Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99639
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳東諭zh_TW
dc.contributor.advisorTung-Yu Wuen
dc.contributor.author李奕承zh_TW
dc.contributor.authorYi-Chen Leeen
dc.date.accessioned2025-09-17T16:13:52Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10(4), 509–514.
[2] Huang, H. H., & Sun, C. T. (2009). Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11(1), 013003.
[3] Bragg, W. H., & Bragg, W. L. (1913). The reflection of X-rays by crystals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 88(605), 428–438.
[4] Max Laue (1912). Theoretical section. In Interference phenomena for X-rays. German History Intersections.
[5] Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally resonant sonic materials. Science, 289(5485), 1734-1736.
[6] Wu, T.-Y., Teng, W.-L., Hsieh, H.-H., Wang, S.-J., & Chang, K.-C. (2024). Feasibility studies in applying cork to pile type two layered seismic metamaterials. Soil Dynamics and Earthquake Engineering, 166, Article 108698.
[7] Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S., & Guenneau, S. (2016). Seismic waves damping with arrays of inertial resonators. Extreme Mechanics Letters, 8, 30–37.
[8] Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S., & Guenneau, S. (2017). Clamped seismic metamaterials: Ultra-low frequency stop bands. New Journal of Physics, 19(6), 063022.
[9] Zaccherini, R., Colombi, A., Palermo, A., Dertimanis, V. K., Marzani, A., Thomsen, H. R., Stojadinovic, B., & Chatzi, E. N. (2020). Locally resonant metasurfaces for shear waves in granular media. Physical Review Applied, 13(3), 034055.
[10] Colombi, A., Colquitt, D., Roux, P., Guenneau, S., & Craster, R. V. (2016, June 10). A seismic metamaterial: The resonant metawedge. Scientific Reports, 6, Article 27717.
[11] Brûlé, S., Javelaud, E. H., Enoch, S., & Guenneau, S. (2014). Experiments on seismic metamaterials: Molding surface waves. Physical Review Letters, 112(13), 133901.
[12] Krödel, S., Thomé, N., & Daraio, C. (2015). Wide band gap seismic metastructures. Extreme Mechanics Letters, 4, 111–117.
[13] Hsieh, H.-H., Yang, C.-F., Wu, T.-Y., Wang, S.-J., & Chang, K.-C. (2025). Experimental study on a subwavelength auxetic pile type metamaterial for seismic wave attenuation. Earthquake Engineering & Structural Dynamics, 0(0), 1–15.
[14] Kalderon, M., Mantakas, A., Paradeisiotis, A., Antoniadis, I., & Sapountzakis, E. J. (2022). Locally resonant metamaterials utilizing dynamic directional amplification: An application for seismic mitigation. Applied Mathematical Modelling, 110, 1–16.
[15] 羅元佑、吳東諭、汪向榮(2024),「新型隔減震技術:共振筒形地震超材料。」,《結構工程》,39(1),103–125。
[16] Halim, N. W., Wu, T.-Y., & Wang, S.-J. (2025). Nested-mass locally resonant metabarriers for seismic wave mitigation. Engineering Structures, 341, 120792.
[17] C. Kittel, Introduction to Solid State Physics, New York: Wiley, 2005.
[18] Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik 52, 555–600 (1929).
[19] Yi, G.; Youn, B.D. A comprehensive survey on topology optimization of phononic crystals. Struct. Multidiscip. Optim. 2016, 54, 1315–1344.
[20] Gregg EC, Palagallo GL. Acoustic impedance of tissue. Invest Radiol. 1969 Nov-Dec;4(6):357-63.
[21] J. Ziony, ed. “Earthquakes in the Los Angeles Region.” USGS.
[22] Brace, W. F., & Byerlee, J. D. (1966). Stick-slip as a mechanism for earthquakes. Science, 153(3739), 990–992.
