Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單秋成zh_TW
dc.contributor.advisorChow-Shing Shinen
dc.contributor.author唐浩斌zh_TW
dc.contributor.authorHao-Bin Tangen
dc.date.accessioned2025-09-17T16:14:25Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation1.International Organization for Standardization – ISO. ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology. Geneva: ISO; 2015
2.Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer.
3.AboutAdditiveManufacturing.Availablefrom:http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/
4.Rooney, K., Dong, Y., Pramanik, A., & Basak, A. K. (2023). Additive manufacturing in Australian small to medium enterprises: vat polymerisation techniques, case study and pathways to Industry 4.0 competitiveness. Journal of Manufacturing and Materials Processing, 7(5), 168.
5.光固化成型法Availablefrom:http://lazybone1960.pixnet.net/blog/post/60855994-%E5%85%89%E5%9B%BA%E5%8C%96%E6%88%90%E5%BD%A2%E6%B3%95%EF%BC%88stereolithography%EF%BC%89.
6.Lovo, J. F. P., Camargo, I. L. D., Erbereli, R., Morais, M. M., & Fortulan, C. A. (2020). Vat photopolymerization additive manufacturing resins: analysis and case study. Materials Research, 23, e20200010.
7.Al Rashid, A., Ahmed, W., Khalid, M. Y., & Koc, M. (2021). Vat photopolymerization of polymers and polymer composites: Processes and applications. Additive Manufacturing, 47, 102279.
8.Weng, Z., Zhou, Y., Lin, W., Senthil, T., & Wu, L. (2016). Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites Part A: Applied Science and Manufacturing, 88, 234-242.
9.Li, W., Wang, M., Ma, H., Chapa-Villarreal, F. A., Lobo, A. O., & Zhang, Y. S. (2023). Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. Iscience, 26(2).
10.Xing, J. F., Zheng, M. L., & Duan, X. M. (2015). Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews, 44(15), 5031-5039.
11.Pan, Y., Zhou, C., & Chen, Y. (2012). A fast mask projection stereolithography process for fabricating digital models in minutes.
12.Chaudhary, R., Fabbri, P., Leoni, E., Mazzanti, F., Akbari, R., & Antonini, C. (2023). Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing, 8(2), 331-351.
13.Wang, Z., Yang, W., Qin, Y., Liang, W., Yu, H., & Liu, L. (2021). Digital micro-mirror device-based light curing technology and its biological applications. Optics & Laser Technology, 143, 107344.
14.Pan, Y., Zhou, C., and Chen, Y. (September 10, 2012). "A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes." ASME. J. Manuf. Sci. Eng. October 2012; 134(5): 051011. https://doi.org/10.1115/1.4007465
15.Bahnini, I., Rivette, M., Rechia, A., Siadat, A., & Elmesbahi, A. (2018). Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology, 97, 147-161.
16.Mele, M., & Campana, G. (2022). Advancing towards sustainability in liquid crystal display 3D printing via adaptive slicing. Sustainable Production and Consumption, 30, 488-505.
17.Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., & Zhu, X. (2020). Photo-curing 3D printing technique and its challenges. Bioactive materials, 5(1), 110-115.
18.Narahara, H., Yoshikawa, A., & Suzuki, H. (2004). Measurement of liquid surface unevenness in stereolithography. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 47(1), 129-135.
19.Santoliquido, O., Colombo, P., & Ortona, A. (2019). Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 39(6), 2140-2148.
20.Wu, L., & Dong, Z. (2023). Interfacial Regulation for 3D Printing based on Slice‐Based Photopolymerization. Advanced Materials, 35(29), 2300903.
21.Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of cleaner Production, 137, 1573-1587.
22.Chaudhary, R., Fabbri, P., Leoni, E., Mazzanti, F., Akbari, R., & Antonini, C. (2023). Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing, 8(2), 331-351.
23.Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business horizons, 60(5), 677-688.
24.呂芊邑(2023)。DLP列印單層厚度控制探討。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4umbkm。
25.Pagac, M., Hajnys, J., Ma, Q. P., Jancar, L., Jansa, J., Stefek, P., & Mesicek, J. (2021). A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers, 13(4), 598.
26.Crivello, J. V., & Reichmanis, E. (2014). Photopolymer materials and processes for advanced technologies. Chemistry of Materials, 26(1), 533-548.
27.Zhu, T. T., Bushby, A. J., & Dunstan, D. J. (2008). Materials mechanical size effects: a review. Materials Technology, 23(4), 193-209.
28.Triyono, J., Sukanto, H., Saputra, R. M., & Smaradhana, D. F. (2020). The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Engineering, 10(1), 762-768.
29.Wu, C., Chen, C., & Cheeseman, C. (2021). Size effects on the mechanical properties of 3D printed plaster and PLA parts. Journal of Materials in Civil Engineering, 33(7), 04021152.
30.Zhang, G., Wang, Q., Ni, Y., Liu, P., Liu, F., Leguillon, D., & Xu, L. R. (2023). A systematic investigation on the minimum tensile strengths and size effects of 3D printing polymers. Polymer Testing, 117, 107845.
31.Aziz, A. R., Zhou, J., Thorne, D., & Cantwell, W. J. (2021). Geometrical scaling effects in the mechanical properties of 3d-printed body-centered cubic (BCC) lattice structures. Polymers, 13(22), 3967.
32.Nakanishi, S., Shoji, S., Kawata, S., & Sun, H. B. (2007). Giant elasticity of photopolymer nanowires. Applied Physics Letters, 91(6).
33.Valizadeh, I., Tayyarian, T., & Weeger, O. (2023). Influence of process parameters on geometric and elasto-visco-plastic material properties in vat photopolymerization. Additive Manufacturing, 72, 103641.
34.Naik, D. L., & Kiran, R. (2018). On anisotropy, strain rate and size effects in vat photopolymerization based specimens. Additive Manufacturing, 23, 181-196.
35.Mo, J., de Groot, M., & de Boer, J. F. (2013). Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography. Optics express, 21(8), 10048-10061.
36.Hur, J. Y., & Seo, M. S. (2012). Optical proximity corrections for digital micromirror device-based maskless lithography. Journal of the Optical Society of Korea, 16(3), 221-227.
37.Xiong, Z., Liu, H., Chen, R., Xu, J., Li, Q., Li, J., & Zhang, W. (2018). Illumination uniformity improvement in digital micromirror device based scanning photolithography system. Optics Express, 26(14), 18597-18607.
38.楊日昌(2022)。可視化DLP列印系統開發與探討。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/kpsq2d。
39.Peterson, G. I., Schwartz, J. J., Zhang, D., Weiss, B. M., Ganter, M. A., Storti, D. W., & Boydston, A. J. (2016). Production of materials with spatially-controlled cross-link density via vat photopolymerization. ACS applied materials & interfaces, 8(42), 29037-29043.
40.Swinehart, D. F. (1962). The beer-lambert law. Journal of chemical education, 39(7), 333.
41.Zheng, X., Deotte, J., Alonso, M. P., Farquar, G. R., Weisgraber, T. H., Gemberling, S., ... & Spadaccini, C. M. (2012). Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Review of Scientific Instruments, 83(12).
42.Al Rashid, A., Ahmed, W., Khalid, M. Y., & Koc, M. (2021). Vat photopolymerization of polymers and polymer composites: Processes and applications. Additive Manufacturing, 47, 102279.
43.Cortés, A., Sánchez-Romate, X. F., Jiménez-Suárez, A., Campo, M., Ureña, A., & Prolongo, S. G. (2020). Mechanical and strain-sensing capabilities of carbon nanotube reinforced composites by digital light processing 3D printing technology. Polymers, 12(4), 975.
44.Sandoval, J. H., Soto, K. F., Murr, L. E., & Wicker, R. B. (2007). Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nanotubes for stereolithography layered manufacturing. Journal of materials science, 42, 156-165.
45.胡又仁(2018)。DLP光致聚合樹脂剛性探討。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/6qt279。
46.黃立揚(2022)。DLP刮刀列印系統之探討。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/394erw。
47.ISO 527-2:2012, Plastics — Determination of tensile properties — Part 2: Test conditions for moulding and extrusion plastics.
48.ISO 527-1:2019, Plastics — Injection moulding of test specimens of thermoplastic materials — Part 1: General principles, and moulding of multipurpose and bar test specimens.
49.Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99642-
dc.description.abstract3D列印技術的廣泛應用,除了與傳統製程相比更能有效節省材料,對細節精密度更高,從大型物件到極小的微結構,甚至有奈米尺度列印技術出現,應用到許多精密機械元件中,其結構的完整性以及機械性質更顯得重要。
本研究嘗試使用光固化列印技術(Vat Photopolymerization)中的LCD(Liquid Crystal Display)列印技術,探討在3D列印中的尺寸效應,微觀尺寸效應探討樹脂的微結構,透過列印參數設定的改變,包括曝光時間、切層厚度。也改變了試片的尺寸,進行尺寸效應探討。並使用萬能材料試驗機(MTS)及自行架設的微型拉伸試驗器進行拉伸試驗,對成品試片的機械性質表現以及尺寸誤差進行討論。
經由拉伸試驗的結果分析發現,從微觀結構來看,較久的曝光時間給予樹脂足夠的能量產生固化反應,擁有較高的強度。較薄的切層厚度,除了改善列印垂直方向的解析度,重疊的曝光對於成品結構也有強化,有著較高的強度。而尺寸效應則顯示,在小尺度情況下,強度會下降。
總體來說本研究希望探討列印參數以及列印尺度對材料機械性質的關聯性,可以提供未來在小尺度的3D列印中,對於材料強度的評估,適當的列印參數有助於改善整體的外觀以及強度。
zh_TW
dc.description.abstractWith the widespread application of 3D printing technology, it has proven to be more material-efficient and capable of producing finer details compared to traditional manufacturing methods. From large-scale objects to extremely small microstructures—down to the nanoscale—3D printing has found applications in many mechanical components, where structural integrity and mechanical properties are important.
This study investigates the size effect in 3D printing using the LCD (Liquid Crystal Display) method, a type of vat photopolymerization technology. The investigation focuses on the microscale size effect by examining the microstructure of the resin, through adjustments in printing parameters such as exposure time and layer thickness. Specimen dimensions were also varied to analyze macroscopic size effects. Mechanical properties and dimensional deviations of the printed samples were evaluated using a universal testing machine (MTS) and a custom-built micro tensile testing device.
Tensile test results show that, from a microstructural perspective, longer exposure times provide the resin with sufficient energy to initiate curing reactions, resulting in higher strength. Thinner layer thicknesses not only improve vertical resolution but also enhance the structural strength by increasing interlayer overlap, leading to higher mechanical performance. Regarding size effects, it was observed that the strength decreased at smaller scales.
Overall, this study aims to explore the relationship between printing parameters, printing scale, and the mechanical properties of materials. The findings can contribute to strength evaluation and optimization of printing settings in future applications of small-scale 3D printing, ultimately improving both structural appearance and strength.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:14:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:14:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目次 V
圖次 VIII
表次 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文架構 2
第二章 文獻回顧 3
2.1 光固化成型技術(Vat Photopolymerization) 3
2.1.1 DLP(Digital Light Processing)列印技術 4
2.1.2 LCD(Liquid Crystal Display)列印技術 5
2.1.3 光固化成型技術上照式系統及下照式系統比較 6
2.1.4 Projection micro-stereolithography(PμSL) 7
2.2 光敏樹脂固化原理 7
2.3 材料機械性質的尺寸效應 8
2.3.1 切層厚度對固化程度的影響 8
2.3.2 像素場疊加對固化程度的影響 9
2.3.3 添加物對固化程度的影響 10
2.4 總結 10
第三章 實驗設備與材料 11
3.1 PμSL system 11
3.1.1 投影機 12
3.1.2 光路系統 12
3.1.3 CMOS即時監測系統 12
3.1.4 三軸移動系統 12
3.2 LCD光固化3D列印機 13
3.3 列印材料 14
3.3.1 Phrozen Onyx Rigid PRO410 Resin 14
3.3.2 Sudan I 14
3.4 微型拉伸試驗設備 15
3.4.1 固定平台 15
3.4.2 移動平台 16
3.4.3 Load cell 16
3.4.4 LVDT 18
3.4.5 多功能I/O資料擷取卡 20
3.5 萬能材料試驗機(Material Testing System, MTS) 20
3.6 相關設備 21
3.6.1 半微量分析天平 21
3.6.2 超音波打碎機 22
3.6.3 超音波震盪機 22
3.6.4 萬用電表 22
3.6.5 加熱平台 22
3.6.6 數位水平傾角儀 22
3.6.7 立體顯微鏡 23
第四章 實驗流程與方法 24
4.1 實驗理論 24
4.2 實驗方法設計 25
4.3 研究流程探討 25
4.3.1 單層列印 26
4.3.2 試片結構設計 31
4.3.3 參數設定 32
4.3.4 切層 32
4.3.5 列印原理 33
4.3.6 清洗 36
4.3.7 觀測 36
4.3.8 列印問題 37
4.3.9 拉伸試驗 41
4.3.10 小總結 42
4.4 實驗流程 43
4.4.1 試片設計 43
4.4.2 LCD光固化原理 45
4.4.3 列印流程 46
4.4.4 單層列印 48
4.4.5 列印問題 49
4.4.6 拉伸前處理 52
4.4.7 拉伸試驗 53
第五章 實驗結果與討論 55
5.1 試片列印結果 56
5.2 列印尺寸的影響 56
5.3 從大試片看微觀尺寸效應對機械性質的影響 60
5.3.1 大試片曝光時間對機械性質的影響 61
5.3.2 大試片層厚對機械性質的影響 63
5.3.3 小總結 65
5.4 從小試片看微觀尺寸效應對機械性質的影響 68
5.4.1 小試片曝光時間對機械性質的影響 68
5.4.2 小試片層厚對機械性質的影響 69
5.4.3 位移量測誤差 69
5.4.4 小總結 71
5.5 巨觀尺寸效應對機械性質的影響 73
5.6 LCD列印與DLP列印的比較 75
5.7 總結 75
第六章 結論與未來展望 76
6.1 結論 76
6.2 未來展望 77
參考文獻 78
附錄 84
附錄 A 列印位置影響 84
附錄 B 零件設計圖 85
附錄 C 試片尺寸 88
附錄 D 試片拉伸結果 91
附錄 E 材料機械性質 94
附錄 F 應力應變圖 99
附錄 G 斷面圖 112
-
dc.language.isozh_TW-
dc.subject光固化列印技術zh_TW
dc.subjectLCD列印zh_TW
dc.subject機械性質zh_TW
dc.subject尺寸效應zh_TW
dc.subjectLCD 3D printingen
dc.subjectsize effecten
dc.subjectVat Photopolymerizationen
dc.subjectMechanical propertyen
dc.title光固化列印中尺寸效應對機械性質探討zh_TW
dc.titleInvestigation of Size Effect on Mechanical Properties by Vat Photopolymerizationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林志郎;江家慶zh_TW
dc.contributor.oralexamcommitteeChih-Lang Lin;Chia-Chin Chingen
dc.subject.keyword光固化列印技術,LCD列印,機械性質,尺寸效應,zh_TW
dc.subject.keywordVat Photopolymerization,LCD 3D printing,Mechanical property,size effect,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202503723-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-04
23.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved