2022. [Online]. Available: https://www.analog.com/en/resources/technical-articles/power-supply-loop-stability-loop-compensation.html. Accessed: Jun. 13, 2025. [15] Bosch Rexroth, Multi-axis motion control system Tools Manual, Edition 06. [16] 陳世剛,許瑋恩,李宜靜,李峰吉&連豊力,“多軸精密控制系統參數鑑別與同動控制技術”,機械工業雜誌,(96),pp. 12-19,2024。 [17] S. -C. Pan, K. -S. Chen and S. Vechet, "Design and Control of an Active Stage for Suppressing Motion Induced Vibration in Optical Inspection Systems," 2022 20th International Conference on Mechatronics - Mechatronika (ME), Pilsen, Czech Republic, 2022, pp. 1-6, doi: 10.1109/ME54704.2022.9982985. [18] K.-C. Yang and C. Hsieh, “Nanometer Positioning of a Dual-Drive Gantry Table with Precise Yaw Motion Control,” Journal of the Chinese Society of Mechanical Engineers, vol. 36, no. 2, pp. 107–117, Apr. 2015. [19] 鄒沛哲,“龍門平台速度控制與自動化光學檢測系統之整合”,碩士論文,國立臺北科技大學自動化科技研究所,2017。 [20] 李昱慶,“結合撓性結構與橡膠軸承之單軸粗細定位平台之設計、分析與解耦合控制”,碩士論文,國立成功大學機械工程學系,2017。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99643 | - |
| dc.description.abstract | 隨著精密製造對高速度、高精度及高推力的需求不斷提升,雙軸線性馬達驅動的龍門平台成為巨量轉移等應用的主流選擇。然而,剛性結構易導致雙軸耦合效應強烈,限制系統頻寬並產生同步誤差。本研究以「撓性接頭」取代傳統剛性連接,系統性地探討其對龍門平台動態特性的影響。
首先,分別建立剛性與撓性接頭龍門結構的數學模型,推導其頻率響應函數(Frequency Response Functions, FRFs);再以新式交叉耦合控制(Cross-Coupled Control, CCC)架構下在MATLAB/Simulink中進行模擬分析,並於實驗機台上驗證理論模型,並比較理論與實測之 FRFs 及時域響應。最後評估不同偏擺方向剛性及質量比對系統頻寬與穩定度的影響。 結果顯示,引入撓性接頭可將偏擺模態頻率由剛性結構的258 Hz顯著降低至約7 Hz,並於 CCC 控制下達成更高的開迴路頻寬與更佳的穩定裕度。此外,旋轉剛性及平台與滑塊質量比為龍門結構之關鍵參數,適當調整可進一步提升系統動態性能。本研究成果為高精度龍門平台之結構設計與控制策略提供了理論依據與實務參考。 | zh_TW |
| dc.description.abstract | In response to the ever-increasing demands for high speed, high precision, and large thrust in precision manufacturing, dual-axis linear-motor-driven gantry platforms have become the mainstream solution for applications such as mass transfer. However, rigid structures tend to produce strong coupling effects between the two axes, limiting system bandwidth and inducing synchronization errors. This study systematically investigates the use of compliant joints in place of traditional rigid connections and their influence on the dynamic characteristics of gantry platforms.
First, mathematical models of both the rigid-joint and compliant-joint gantry structures are developed, and their frequency response functions (FRFs) are derived. Next, simulations under a novel cross-coupled control (CCC) framework are carried out in MATLAB/Simulink, and the theoretical models are validated experimentally on a test rig by comparing both the FRFs and the time-domain responses. Finally, the effects of varying stiffness and mass ratio in different parasitic motion directions on system bandwidth and stability are evaluated. The results show that introducing compliant joints reduces the yaw mode frequency from 258 Hz in the rigid structure to approximately 7 Hz, and under CCC achieves higher open-loop bandwidth and improved stability margins. Furthermore, rotational stiffness and the mass ratio between the platform and sliders are identified as key design parameters, whose proper adjustment can further enhance dynamic performance. The findings provide both theoretical basis and practical guidance for the structural design and control strategy of high-precision gantry platforms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:14:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:14:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致 謝 II
中文摘要 III Abstract IV 目 次 V 圖 次 VIII 表 次 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 5 1.3 研究方法 7 1.4 論文架構 8 第二章 文獻回顧 9 2.1 同步誤差成因分析 9 2.1.1 機械差異 11 2.1.2 命令延遲差異 11 2.1.3 干擾差異 11 2.1.4 同步誤差成因小結 12 2.2 同動控制架構 12 2.2.1 串聯式同動控制架構 12 2.2.2 並聯式同動控制架構 13 2.3 龍門結構頻率響應函數計算 16 2.3.1運動方程式 17 2.3.2 頻率響應函數計算 20 2.3.3 實際驗證 21 2.4 撓性接頭結構 23 2.4.1 撓性接頭設計 24 2.4.2軟體模擬 25 2.4.3 實驗設備與控制架構 26 2.4.4 系統識別與模擬分析 27 2.4.5 實驗結果 29 第三章 研究方法 31 3.1 簡介 31 3.2 頻率響應函數(FRFs)計算 31 3.2.1 剛性接頭龍門結構 32 3.2.2 撓性接頭龍門結構 35 3.3 撓性接頭等效彈簧剛度 39 3.3.1 撓性接頭在X方向之等效彈簧剛度 39 3.3.2 撓性接頭在Y方向之等效彈簧剛度 40 3.3.3 撓性接頭在θ方向之等效彈簧剛度 41 3.4 同動控制架構 42 3.4.1 控制器設計 42 3.4.2 開迴路與閉迴路波德圖 43 3.4.3 Nyquist plot 46 第四章 實驗規劃與方法 47 4.1簡介 47 4.2 實驗設備 47 4.3 實驗流程與規劃 51 4.4 模態頻率驗證 52 4.5 Simulink控制模型建立 53 4.6 運動命令規劃 54 第五章 實驗結果與討論 56 5.1 簡介 56 5.2模態驗證與FRFs驗證結果 56 5.2.1剛性接頭與撓性接頭龍門Plant FRFs比較 56 5.2.2偏擺模態驗證 57 5.2.3 開迴路FRFs 58 5.2.4 時域驗證結果 60 5.3 關鍵參數對頻寬與穩定度影響分析 66 5.3.1改變旋轉剛度k_θ 66 5.3.2改變平台與滑塊組質量比 67 第六章 結論與未來展望 69 6.1 結論 69 6.2未來展望 70 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 撓性接頭 | zh_TW |
| dc.subject | 旋轉剛性 | zh_TW |
| dc.subject | 龍門平台 | zh_TW |
| dc.subject | 同步誤差 | zh_TW |
| dc.subject | 交叉耦合控制 | zh_TW |
| dc.subject | Synchronization error | en |
| dc.subject | Rotational stiffness | en |
| dc.subject | Cross-coupled control (CCC) | en |
| dc.subject | Compliant joint | en |
| dc.subject | Gantry platform | en |
| dc.title | 基於撓性接頭的雙驅龍門平台數學建模與實驗分析 | zh_TW |
| dc.title | Mathematical Modeling and Experimental Analysis of a Dual-Drive Gantry Platform Based on Compliant Joints | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊宏智;賴允晉;洪育民 | zh_TW |
| dc.contributor.oralexamcommittee | Hong-Tsu Young;Yun-Chin Lai;Yu-Min Hung | en |
| dc.subject.keyword | 龍門平台,撓性接頭,同步誤差,交叉耦合控制,旋轉剛性, | zh_TW |
| dc.subject.keyword | Gantry platform,Compliant joint,Synchronization error,Cross-coupled control (CCC),Rotational stiffness, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202504153 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