[23] Colombo, L., & Giordano, S. (2011). Nonlinear elasticity in nanostructured materials. Reports on Progress in Physics, 74(11), 116501.
[24] Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(1226), 376–396.
[25] Eshelby, J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 252(1271), 561–569.
[26] Eshelby, J. D. (1961). Elastic inclusions and inhomogeneities. In I. N. Sneddon & R. Hill (Eds.), Progress in Solid Mechanics (Vol. 2, pp. 89–140). Amsterdam: North-Holland.
[27] Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.
[28] Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009.
[29] Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666.
[30] Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160(3–4), 635–676.
[31] Semblat, J. F., & Luong, M. P. (1998). Wave propagation through soils in centrifuge testing. Journal of Earthquake Engineering, 2(1), 147–171.
[32] McLaskey, G. C., Lockner, D. A., Kilgore, B. D., & Beeler, N. M. (2019). A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop. Experimental Mechanics, 59(3), 361–373.
[33] Wu, B. S., & McLaskey, G. C. (2018). Broadband calibration of acoustic emission and ultrasonic sensors from generalized ray theory and finite element models. Journal of Nondestructive Evaluation, 37(1), Article 8.
[34] Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168.
[35] Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12), 10359–10370.
[36] Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26, 643–696.
[37] Bayart, E., Svetlizky, I., & Fineberg, J. (2016). Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nature Physics, 12(7), 631–635.
[38] Ke, C.-Y., McLaskey, G. C., & Kammer, D. S. (2018). Rupture termination in laboratory-generated earthquakes. Geophysical Research Letters, 45(23), 12,784–12,792.
[39] Cebry, S. B. L., Ke, C. Y., Shreedharan, S., Marone, C. J., Kammer, D. S., & McLaskey, G. C. (2022). Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering. Nature Communications, 13(1), 6839.
[40] Song, J. Y., & McLaskey, G. C. (2024). Laboratory earthquake ruptures contained by velocity strengthening fault patches. Journal of Geophysical Research: Solid Earth, 129(4), e2023JB028509.
[41] Smooth-On, Inc. (n.d.). Durometer Shore hardness scale. Smooth-On. Retrieved June 23, 2025, from https://www.smooth-on.com/page/durometer-shore-hardness-scale/
[42] Gent, A. N. (1958). On the relation between indentation hardness and Young’s modulus. IRI Transactions, 34, 46–57.
[43] Nicoreac, M., Pârv, B., Petrina, M., & Petrina, T. (2010). Similitude theory and applications. Acta Technica Napocensis: Civil Engineering and Architecture, 53(1), 1–11.
[44] Guo, L., Lv, Y., Deng, Z., Wang, Y., & Zan, X. (2016). Tension testing of silicone rubber at high strain rates. Materials & Design, 96, 182–188.
[45] Bloomfield, L. A. (2011). Flexible composite material and articles including same (WO 2011/112699 A1). World Intellectual Property Organization.
[46] MatWeb. (n.d.). Material property data for PMMA and Steel. Retrieved March 10, 2025, from https://www.matweb.com
[47] ASTM International. (2021). ASTM D412-21: Standard test methods for vulcanized rubber and thermoplastic elastomers—Tension.
[48] International Organization for Standardization. (2017). ISO 37:2017 Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties.
[49] Şengül, Y. (2021). Nonlinear viscoelasticity of strain rate type: An overview. Mathematics and Mechanics of Solids, 26(12), 2101–2118.
[50] Johnson, T. L., Wu, F. T., & Scholz, C. H. (1973). Source parameters for stick-slip and for earthquakes. Science, 179(4070), 278–280.
[51] Kammer, D. S., McLaskey, G. C., Abercrombie, R. E., Ampuero, J.-P., Cattania, C., Cocco, M., Dal Zilio, L., Dresen, G., Gabriel, A.-A., Ke, C.-Y., Marone, C., Selvadurai, P. A., & Tinti, E. (2024). Earthquake energy dissipation in a fracture mechanics framework. Nature Communications, 15(1), Article 4736.
[52] Meththananda, I. M., Parker, S., Patel, M. P., & Braden, M. (2009). The relationship between Shore hardness of elastomeric dental materials and Young’s modulus. Dental Materials, 25(7), 956–959.
[53] Hakoda, C., Rose, J., Shokouhi, P., & Lissenden, C. (2018). Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides. AIP Conference Proceedings, 1949(1), 020016.
[54] COMSOL AB, COMSOL Multiphysics® v. 6.1, Stockholm, Sweden.
[55] Ohnaka, M., & Kuwahara, Y. (1989). Characteristic features of local breakdown near a crack-tip in the transition zone from nucleation to unstable rupture during stick-slip shear failure. Tectonophysics, 175(3–4), 197–220.
[56] Richards, P. G. (1976). Dynamic motions near an earthquake fault: A three-dimensional solution. Bulletin of the Seismological Society of America, 66(1), 1–32.
[57] Johnson, T. L., & Scholz, C. H. (1976). Dynamic properties of stick-slip friction of rock. Journal of Geophysical Research, 81(5), 881–888.
[58] Wu, B. S., & McLaskey, G. C. (2021). Contained laboratory earthquakes ranging from slow to fast. Journal of Geophysical Research: Solid Earth, 126(6), e2020JB021493.
[59] Cebry, S. B. L., & McLaskey, G. C. (2023). Heterogeneous high frequency seismic radiation from complex ruptures. Earth and Planetary Science Letters, 619, 118274.
[60] Gao, L., Cai, C., Mak, C. M., He, X., Zou, Y., & Wu, D. (2023). Surface wave attenuation by periodic hollow steel trenches with Bragg band gap and local resonance band gap. Soil Dynamics and Earthquake Engineering, 169, 107682.
[61] W. Yu and L. Zhou, "Seismic metamaterial surface for broadband Rayleigh waves attenuation," Mater. Des., vol. 225, p. 111509, 2023.
[62] M. M. Hajjaj and J. Tu, "A seismic metamaterial concept with very short resonators using depleted uranium," Arch. Appl. Mech., vol. 91, p. 2279–2300, 2021.
[63] Miniaci, M., Krushynska, A., Bosia, F., & Pugno, N. M. (2016). Large scale mechanical metamaterials as seismic shields. New Journal of Physics, 18(8), 083041.
[64] Airoldi, L., & Ruzzene, M. (2011). Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezoelectric patches. New Journal of Physics, 13(11), 113010.
[65] K. Aki, "Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum," Bull. Earthquake Res. Inst., vol. 35, pp. 23-88, 1966.
[66] McLaskey, G. C., & Kilgore, B. D. (2013). Foreshocks during the nucleation of stick-slip instability. Journal of Geophysical Research: Solid Earth, 118(6), 2982–2997.
[67] McLaskey, G. C. (2019). Earthquake initiation from laboratory observations and implications for fault mechanics. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904.
[68] Dieterich, J. H. (1979). Modeling of rock friction 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168.
[69] Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42.
[70] Latour, S., Schubnel, A., Nielsen, S., Madariaga, R., & Vinciguerra, S. (2013). Characterization of nucleation during laboratory earthquakes. Geophysical Research Letters, 40(19), 5064–5069.
[71] Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350.
[72] Abercrombie, R. E. (1995). Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5 km depth. Journal of Geophysical Research, 100(B12), 24015–24036.
[73] Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296(5573), 1679–1681.
[74] Ide, S., Shelly, D. R., & Beroza, G. C. (2007). Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophysical Research Letters, 34(3), L03308.
[75] Zigone, D., Voisin, C., Larose, E., Renard, F., & Campillo, M. (2011). Slip acceleration generates seismic tremor-like signals in friction experiments. Geophysical Research Letters, 38, L01315.
[76] Dieterich, J. H. (1992). Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics, 211(1–4), 115–134.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99639-
dc.description.abstract如何減少地震所帶來的災害和損失,一直是位於環太平洋火山地震帶的台灣所要面對的重要課題,隨著時代的演進抗震技術也日趨成熟。近幾年地震超材料(Seismic Metamaterials)作為新型的減震技術逐漸受到學術與工程界的重視,透過特殊的設計與排列方式,可以形成特定頻率波傳無法通過之屏障,進而使人們能在不改變既有建築物的狀況下建立防止地震波傳入之保護區。然而過往地震超材料相關研究主要面對的都是點波源抑或是固定頻率之波傳,難以貼近真實地震波之特性,故本研究旨在透過實驗室地震之製造地震方法,將其作為地震超材料所要面對之波傳,並且觀察超材料在面對地震波之表現。
本篇研究首先透過數值模擬的方式設計超材料單元,使其尺寸和頻率帶隙(Band Gap)適合實驗室地震設備尺寸及其地震波頻率,後續進行排數分析證實其面對帶隙頻率內之波傳確實能產生折減。完成設計後再透過數值模擬重現文獻中實驗室地震實驗,再將本研究所設計之樁型地震超材料至於其中觀察其對波傳行為的影響。最後再透過3D列印技術製作出矽膠樁型地震超材料試體,首先進行落球實驗證實其對非固定頻率之波傳也能在帶隙範圍內產生折減,後續進行與文獻相似之斷層面實驗並且透過不一樣的配置皆證明樁型地震超材料在面對近斷層之地震波也能降低帶隙範圍內之波傳。
綜合以上模擬與實驗結果,樁型地震超材料在面對真實地震波具有減震之潛力,未來若能進行更多相關模擬以及大規模實驗證明地震超材料之可行性,即可進一步提升地震工程技術,減輕地震所帶來的損害。
zh_TW
dc.description.abstractReducing the damage and losses caused by earthquakes has long been a critical challenge for Taiwan, located in the seismically active Pacific Ring of Fire. With the advancement of time, seismic-resistant technologies have gradually matured. In recent years, seismic metamaterials have emerged as a novel passive vibration control technology, gaining increasing attention from both academia and engineering practice. Through specific designs and periodic arrangements, these materials can form frequency-dependent wave-blocking zones, preventing seismic waves from propagating through certain frequency ranges. This enables the creation of protected zones without modifying existing structures. However, most previous studies have focused on point sources or fixed-frequency waves, which do not accurately represent the characteristics of real earthquake ground motions. Therefore, this study employs a laboratory earthquake system to replicate near-real earthquake conditions and examines the performance of seismic metamaterials under such wave propagation scenarios.
The study first utilizes numerical simulations to design metamaterial units with dimensions and band gap frequencies compatible with the laboratory seismic system. The row test is then conducted to evaluate the wave attenuation performance for different numbers of metamaterial rows, confirming their effectiveness within the target band gap range. Subsequently, the designed pile-type seismic metamaterial is integrated into a finite element model replicating a previously published laboratory fault simulation to observe its influence on seismic wave propagation. In the experimental stage, silicone-based pile-type metamaterials are fabricated using 3D printing technology. The ball drop experiments confirm their ability to attenuate non-monochromatic waves within the band gap. Further near-fault laboratory earthquake experiments using various configurations also demonstrate that the metamaterials can effectively reduce wave transmission in the specified frequency range.
In conclusion, both simulation and experimental results indicate that pile-type seismic metamaterials possess the potential to mitigate seismic waves under realistic conditions. Future research involving larger-scale models and field simulations may further verify their feasibility and contribute to the development of advanced seismic protection strategies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:13:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:13:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目 次 v
圖 次 viii
表 次 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究流程與目的 2
1.3 本文架構 2
第二章 文獻回顧 4
2.1 超材料發展 4
2.2 超材料理論 7
2.2.1 晶體(Crystal)[17] 7
2.2.2 正晶格與倒晶格(Reciprocal Lattice)[17] 7
2.2.3 布洛赫定理(Bloch’s Theorem) 7
2.2.4 布里淵區(Brillouin Zones)[17] 8
2.2.5 局部共振(Local Resonance)[16] 9
2.2.6 機械阻抗(Mechanical Impedance)[20] 10
2.3 實驗室地震發展 11
2.3.1 地震的形成 11
2.3.2 黏滑現象(Stick-Slip) 11
2.3.3 地震相關經驗公式 12
2.3.4 震源模型(Earthquake Source Model) 12
2.3.5 落球實驗(Ball Drop Test) 14
2.3.6 實驗室地震(Laboratory Earthquake) 14
2.4 文獻回顧之啟發 16
第三章 超材料之有限元素數值模擬 43
3.1 有限元素軟體簡介 43
3.1.1 COMSOL 介紹 43
3.1.2 週期性邊界條件 (Periodic Boundary Condition) 43
3.1.3 低反射邊界條件 (Low Reflecting Condition) 44
3.2 超材料單元初步設計 44
3.2.1 超材料單元頻散分析模型設定與邊界條件 44
3.2.2 超材料單元頻散曲線 45
3.3 排數分析 46
3.3.1 超材料結構二維時間域分析之設定與邊界條件 46
3.3.2 超材料結構二維時間域分析結果與帶隙 47
第四章 實驗室地震模擬 56
4.1 實驗室地震模型 56
4.1.1 實驗室地震模型設置 56
4.1.2 模型驗證 57
4.2 樁型地震超材料與實驗室地震之有限元素分析 57
4.2.1 樁型地震超材料與實驗室地震模型設定 57
4.2.2 樁型地震超材料與實驗室地震模型結果 58
4.3 模擬結果討論 58
第五章 實驗室地震實驗 67
5.1 超材料試體製作與頻散曲線 67
5.2 落球實驗 67
5.2.1 落球實驗配置 67
5.2.2 落球實驗結果 68
5.3 地表樁型地震超材料與斷層面實驗 68
5.3.1 地表樁型地震超材料與斷層面實驗配置 68
5.3.2 地表樁型地震超材料與斷層面實驗結果 69
5.4 地下樁型地震超材料與斷層面實驗 70
5.4.1 地下樁型地震超材料與斷層面實驗配置 70
5.4.2 地下樁型地震超材料與斷層面實驗結果 70
第六章 結論與未來展望 100
6.1 本文結論 100
6.1.1 超材料設計結論 100
6.1.2 實驗室地震與超材料結合結論 100
6.2 未來展望 101
參考文獻 103
-
dc.language.isozh_TW-
dc.subject有限元素法zh_TW
dc.subject樁型地震超材料zh_TW
dc.subject黏滑現象zh_TW
dc.subject實驗室地震zh_TW
dc.subject局部共振zh_TW
dc.subjectFinite element analysisen
dc.subjectLaboratory earthquakeen
dc.subjectStick-slipen
dc.subjectLocal resonanceen
dc.subjectPile-type seismic metamaterialsen
dc.title樁型地震超材料面對近斷層之實驗與可行性研究zh_TW
dc.titleExperimental and Feasibility Study on Pile-Type Seismic Metamaterials Under Near-Fault Conditionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張國鎮;汪向榮;柯俊宇zh_TW
dc.contributor.oralexamcommitteeKuo-Chun Chang;Shiang-Jung Wang;Chun-Yu Keen
dc.subject.keyword樁型地震超材料,有限元素法,局部共振,實驗室地震,黏滑現象,zh_TW
dc.subject.keywordPile-type seismic metamaterials,Local resonance,Finite element analysis,Laboratory earthquake,Stick-slip,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202504008-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2030-08-06-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved